Download citation
Download citation
link to html
The structure of the title compound, [Sb(C32H16N8)]2[Sb4I14] or [SbPc]2[Sb4I14], where Pc is the phthalocyaninate(2−) macrocycle, is built up from separate but inter­acting [SbPc]+ cations and [Sb4I14]2− anions. The Sb atom of the [SbPc]+ ion is bonded to four isoindole N atoms of the macrocycle and lies 0.974 (1) Å out of the plane defined by these four N atoms. The anion consists of [SbI3] and [SbI4] units which, through an inversion centre, form an [Sb4I14]2− anion. The anions interact with each other, forming {[Sb4I14]2−}n chains. The arrangement of oppositely charged ions, viz. [SbPc]+ and [Sb4I14]2−, in the crystal structure is determined mainly by the ionic attractions between the [SbPc]+ and [Sb4I14]2− units and by π–π inter­actions between the aromatic macrocycles.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028485/is6121sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028485/is6121Isup2.hkl
Contains datablock I

CCDC reference: 287608

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.048
  • wR factor = 0.109
  • Data-to-parameter ratio = 21.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Sb3 PLAT342_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The present study is a continuation of our investigations on the synthesis, characterization and stereochemistry of metallophthalocyaninate complexes, which have been obtained under oxidation conditions of iodine vapour (Janczak & Idemori, 2001; Janczak, 2003). The title compound, (I), is an example of a complex containing the same metal ion in both parts of the complex, in the cation and anion, i.e. [SbPc]+ and [Sb4I14]2−. In addition, two isostructural complexes of [(SbPc)4(Sb4I16)] (Janczak & Idemori, 2002) and [(BiPc)4(Bi4I16)] (Kubiak & Ejsmont, 1999) have been structurally characterized to date. A search of the Cambridge Structural Database (Version 5.24; Allen, 2002) for structures containing both [MPc]+ and [M4I14]2− units shows only one example, the complex [AsPc][As4I14], (II) (Janczak & Kubiak, 2003), which is not isostructural with the present Sb complex; compound (I) crystallizes in the monoclinic system, while (II) is in the triclinic system.

Compound (I) is built up of separate but interacting [SbPc]+ and [Sb4I14]2− units (Fig. 1). The [Sb4I14]2− units interact to form chains of {(Sb4I14)2−}n, which are different from (II), where the [As4I14]2− anions are more separated (Janczak & Kubiak, 2003). The Pc macroring of the [SbPc]+ cation is saucer-shaped, as a result of the interaction of the central SbIII ion with the I of the oppositely charged [Sb4I14]2− counter-ion. The greatest deviations from the plane defined by the four isoindole N atoms of the macrocycle are observed for the C atoms of the phenyl rings. The greatest range is 0.347 (1)–0.834 (1) Å for C18–C23. The SbIII atom is significantly displaced from the N4–isoindole plane [0.974 (1) Å] towards atom I4 of the anion; the Sb1···I4 distance of 3.693 (1) Å is shorter than the sum of the van der Waals radii of Sb and I (Shannon, 1976). The interaction of atom Sb1 of the [SbPc]+ unit with two other I atoms (I1 and I7) of the anion is weaker, with Sb1···I1 and Sb1···I7i distances of 3.842 (1) and 3.999 (1) Å, respectively [symmetry code (i): 1 − x, 1 − y, 1 − z]. The displacement of the SbIII atom from the N4–isoindole plane is comparable with that in [SbPc]+I3 [0.966 (2) Å; Kubiak et al., 1999] and in the [SbPc]4[Sb4I16] complex [1.000 (2) Å; Janczak & Idemori, 2002], but slightly shorter than that in [SbPcCl]2 [1.057 (3) Å; Janczak & Kubiak, 2001]. The displacement of the AsIII atom in [(AsPc)2(As4I14)] and other iodo As–phthalocyaninato complexes is smaller by about 0.22 Å than in (I). This is quite reasonable, because of the difference in the ionic radii of SbIII and AsIII (Shannon, 1976). The influence of the Sb···I interaction is clearly manifested in the Sb—N coordination, leading to the molecular symmetry of the Sb—N4 core being close to Cs and not to C4v, which corresponds to the conformation in solution.

The anionic part of (I), [Sb4I14]2−, consists of two deformed SbI6 octahedra joined together by two bridging I atoms and two deformed SbI5 square pyramids that are linked to the SbI6 octahedra to form a centrosymmetric [Sb4I14]2− counter-ion (Fig. 1 b). The Sb—I bond lengths fall into two groups, namely shorter Sb—I bonds, which show that the [Sb4I14]2− ion consists of two pairs of SbI3 and SbI4 units, and longer Sb—I bonds, with the I bridging atoms. The distortion of the SbI6 octahedra and SbI5 square-pyramidal polyhedra in the [Sb4I14]2− anion is likely to be due to steric effect of the lone electron pair on the SbIII atom, as predicted by the valence-shell electron-pair repulsion (VSEPR) model (Gillespie, 1963, 1992). A similar pattern in M—I bond lengths is also observed in [Bi4I16]4− (Kubiak & Ejsmont, 1999), [Sb4I16]4− (Janczak & Idemori, 2002) and [As4I14]2− ions (Janczak & Kubiak, 2003). The [Sb4I14]2− anion can also be described as composed of two symmetrically equivalent pairs of SbI3 and SbI4 units. However, the mutual orientation and arrangement of both SbI3 and SbI4 units, related by an inversion centre in the crystal, leads to the formation of an [Sb4I14]2− ion, in contrast with the As complex, (II) (Janczak & Kubiak, 2003).

The ionic attraction between the [SbPc]+ and [Sb4I14]2− ions seems to be significant (Fig. 2). The basic packing unit includes two [SbPc]+ macrocycles associated by an inversion centre and a [Sb4I14]2− counter-ion. The central Sb1 atom of the [SbPc]+ moiety interacts strongly with atom I4 and weakly with two other I atoms (I1 and I7). In the crystal structure, the pairs of [SbPc]+ metallomacrocycles related by the inversion centre are separated by 14.15 Å (N4–isoindole···N4–isoindole distance), covering two sides of the [Sb4I14]2− counter-ion (one SbPc covered on the side of atoms I4/I7/I1i and the other on the side of atoms I1/I4i/I7i).

The asymmetric distortion of the Pc macroring of [SbPc]+ from the N4–isoindole plane and the deviation from C4v symmetry mentioned above can be understood by taking into account the interaction of the central positively charged atom Sb1 with the [Sb4I14]2− counter-ion, as well as the interaction of the π-cloud of the phthalocyaninate macroring with the I atoms of the [Sb4I14]2− anion.

The centrosymmetric {[SbPc]+···[Sb4I14]2−···[SbPc]+} aggregates in the crystal structure form stacks, with ππ interactions between adjacent back-to-back oriented pairs of Pc macrocycles. The interplanar N4–isoindole···N4–isondole distance within the stack is 3.45 Å, indicating a ππ interaction. Strong ππ interactions are a common feature in the structures of phthalocyanine and its metal complexes, determining their crystal architectures.

Experimental top

Crystals of the title compund were obtained by the direct reaction of pure powdered antimony with phthalonitrile (Kubiak & Janczak, 1993) under a stream of iodine vapour at 473 K. Compound (I) is not soluble in polar solvents such as H2O, CH3OH and C2H5OH. It is only sparingly soluble in pyridine, dimethylformamide, dimethyl sulfoxide and related solvents. The electrical conductivity of (I), measured on a single-crystal along the stacking direction of the {[SbPc]+···[Sb4I14]2−···[SbPc]+} aggregates (the a axis), as well as along the c axis, exhibits non-metallic character (dσ/dT > 0). At room temperature, the conductivity is 2.4–4.2 × 10−6 Ω−1 cm−1 (along the a axis) and 6.8–8.2 × 10−7 Ω−1 cm−1 (along the c axis).

Computing details top

Data collection: KM-4 CCD Software (Kuma, 2001); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the [SbPc]+ unit of (I), with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the molecular structure of the [Sb4I14]2− counter-ion of (I), with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) 1 − x, 1 − y, 1 − z].
[Figure 3] Fig. 3. The molecular packing in the unit cell, showing the Sb···I interactions (dashed lines).
Bis{[phthalocyaninato(2-)]antimony(III)} tetradecaiodotetraantimony(III) top
Crystal data top
[Sb(C32H16N8)]2[Sb4I14]F(000) = 6304
Mr = 3532.16Dx = 2.835 Mg m3
Dm = 2.83 Mg m3
Dm measured by flotation in a mixture of CHCl3 and CHBr3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2852 reflections
a = 25.179 (4) Åθ = 3.4–27.8°
b = 13.822 (3) ŵ = 7.20 mm1
c = 24.112 (4) ÅT = 295 K
β = 99.58 (1)°Prism, black-violet
V = 8275 (3) Å30.32 × 0.16 × 0.12 mm
Z = 4
Data collection top
Kuma KM-4 (plus CCD area-detector)
diffractometer
9652 independent reflections
Radiation source: fine-focus sealed tube6039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1θmax = 27.8°, θmin = 3.4°
ω scansh = 3227
Absorption correction: analytical
(face-indexed; SHELXTL, Sheldrick, 1990)
k = 1818
Tmin = 0.215, Tmax = 0.486l = 3131
34609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
9652 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 2.09 e Å3
Crystal data top
[Sb(C32H16N8)]2[Sb4I14]V = 8275 (3) Å3
Mr = 3532.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.179 (4) ŵ = 7.20 mm1
b = 13.822 (3) ÅT = 295 K
c = 24.112 (4) Å0.32 × 0.16 × 0.12 mm
β = 99.58 (1)°
Data collection top
Kuma KM-4 (plus CCD area-detector)
diffractometer
9652 independent reflections
Absorption correction: analytical
(face-indexed; SHELXTL, Sheldrick, 1990)
6039 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.486Rint = 0.041
34609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.00Δρmax = 1.45 e Å3
9652 reflectionsΔρmin = 2.09 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb20.49789 (2)0.33387 (4)0.64983 (2)0.04133 (13)
Sb30.46389 (2)0.36881 (4)0.43846 (2)0.04593 (14)
I10.41033 (2)0.36587 (4)0.56055 (2)0.04759 (14)
I20.42006 (2)0.29721 (5)0.72394 (2)0.05650 (16)
I30.51380 (3)0.14543 (4)0.62158 (3)0.06319 (17)
I40.57288 (2)0.39764 (4)0.56149 (2)0.05472 (15)
I50.35692 (2)0.33326 (4)0.39522 (2)0.05548 (16)
I60.49377 (3)0.17455 (5)0.44241 (3)0.07011 (19)
I70.50118 (2)0.40274 (5)0.33514 (2)0.06062 (17)
Sb10.358194 (18)0.62702 (3)0.561462 (18)0.03309 (12)
N10.3286 (2)0.7494 (4)0.5087 (2)0.0335 (13)
N20.3711 (2)0.8815 (4)0.5669 (2)0.0386 (14)
N30.3576 (2)0.7405 (4)0.6242 (2)0.0358 (13)
N40.3556 (3)0.6451 (4)0.7075 (2)0.0411 (14)
N50.3186 (2)0.5545 (4)0.6242 (2)0.0401 (14)
N60.2679 (2)0.4292 (4)0.5667 (2)0.0391 (14)
N70.2876 (2)0.5641 (4)0.5077 (2)0.0354 (13)
N80.2839 (2)0.6666 (4)0.4253 (2)0.0374 (13)
C10.3085 (3)0.7415 (5)0.4512 (3)0.0361 (16)
C20.3194 (3)0.8307 (6)0.4235 (3)0.0403 (17)
C30.3107 (3)0.8604 (6)0.3672 (3)0.049 (2)
H30.29350.81960.33920.059*
C40.3274 (3)0.9475 (7)0.3542 (3)0.054 (2)
H40.32220.96640.31670.064*
C50.3535 (3)1.0135 (6)0.3966 (3)0.052 (2)
H50.36351.07500.38650.063*
C60.3634 (3)0.9850 (6)0.4518 (3)0.0463 (19)
H60.38131.02530.47960.056*
C70.3458 (3)0.8932 (5)0.4649 (3)0.0374 (16)
C80.3502 (3)0.8414 (5)0.5184 (3)0.0357 (16)
C90.3740 (3)0.8337 (5)0.6148 (3)0.0385 (16)
C100.3951 (3)0.8790 (5)0.6690 (3)0.0389 (17)
C110.4149 (3)0.9698 (6)0.6826 (3)0.051 (2)
H110.41651.01640.65510.062*
C120.4327 (3)0.9899 (6)0.7395 (3)0.053 (2)
H120.44811.04980.75000.063*
C130.4279 (4)0.9217 (6)0.7808 (3)0.057 (2)
H130.43820.93820.81840.068*
C140.4081 (4)0.8301 (6)0.7671 (3)0.052 (2)
H140.40670.78370.79470.063*
C150.3905 (3)0.8099 (5)0.7107 (3)0.0381 (16)
C160.3677 (3)0.7224 (5)0.6821 (3)0.0385 (16)
C170.3316 (3)0.5681 (6)0.6812 (3)0.0415 (17)
C180.3123 (3)0.4869 (5)0.7097 (3)0.0441 (18)
C190.3161 (4)0.4649 (6)0.7673 (3)0.051 (2)
H190.33410.50550.79490.062*
C200.2923 (4)0.3815 (6)0.7808 (4)0.060 (2)
H200.29480.36440.81850.072*
C210.2635 (4)0.3200 (6)0.7386 (3)0.057 (2)
H210.24680.26430.74890.069*
C220.2606 (3)0.3431 (6)0.6829 (3)0.0449 (18)
H220.24170.30370.65510.054*
C230.2857 (3)0.4248 (5)0.6690 (3)0.0410 (17)
C240.2906 (3)0.4703 (5)0.6151 (3)0.0385 (16)
C250.2669 (3)0.4771 (5)0.5187 (3)0.0358 (16)
C260.2384 (3)0.4356 (5)0.4656 (3)0.0365 (16)
C270.2102 (3)0.3537 (6)0.4528 (4)0.053 (2)
H270.20570.31030.48110.064*
C280.1878 (4)0.3337 (7)0.3977 (4)0.057 (2)
H280.16950.27600.38830.068*
C290.1935 (3)0.4025 (6)0.3562 (3)0.053 (2)
H290.17810.38930.31920.064*
C300.2208 (3)0.4888 (6)0.3676 (3)0.0469 (19)
H300.22410.53360.33960.056*
C310.2432 (3)0.5045 (5)0.4238 (3)0.0367 (16)
C320.2733 (3)0.5867 (5)0.4513 (3)0.0365 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb20.0402 (3)0.0501 (3)0.0339 (3)0.0026 (2)0.0068 (2)0.0057 (2)
Sb30.0341 (3)0.0646 (3)0.0377 (3)0.0017 (2)0.0020 (2)0.0049 (2)
I10.0409 (3)0.0656 (3)0.0354 (3)0.0085 (2)0.0039 (2)0.0092 (2)
I20.0361 (3)0.0952 (4)0.0380 (3)0.0011 (3)0.0057 (2)0.0054 (3)
I30.0837 (4)0.0518 (3)0.0557 (4)0.0143 (3)0.0165 (3)0.0120 (3)
I40.0458 (3)0.0612 (3)0.0620 (3)0.0007 (3)0.0228 (3)0.0005 (3)
I50.0363 (3)0.0739 (4)0.0532 (3)0.0021 (3)0.0016 (2)0.0029 (3)
I60.0683 (4)0.0738 (4)0.0652 (4)0.0223 (3)0.0021 (3)0.0010 (3)
I70.0631 (4)0.0761 (4)0.0469 (3)0.0064 (3)0.0214 (3)0.0054 (3)
Sb10.0318 (2)0.0414 (3)0.0261 (2)0.0029 (2)0.00498 (18)0.00033 (19)
N10.038 (3)0.036 (3)0.025 (3)0.007 (3)0.003 (2)0.002 (2)
N20.034 (3)0.051 (4)0.032 (3)0.000 (3)0.008 (3)0.002 (3)
N30.041 (3)0.040 (3)0.025 (3)0.002 (3)0.002 (2)0.001 (2)
N40.049 (4)0.045 (4)0.026 (3)0.003 (3)0.001 (3)0.001 (3)
N50.046 (4)0.051 (4)0.024 (3)0.003 (3)0.010 (3)0.004 (3)
N60.033 (3)0.048 (4)0.035 (3)0.002 (3)0.004 (3)0.005 (3)
N70.024 (3)0.058 (4)0.023 (3)0.007 (3)0.002 (2)0.003 (3)
N80.036 (3)0.050 (4)0.027 (3)0.007 (3)0.006 (2)0.001 (3)
C10.033 (4)0.047 (4)0.028 (3)0.009 (3)0.005 (3)0.001 (3)
C20.034 (4)0.061 (5)0.027 (3)0.015 (3)0.008 (3)0.012 (3)
C30.051 (5)0.063 (5)0.031 (4)0.013 (4)0.004 (3)0.005 (4)
C40.063 (5)0.071 (6)0.027 (4)0.004 (4)0.008 (4)0.006 (4)
C50.060 (5)0.050 (5)0.048 (5)0.005 (4)0.012 (4)0.015 (4)
C60.045 (4)0.058 (5)0.036 (4)0.007 (4)0.006 (3)0.002 (4)
C70.028 (3)0.047 (4)0.038 (4)0.007 (3)0.007 (3)0.000 (3)
C80.031 (4)0.049 (4)0.028 (3)0.008 (3)0.010 (3)0.006 (3)
C90.036 (4)0.046 (4)0.034 (4)0.007 (3)0.006 (3)0.004 (3)
C100.036 (4)0.041 (4)0.037 (4)0.011 (3)0.001 (3)0.008 (3)
C110.068 (6)0.054 (5)0.030 (4)0.003 (4)0.001 (4)0.003 (3)
C120.049 (5)0.050 (5)0.058 (5)0.012 (4)0.008 (4)0.014 (4)
C130.065 (6)0.071 (6)0.032 (4)0.004 (5)0.003 (4)0.001 (4)
C140.075 (6)0.049 (5)0.032 (4)0.001 (4)0.004 (4)0.002 (4)
C150.042 (4)0.042 (4)0.028 (3)0.007 (3)0.000 (3)0.000 (3)
C160.048 (4)0.041 (4)0.026 (3)0.004 (3)0.006 (3)0.003 (3)
C170.041 (4)0.053 (5)0.029 (4)0.001 (4)0.002 (3)0.007 (3)
C180.061 (5)0.045 (4)0.028 (4)0.010 (4)0.011 (3)0.000 (3)
C190.071 (6)0.049 (5)0.035 (4)0.003 (4)0.011 (4)0.000 (4)
C200.085 (7)0.058 (5)0.044 (5)0.016 (5)0.031 (5)0.005 (4)
C210.077 (6)0.058 (5)0.043 (5)0.003 (5)0.028 (4)0.020 (4)
C220.040 (4)0.051 (5)0.045 (4)0.006 (3)0.009 (3)0.009 (3)
C230.048 (4)0.043 (4)0.035 (4)0.000 (3)0.015 (3)0.001 (3)
C240.046 (4)0.036 (4)0.034 (4)0.003 (3)0.009 (3)0.006 (3)
C250.028 (4)0.043 (4)0.034 (4)0.003 (3)0.001 (3)0.000 (3)
C260.029 (4)0.045 (4)0.036 (4)0.001 (3)0.010 (3)0.005 (3)
C270.047 (5)0.056 (5)0.057 (5)0.005 (4)0.009 (4)0.003 (4)
C280.058 (5)0.063 (5)0.045 (5)0.011 (4)0.005 (4)0.008 (4)
C290.045 (5)0.067 (6)0.042 (4)0.005 (4)0.005 (4)0.009 (4)
C300.036 (4)0.072 (5)0.033 (4)0.001 (4)0.006 (3)0.002 (4)
C310.025 (3)0.050 (4)0.034 (4)0.002 (3)0.002 (3)0.014 (3)
C320.028 (3)0.050 (4)0.030 (3)0.000 (3)0.003 (3)0.002 (3)
Geometric parameters (Å, º) top
Sb2—I32.7385 (10)C6—C71.397 (9)
Sb2—I12.8479 (8)C6—H60.9300
Sb2—I22.9079 (8)C7—C81.464 (9)
Sb2—I43.1966 (8)C9—C101.466 (9)
Sb2—I7i3.658 (1)C10—C111.370 (9)
Sb3—I52.7655 (8)C10—C151.406 (9)
Sb3—I62.7859 (10)C11—C121.399 (10)
Sb3—I72.8438 (9)C11—H110.9300
Sb3—I13.4363 (9)C12—C131.390 (10)
Sb3—I43.712 (1)C12—H120.9300
Sb3—I4i3.358 (1)C13—C141.379 (10)
Sb1—N12.172 (5)C13—H130.9300
Sb1—N32.181 (6)C14—C151.388 (9)
Sb1—N52.188 (6)C14—H140.9300
Sb1—N72.197 (5)C15—C161.462 (8)
N1—C81.389 (9)C17—C181.443 (9)
N1—C11.399 (8)C18—C231.391 (9)
N2—C81.320 (9)C18—C191.408 (9)
N2—C91.324 (9)C19—C201.363 (9)
N3—C91.381 (9)C19—H190.9300
N3—C161.400 (8)C20—C211.428 (9)
N4—C161.292 (9)C20—H200.9300
N4—C171.331 (9)C21—C221.371 (9)
N5—C241.360 (9)C21—H210.9300
N5—C171.373 (8)C22—C231.364 (9)
N6—C251.330 (9)C22—H220.9300
N6—C241.337 (8)C23—C241.466 (9)
N7—C251.353 (9)C25—C261.476 (8)
N7—C321.384 (8)C26—C271.345 (9)
N8—C11.311 (9)C26—C311.406 (9)
N8—C321.319 (9)C27—C281.381 (10)
C1—C21.449 (10)C27—H270.9300
C2—C71.400 (9)C28—C291.405 (10)
C2—C31.401 (9)C28—H280.9300
C3—C41.330 (10)C29—C301.382 (9)
C3—H30.9300C29—H290.9300
C4—C51.444 (10)C30—C311.395 (8)
C4—H40.9300C30—H300.9300
C5—C61.372 (9)C31—C321.462 (8)
C5—H50.9300
I3—Sb2—I194.97 (2)C11—C10—C15121.4 (6)
I3—Sb2—I297.39 (3)C11—C10—C9132.0 (6)
I1—Sb2—I288.59 (2)C15—C10—C9106.6 (6)
I3—Sb2—I488.25 (2)C10—C11—C12117.5 (6)
I1—Sb2—I485.55 (2)C10—C11—H11121.3
I2—Sb2—I4172.21 (2)C12—C11—H11121.3
I1—Sb2—I7i84.93 (2)C13—C12—C11121.0 (7)
I2—Sb2—I7i96.11 (2)C13—C12—H12119.5
I4—Sb2—I7i78.28 (2)C11—C12—H12119.5
I5—Sb3—I694.71 (3)C14—C13—C12121.5 (6)
I5—Sb3—I798.16 (3)C14—C13—H13119.3
I6—Sb3—I793.57 (3)C12—C13—H13119.3
I1—Sb3—I470.13 (2)C13—C14—C15117.6 (6)
I1—Sb3—I579.89 (2)C13—C14—H14121.2
I1—Sb3—I695.83 (2)C15—C14—H14121.2
I4—Sb3—I7111.99 (2)C14—C15—C10120.9 (6)
Sb2—I1—Sb3106.53 (2)C14—C15—C16131.7 (6)
Sb2—I4—Sb393.60 (2)C10—C15—C16107.3 (6)
Sb2—I4—Sb3i94.09 (2)N4—C16—N3127.1 (6)
Sb3—I4—Sb3i86.34 (2)N4—C16—C15124.4 (6)
N1—Sb1—N378.7 (2)N3—C16—C15108.3 (6)
N1—Sb1—N5127.6 (2)N4—C17—N5126.9 (7)
N3—Sb1—N578.1 (2)N4—C17—C18123.9 (6)
N1—Sb1—N778.3 (2)N5—C17—C18109.1 (6)
N3—Sb1—N7126.5 (2)C23—C18—C19120.6 (7)
N5—Sb1—N779.0 (2)C23—C18—C17107.7 (6)
C8—N1—C1107.7 (5)C19—C18—C17131.7 (7)
C8—N1—Sb1121.9 (4)C20—C19—C18117.3 (8)
C1—N1—Sb1123.5 (4)C20—C19—H19121.4
C8—N2—C9121.3 (6)C18—C19—H19121.4
C9—N3—C16108.7 (6)C19—C20—C21121.6 (8)
C9—N3—Sb1121.4 (4)C19—C20—H20119.2
C16—N3—Sb1122.8 (4)C21—C20—H20119.2
C16—N4—C17124.0 (6)C22—C21—C20119.9 (8)
C24—N5—C17108.1 (6)C22—C21—H21120.1
C24—N5—Sb1124.4 (4)C20—C21—H21120.1
C17—N5—Sb1124.7 (5)C23—C22—C21118.9 (8)
C25—N6—C24119.4 (6)C23—C22—H22120.6
C25—N7—C32110.3 (6)C21—C22—H22120.6
C25—N7—Sb1122.4 (4)C22—C23—C18121.7 (7)
C32—N7—Sb1122.9 (5)C22—C23—C24133.1 (7)
C1—N8—C32123.5 (6)C18—C23—C24105.1 (6)
N8—C1—N1126.7 (6)N6—C24—N5129.7 (6)
N8—C1—C2124.3 (6)N6—C24—C23120.3 (6)
N1—C1—C2109.0 (6)N5—C24—C23110.0 (6)
C7—C2—C3119.2 (7)N6—C25—N7131.3 (6)
C7—C2—C1107.5 (6)N6—C25—C26119.8 (6)
C3—C2—C1133.2 (7)N7—C25—C26108.9 (6)
C4—C3—C2119.3 (8)C27—C26—C31120.7 (7)
C4—C3—H3120.3C27—C26—C25133.6 (7)
C2—C3—H3120.3C31—C26—C25105.7 (6)
C3—C4—C5122.0 (7)C26—C27—C28120.3 (8)
C3—C4—H4119.0C26—C27—H27119.8
C5—C4—H4119.0C28—C27—H27119.8
C6—C5—C4119.6 (8)C27—C28—C29118.4 (8)
C6—C5—H5120.2C27—C28—H28120.8
C4—C5—H5120.2C29—C28—H28120.8
C5—C6—C7117.8 (7)C30—C29—C28123.3 (7)
C5—C6—H6121.1C30—C29—H29118.3
C7—C6—H6121.1C28—C29—H29118.3
C6—C7—C2122.1 (7)C29—C30—C31115.7 (7)
C6—C7—C8131.5 (7)C29—C30—H30122.1
C2—C7—C8106.4 (6)C31—C30—H30122.1
N2—C8—N1128.3 (6)C30—C31—C26121.5 (7)
N2—C8—C7122.4 (7)C30—C31—C32131.0 (7)
N1—C8—C7109.3 (6)C26—C31—C32107.5 (6)
N2—C9—N3129.3 (6)N8—C32—N7128.1 (6)
N2—C9—C10121.6 (7)N8—C32—C31124.4 (6)
N3—C9—C10109.1 (6)N7—C32—C31107.5 (6)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sb(C32H16N8)]2[Sb4I14]
Mr3532.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)25.179 (4), 13.822 (3), 24.112 (4)
β (°) 99.58 (1)
V3)8275 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.20
Crystal size (mm)0.32 × 0.16 × 0.12
Data collection
DiffractometerKuma KM-4 (plus CCD area-detector)
diffractometer
Absorption correctionAnalytical
(face-indexed; SHELXTL, Sheldrick, 1990)
Tmin, Tmax0.215, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
34609, 9652, 6039
Rint0.041
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.00
No. of reflections9652
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 2.09

Computer programs: KM-4 CCD Software (Kuma, 2001), KM-4 CCD Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Sb2—I32.7385 (10)Sb3—I13.4363 (9)
Sb2—I12.8479 (8)Sb3—I43.712 (1)
Sb2—I22.9079 (8)Sb3—I4i3.358 (1)
Sb2—I43.1966 (8)Sb1—N12.172 (5)
Sb2—I7i3.658 (1)Sb1—N32.181 (6)
Sb3—I52.7655 (8)Sb1—N52.188 (6)
Sb3—I62.7859 (10)Sb1—N72.197 (5)
Sb3—I72.8438 (9)
I3—Sb2—I194.97 (2)I1—Sb3—I579.89 (2)
I3—Sb2—I297.39 (3)I1—Sb3—I695.83 (2)
I1—Sb2—I288.59 (2)I4—Sb3—I7111.99 (2)
I3—Sb2—I488.25 (2)Sb2—I1—Sb3106.53 (2)
I1—Sb2—I485.55 (2)Sb2—I4—Sb393.60 (2)
I2—Sb2—I4172.21 (2)Sb2—I4—Sb3i94.09 (2)
I1—Sb2—I7i84.93 (2)Sb3—I4—Sb3i86.34 (2)
I2—Sb2—I7i96.11 (2)N1—Sb1—N378.7 (2)
I4—Sb2—I7i78.28 (2)N1—Sb1—N5127.6 (2)
I5—Sb3—I694.71 (3)N3—Sb1—N578.1 (2)
I5—Sb3—I798.16 (3)N1—Sb1—N778.3 (2)
I6—Sb3—I793.57 (3)N3—Sb1—N7126.5 (2)
I1—Sb3—I470.13 (2)N5—Sb1—N779.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds