Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of 4-acetyl­pyridinium chloride, C7H8NO+·Cl, consists of organic layers and Cl anions, which lie within these layers. A hydrogen-bonding network of N—H...Cl inter­actions stabilizes the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805006872/is6058sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805006872/is6058Isup2.hkl
Contains datablock I

CCDC reference: 270459

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.073
  • wR factor = 0.179
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O .. C6 .. 2.91 Ang.
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.145 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.14 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5 PLAT353_ALERT_3_C Long N-H Bond (0.87A) N - H1 ... 1.04 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C7 H8 N O
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: KM-4 CCD (Oxford Diffraction, 2004); cell refinement: KM-4 CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

4-acetylpyridinium chloride top
Crystal data top
C7H8NO+·ClF(000) = 328
Mr = 157.59Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 935 reflections
a = 8.442 (2) Åθ = 3.2–27.5°
b = 7.117 (1) ŵ = 0.43 mm1
c = 13.162 (3) ÅT = 298 K
β = 103.76 (3)°Plate, yellow
V = 768.1 (3) Å30.34 × 0.12 × 0.08 mm
Z = 4
Data collection top
Kuma KM-4 CCD
diffractometer
1731 independent reflections
Radiation source: fine-focus sealed tube1042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.145
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2004)
h = 1010
Tmin = 0.783, Tmax = 0.930k = 79
5016 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
1731 reflections(Δ/σ)max < 0.001
96 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.73618 (10)0.11776 (14)0.90697 (6)0.0593 (4)
N1.0161 (4)0.0998 (4)0.8036 (2)0.0568 (9)
O1.2440 (3)0.1171 (3)0.49493 (17)0.0605 (7)
C20.9484 (4)0.1253 (5)0.7020 (3)0.0577 (10)
H20.83560.13530.67920.069*
C31.0428 (4)0.1366 (5)0.6316 (3)0.0482 (9)
H30.99530.15580.56100.058*
C41.2103 (4)0.1192 (4)0.6663 (2)0.0383 (8)
C51.2763 (4)0.0931 (5)0.7722 (2)0.0492 (9)
H51.38850.08140.79730.059*
C61.1759 (5)0.0846 (5)0.8398 (3)0.0574 (10)
H61.21990.06820.91110.069*
C71.3128 (4)0.1241 (4)0.5870 (3)0.0462 (8)
C81.4928 (4)0.1366 (6)0.6227 (3)0.0740 (13)
H8A1.53540.01880.65290.111*
H8B1.52140.23420.67420.111*
H8C1.53820.16490.56420.111*
H10.935 (6)0.107 (5)0.852 (4)0.109 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0575 (6)0.0866 (8)0.0394 (5)0.0017 (5)0.0224 (4)0.0044 (4)
N0.075 (2)0.056 (2)0.0520 (19)0.0086 (17)0.0413 (17)0.0084 (14)
O0.0699 (17)0.0817 (19)0.0326 (13)0.0052 (14)0.0175 (11)0.0018 (12)
C20.045 (2)0.063 (3)0.070 (3)0.004 (2)0.0240 (19)0.003 (2)
C30.049 (2)0.059 (2)0.0387 (17)0.0032 (18)0.0145 (15)0.0029 (16)
C40.0433 (19)0.0441 (19)0.0301 (15)0.0014 (16)0.0140 (13)0.0047 (14)
C50.050 (2)0.063 (2)0.0349 (17)0.0012 (18)0.0123 (15)0.0045 (16)
C60.074 (3)0.064 (3)0.0381 (19)0.005 (2)0.0205 (18)0.0061 (17)
C70.050 (2)0.051 (2)0.0427 (19)0.0000 (17)0.0196 (15)0.0036 (16)
C80.050 (2)0.122 (4)0.056 (2)0.009 (2)0.0248 (18)0.012 (2)
Geometric parameters (Å, º) top
N—C61.324 (4)C4—C71.506 (4)
N—C21.336 (5)C5—C61.368 (5)
N—H11.04 (6)C5—H50.9300
O—C71.214 (4)C6—H60.9300
C2—C31.361 (5)C7—C81.482 (5)
C2—H20.9300C8—H8A0.9600
C3—C41.385 (5)C8—H8B0.9600
C3—H30.9300C8—H8C0.9600
C4—C51.386 (4)
C6—N—C2121.9 (3)C4—C5—H5120.1
C6—N—H1123 (2)N—C6—C5119.8 (3)
C2—N—H1115 (2)N—C6—H6120.1
N—C2—C3120.6 (3)C5—C6—H6120.1
N—C2—H2119.7O—C7—C8122.0 (3)
C3—C2—H2119.7O—C7—C4118.2 (3)
C2—C3—C4119.2 (3)C8—C7—C4119.8 (3)
C2—C3—H3120.4C7—C8—H8A109.5
C4—C3—H3120.4C7—C8—H8B109.5
C5—C4—C3118.6 (3)H8A—C8—H8B109.5
C5—C4—C7122.7 (3)C7—C8—H8C109.5
C3—C4—C7118.7 (3)H8A—C8—H8C109.5
C6—C5—C4119.9 (3)H8B—C8—H8C109.5
C6—C5—H5120.1
C6—N—C2—C30.0 (5)C2—N—C6—C50.6 (5)
N—C2—C3—C40.7 (5)C4—C5—C6—N0.6 (5)
C2—C3—C4—C50.8 (5)C5—C4—C7—O168.3 (3)
C2—C3—C4—C7177.5 (3)C3—C4—C7—O10.0 (5)
C3—C4—C5—C60.2 (5)C5—C4—C7—C811.5 (5)
C7—C4—C5—C6178.1 (3)C3—C4—C7—C8170.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1···Cl1.04 (5)1.98 (5)2.997 (3)164 (4)
C6—H6···Cli0.932.683.544 (4)154
C6—H6···Oii0.932.482.907 (4)108
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds