research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a heterobimetallic nickel–manganese 12-metallacrown-4 methanol disolvate monohydrate compound

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by H. Ishida, Okayama University, Japan (Received 21 September 2020; accepted 29 September 2020; online 6 October 2020)

The synthesis and crystal structure of the title compound [systematic name: di-μ-acetato-tetra­kis­(μ4-N,2-dioxido­benzene-1-carboximidato)hexa­methano­ltetra­manganese(III)nickel(II) methanol disolvate monohydrate], [Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2O or Ni(OAc)2[12-MCMn(III)N(shi)-4](CH3OH)6·2CH3OH·H2O, where MC is metallacrown, OAc is acetate, and shi3− is salicyl­hydroximate, are reported. The macrocyclic metallacrown is positioned on an inversion center located on the NiII ion that resides in the central MC cavity. The macrocycle consists of an MnIII–N–O repeat unit that recurs four times to generate an overall square-shaped mol­ecule. Both the NiII and MnIII ions are six-coordinate with an octa­hedral geometry. In addition, the MnIII ions possess an elongated Jahn–Teller distortion along the z-axis of the coordination environment. The inter­stitial water mol­ecule is slightly offset from and disordered about an inversion center.

1. Chemical context

Since their recognition in 1989 by Pecoraro, metallacrowns (MC) have proven to be a versatile class of metallamacrocycles with applications such as single-mol­ecule magnets, magnetorefrigerants and optical imaging agents (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Nguyen & Pecoraro, 2017[Nguyen, T. N. & Pecoraro, V. L. (2017). Comprehensive Supra­mol­ecular Chemistry II, edited by J. L. Atwood, pp. 195-212. Amsterdam: Elsevier.]; Lutter et al., 2018[Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177-246. Amsterdam: Elsevier.]). The archetypal metallacrown consists of a cyclic metal–nitro­gen–oxygen repeat unit that generates a central cavity that is capable of binding a metal ion. Initially, homometallic compounds were produced; however, heterobimetallic systems were soon generated that typically contained trans­ition-metal ions in the ring metal position and either alkali or lanthanide ions captured in the central cavity of the MC (Pecoraro et al., 1997[Pecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83-177. New York: John Wiley & Sons.]; Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]). In addition, heterotrimetallic systems that bind both alkali and lanthanide ions have been reported since 2014 (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). One area lacking is the use of two different transition-metal ions in an archetypal MC. While several examples of heterobimetallic 3d `collapsed' metallacrowns, species without a central MC cavity and thus no central metal ion (Psomas et al., 2001[Psomas, G., Stemmler, A. J., Dendrinou-Samara, C., Bodwin, J. J., Schneider, M., Alexiou, M., Kampf, J. W., Kessissoglou, D. P. & Pecoraro, V. L. (2001). Inorg. Chem. 40, 1562-1570.]; Gole et al., 2010[Gole, B., Chakrabarty, R., Mukherjee, S., Song, Y. & Mukherjee, P. S. (2010). Dalton Trans. 39, 9766-9778.]), and inverse metallacrowns, species that bind a non-metal atom in the central MC cavity to the ring metal ions (Szyrwiel et al., 2013[Szyrwiel, Ł., Brasuń, J., Szewczuk, Z. & Hołyńska, M. (2013). Polyhedron, 51, 90-95.]; Shiga et al., 2014[Shiga, T., Maruyama, K., Newton, G. N., Inglis, R., Brechin, E. K. & Oshio, H. (2014). Inorg. Chem. 53, 4272-4274.]; Zhang et al., 2014[Zhang, Y., Wei, C.-Y. & Liu, T.-F. (2014). Chin. Chem. Lett. 25, 937-940.]; Nesterova et al., 2015[Nesterova, O. V., Chygorin, E. N., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V., Boča, R. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 14918-14924.]), have been reported, only two heterobimetallic 3d archetypal 12-MC-4 compounds have been described to date. In 2014, Happ and Rentschler reported a CuII(DMF)2Cl2[12-MCFe(III)N(shi)-4](DMF)4·2DMF compound that contains FeIII ions in the ring positions and a CuII ion captured in the central MC cavity (Happ & Rentschler, 2014[Happ, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308-15312.]). Recently we described the structure of (TMA)2{Mn(OAc)2[12-MCMn(III)Cu(II)N(shi)-4](CH3OH)}·2.90CH3OH that consists of alternating CuII and MnIII ions about the MC ring and an MnII ion bound to the central MC cavity (Lewis et al., 2020[Lewis, A. J., Garlatti, E., Cugini, F., Solzi, M., Zeller, M., Carretta, S. & Zaleski, C. M. (2020). Inorg. Chem. 59, 11894-11900.]). Herein we report a third heterobimetallic 3d archetypal 12-MC-4 compound: NiII(OAc)2[12-MCMn(III)N(shi)-4](CH3OH)6·2CH3OH·H2O, 1, that contains ring MnIII ions and a NiII ion captured in the central MC cavity. Future work will focus on the magnetic properties of the compound as the similar Mn(OAc)2[12-MCMn(III)N(shi)-4] (Zaleski et al., 2011[Zaleski, C. M., Tricard, S., Depperman, E. C., Wernsdorfer, W., Mallah, T., Kirk, M. L. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 11348-11352.]) and {Mn(OAc)2[12-MCMn(III)Cu(II)N(shi)-4]}2− (Lewis et al., 2020[Lewis, A. J., Garlatti, E., Cugini, F., Solzi, M., Zeller, M., Carretta, S. & Zaleski, C. M. (2020). Inorg. Chem. 59, 11894-11900.]) systems behave as single-mol­ecule magnets.

[Scheme 1]

2. Structural commentary

The title metallacrown compound is positioned about an inversion center located on the NiII ion that resides in the central MC cavity (Fig. 1[link]). The metallacrown macrocycle possesses an MnIII–N–O repeat unit that generates an approximately square mol­ecule due to the fused five- and six-membered chelate rings of the shi3− ligand that place the MnIII ions 90o relative to each other. The oxime oxygen atoms of the shi3− ligands generate the MC cavity and also bind the central NiII ion. Two acetate anions, which bind on opposite faces of the MC, tether the NiII ion to the MC by forming three atom bridges to two of the ring MnIII ions. In addition to average bond lengths and bond-valence-sum (BVS) values (Table 1[link]; Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]), the oxidation state assignments of the NiII and MnIII ions are supported by overall mol­ecular charges, where one NiII and four MnIII ions are counterbalanced by four shi3− and two acetate anions.

Table 1
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the nickel and manganese ions of 1

  Avg. bond length BVS value Assigned oxidation state
Ni1 2.021 2.34 2+
Mn1 2.031 3.06 3+
Mn2 2.026 3.06 3+
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, (a) top view with only the metal atoms and shi3− ligands labeled for clarity and (b) side view with only the metal atoms and axial ligands labeled for clarity. The displacement ellipsoids are at the 50% probability level. For clarity, hydrogen atoms and solvent mol­ecules have been omitted. [Color scheme: yellow–NiII, green–MnIII, red–O, blue–N and gray–C; symmetry code: (i) −x + 1, −y + 1, −z + 1.]

The central NiII ion is six-coordinate with an octa­hedral geometry as verified by a SHAPE analysis (SHAPE 2.1; Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]). Continuous shape measure (CShM) values of less than 1.0 indicate only minor distortions from the ideal geometry (Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]); thus, the CShM value of 0.164 for the octa­hedral geometry clearly defines the shape about the NiII ion (Table 2[link]). The coordination environment is comprised of four oxime oxygen from four shi3− ligands in the equatorial plane and two axial carboxyl­ate oxygen atoms of two acetate anions. As mentioned above, the acetate anions bind on opposite faces of the MC and connect the NiII ion to two MnIII ions (Mn2). The acetate binding motif is different than the analogous homometallic MnII(OAc)2[12-MCMn(III)N(shi)-4](DMF)6·2DMF, where the acetate anions bind on the same face of the MC and the central MnII ion exhibits a geometry that is best described as a trigonal prism (Lah & Pecoraro, 1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]).

Table 2
Continuous Shapes Measures (CShM) values for the geometry about the six-coordinate central NiII and ring MnIII ions of 1

Shape Hexagon (D6h) Penta­gonal pyramid (C5v) Octa­hedron (Oh) Trigonal prism (D3h) Johnson penta­gonal pyramid (J2; C5v)
Ni1 31.656 29.242 0.164 16.201 32.416
Mn1 31.782 26.077 1.106 13.698 29.622
Mn2 31.099 26.575 0.821 15.377 29.523

The ring MnIII ions (Mn1 and Mn2) are six-coordinate with a tetra­gonally distorted octa­hedral geometry (Table 2[link]). The Jahn–Teller elongation, typical of a high-spin 3d4 ion, is located along the z-axis of each MnIII ion. For both Mn1 and Mn2, the equatorial coordination environment is composed of trans chelate rings from two shi3− ligands. A five-membered chelate ring is generated from an oxime oxygen atom and a carbonyl oxygen atom of one shi3− ligand, and a six-membered chelate ring is produced by an oxime nitro­gen atom and a phenolate oxygen atom of the second shi3− ligand. For Mn1 the axial atoms are oxygen atoms from two methanol mol­ecules, while for Mn2 the axial atoms are an oxygen atom from a methanol mol­ecule and a carboxyl­ate oxygen atom from an acetate anion.

In addition, solvent methanol and water mol­ecules are located in the structure, and the methanol mol­ecules form hydrogen bonds to the metallacrown. The water mol­ecule associated with O13 is slightly offset from and disordered about an inversion center.

3. Supra­molecular features

The coordinated and inter­stitial methanol mol­ecules of 1 participate in several hydrogen bonds (Figs. 2[link] and 3[link], Table 3[link]). The hydroxyl group of the methanol mol­ecule associated with O9 and coordinated to Mn1 forms a hydrogen bond to an oxygen atom (O12) of an inter­stitial methanol mol­ecule. In addition, the hy­droxy group of another methanol mol­ecule associated with O10 and coordinated to Mn1 forms an intra­molecular hydrogen bond to a carboxyl­ate oxygen atom (O7) of an acetate anion. Also the hydroxyl group of the inter­stitial methanol mol­ecule associated with O12 forms a hydrogen bond to the other carboxyl­ate oxygen atom (O8) of the acetate anion. Lastly, a one-dimensional chain of metallacrowns is mediated by the hydroxyl group of a methanol mol­ecule associated with O11 and coordinated to Mn2 that forms a hydrogen bond to a carboxyl­ate oxygen atom (O5) of a shi3− ligand of a neighboring metallacrown. As a symmetry-equivalent hydrogen bond also occurs on the opposite side of the MC, a one-dimensional chain is established (Fig. 3[link]). The connection between the neighboring MCs, the hydrogen bonds between the MC and the inter­stitial methanol mol­ecules, and pure van der Waals forces contribute to the overall packing of 1.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9O⋯O12i 0.82 (2) 1.82 (2) 2.630 (4) 172 (4)
O10—H10O⋯O7ii 0.84 (2) 1.97 (3) 2.713 (3) 148 (4)
O11—H11O⋯O5iii 0.83 (2) 1.95 (2) 2.778 (2) 178 (4)
O12—H12A⋯O8 0.84 1.94 2.743 (3) 159
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Intra­molecular hydrogen bonding (dashed lines) between the coordinated methanol mol­ecule (O10) and a carboxyl­ate oxygen atom (O7) of the bridging acetate anion, and inter­molecular hydrogen bonding (dashed lines) of the inter­stitial methanol mol­ecule (O12) with a coordinated methanol mol­ecule (O9) and a carboxyl­ate oxygen atom (O8) of the bridging acetate anion. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) x − 1, y, z.]
[Figure 3]
Figure 3
Inter­molecular hydrogen bonding (dashed lines) between the carboxyl­ate oxygen atom (O5) of a shi3− ligand and a coordinated methanol mol­ecule (O11) of a neighboring metallacrown that then generates a one-dimensional chain. For clarity only the hydrogen atoms involved in the inter­actions have been included. [Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) x, y − 1, z.]

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update May 2020, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals that there are three other heterobimetallic manganese-nickel MC compounds. The first reported manganese-nickel MC is a `collapsed' metallacrown as it does not contain a central cavity. The structure has an M–N–O repeat unit but two of the oxime oxygen atoms bind to ring metal ions across the potential central cavity, thus collapsing the cavity and preventing the binding of a central metal ion. The compound [12-MCNi(II)Mn(III)N(shi)2(pko)2-4](OAc)2 (QOCXAH; Psomas et al., 2001[Psomas, G., Stemmler, A. J., Dendrinou-Samara, C., Bodwin, J. J., Schneider, M., Alexiou, M., Kampf, J. W., Kessissoglou, D. P. & Pecoraro, V. L. (2001). Inorg. Chem. 40, 1562-1570.]), where pko is 2,2′-di­pyridyl­ketonoximate, contains both MnIII and NiII ions in the MC ring positions with the metals arranged in an alternating pattern. The two other compounds can both be considered dimers of inverse 9-MC-3 systems, where each MC binds a μ3-O in the central cavity instead of a metal ion. In both compounds, two inverse 9-MC-3 units, each based on an MnIII2NiII core, are linked together to form a dimer. The main difference between the structures is the MC framework ligand: salicylaldoxime (XIFGUQ; Szyrwiel et al., 2013[Szyrwiel, Ł., Brasuń, J., Szewczuk, Z. & Hołyńska, M. (2013). Polyhedron, 51, 90-95.]) or 5-chloro­salicyl­aldehyde oxime (LOKHIE; Zhang et al., 2014[Zhang, Y., Wei, C.-Y. & Liu, T.-F. (2014). Chin. Chem. Lett. 25, 937-940.]). Thus, 1 represents the only manganese–nickel archetypal MC structure type as 1 contains a central metal ion.

5. Synthesis and crystallization

Manganese(II) acetate tetra­hydrate (99+%), tetra­ethyl­ammonium acetate tetra­hydrate (99%), salicyl­hydroxamic acid (99%), nickel(II) acetate tetra­hydrate (99.995%), N,N-di­methyl­formamide (DMF, Certified ACS grade) and methanol (ACS grade) were purchased from Acros Organics, Acros Organics, Alfa Aesar, Sigma–Aldrich, BDH Chemicals and Pharmco-AAPER, respectively. All reagents were used as received without further purification.

Tetra­ethyl­ammonium acetate tetra­hydrate (4 mmol, 1.0462 g) and salicyl­hydroxamic acid (2 mmol, 0.3063 g) were dissolved in 4 mL of DMF and 4 mL of methanol, resulting in a clear orange solution. In two separate vessels, nickel(II) acetate tetra­hydrate (0.125 mmol, 0.0312 g) was dissolved in 4 mL of DMF and 4 mL of methanol resulting in a green–blue solution and manganese(II) acetate tetra­hydrate (2 mmol, 0.4909 g) was dissolved in 4 mL of DMF and 4 mL of methanol resulting in an clear orange solution. The manganese(II) acetate solution was then added to the tetra­ethyl­ammonium acetate/salicyl­hydroxamic acid solution resulting in a brown solution. The nickel(II) acetate was then immediately added and no color change was detected; however, the formation of a precipitate was observed. The mixture was then left to stir overnight and subsequently gravity filtered the next day. The filtrate was a dark orange–brown solution and no precipitate was recovered. Slow evaporation of the filtrate at room temperature afforded X-ray quality dark-brown block-shaped crystals after 16 weeks. A small fraction of crystals and mother liquor were separated for analysis by single crystal X-ray diffraction. The remaining crystals were washed with cold DMF and dried. The percent yield was 22% based on nickel(II) acetate tetra­hydrate.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. An electron density region disordered around an inversion center was refined as a water mol­ecule located slightly offset of the inversion center. The water hydrogen-atom positions were initially refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively, and further restrained based on hydrogen-bonding considerations while a damping factor was applied. In the final refinement cycles the hydrogen atoms were constrained to ride on the oxygen carrier atom. The displacement parameters of the water O atom were restrained to be close to isotropic. For the methanol mol­ecules, the O—H bond distance was also restrained to 0.84 (2) Å. The Uiso values for the O—H hydrogen atoms (water and methanol) were set to a multiple of the value of the carrying oxygen atom (1.5 times). All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Table 4
Experimental details

Crystal data
Chemical formula [Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2O
Mr 1271.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 10.3647 (7), 10.7781 (8), 11.8303 (8)
α, β, γ (°) 85.318 (3), 86.231 (3), 77.583 (3)
V3) 1284.78 (16)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.24 × 0.22 × 0.13
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS2016/2; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.616, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 13573, 7767, 6204
Rint 0.026
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.07
No. of reflections 7767
No. of parameters 355
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.79, −1.02
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-acetato-tetrakis(µ4-N,2-dioxidobenzene-1-carboximidato)hexamethanoltetramanganese(III)nickel(II) methanol disolvate monohydrate top
Crystal data top
[Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2OZ = 1
Mr = 1271.35F(000) = 652
Triclinic, P1Dx = 1.643 Mg m3
a = 10.3647 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7781 (8) ÅCell parameters from 9780 reflections
c = 11.8303 (8) Åθ = 2.6–30.6°
α = 85.318 (3)°µ = 1.40 mm1
β = 86.231 (3)°T = 150 K
γ = 77.583 (3)°Block, brown
V = 1284.78 (16) Å30.24 × 0.22 × 0.13 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
7767 independent reflections
Radiation source: fine focus sealed tube X-ray source6204 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 30.6°, θmin = 2.5°
ω and phi scansh = 1414
Absorption correction: multi-scan
(SADABS2016/2; Krause et al., 2015)
k = 1515
Tmin = 0.616, Tmax = 0.746l = 1616
13573 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.072P)2 + 1.2905P]
where P = (Fo2 + 2Fc2)/3
7767 reflections(Δ/σ)max = 0.030
355 parametersΔρmax = 1.79 e Å3
9 restraintsΔρmin = 1.02 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A single electron density disordered around an inversion center was refined as a water molecule located slightly offset of the inversion center. The water H atom positions were initially refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively and further restrained based on hydrogen bonding considerations while a damping factor was applied. In the final refinement cycles the H atoms were constrained to ride on the oxygen carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.01808 (10)
Mn10.72582 (4)0.43090 (3)0.28526 (3)0.01909 (10)
Mn20.59489 (3)0.76188 (3)0.52263 (3)0.01796 (9)
O10.65814 (17)0.52833 (15)0.40892 (14)0.0203 (3)
O20.81297 (18)0.57917 (17)0.25092 (15)0.0256 (4)
O30.72951 (19)0.85163 (17)0.49693 (15)0.0272 (4)
O40.44721 (17)0.67981 (15)0.54628 (13)0.0191 (3)
O50.50532 (17)0.84616 (15)0.65760 (14)0.0209 (3)
O60.21353 (19)0.66578 (18)0.83693 (15)0.0278 (4)
O70.61523 (18)0.44755 (16)0.64128 (14)0.0239 (3)
O80.70764 (18)0.61703 (17)0.64174 (15)0.0259 (4)
O90.8980 (2)0.3245 (2)0.37362 (19)0.0349 (4)
H9O0.964 (3)0.307 (4)0.331 (3)0.052*
O100.5606 (2)0.5444 (2)0.17778 (16)0.0344 (4)
H10O0.498 (3)0.576 (4)0.222 (3)0.052*
O110.4808 (2)0.90151 (17)0.39868 (17)0.0300 (4)
H11O0.486 (4)0.977 (2)0.384 (3)0.045*
O120.8752 (3)0.7344 (5)0.7432 (3)0.0847 (13)
H12A0.81500.71770.70660.127*
O131.015 (3)0.4661 (18)0.003 (2)0.156 (6)0.5
H13A0.97790.51580.05210.233*0.5
H13B0.98420.39680.02230.233*0.5
N10.3884 (2)0.69063 (18)0.65720 (15)0.0182 (4)
N20.6789 (2)0.65323 (18)0.39992 (16)0.0199 (4)
C10.7675 (2)0.6685 (2)0.31880 (19)0.0213 (4)
C20.8140 (2)0.7887 (2)0.3086 (2)0.0220 (4)
C30.8848 (3)0.8180 (2)0.2086 (2)0.0273 (5)
H30.89790.76210.14880.033*
C40.9360 (3)0.9269 (3)0.1955 (3)0.0338 (6)
H40.98360.94600.12720.041*
C50.9169 (3)1.0079 (3)0.2831 (3)0.0342 (6)
H50.95251.08250.27470.041*
C60.8469 (3)0.9817 (2)0.3826 (2)0.0301 (5)
H60.83531.03830.44170.036*
C70.7929 (2)0.8724 (2)0.3972 (2)0.0232 (5)
C80.4211 (2)0.7826 (2)0.70775 (18)0.0183 (4)
C90.3615 (2)0.8147 (2)0.82130 (18)0.0203 (4)
C100.4022 (3)0.9118 (3)0.8729 (2)0.0268 (5)
H100.46700.95250.83450.032*
C110.3501 (3)0.9492 (3)0.9781 (2)0.0327 (6)
H110.37871.01511.01160.039*
C120.2558 (3)0.8900 (3)1.0346 (2)0.0316 (6)
H120.22030.91511.10730.038*
C130.2134 (3)0.7951 (3)0.9856 (2)0.0259 (5)
H130.14830.75571.02520.031*
C140.2643 (2)0.7553 (2)0.87871 (19)0.0216 (4)
C150.6980 (3)0.5059 (2)0.6754 (2)0.0258 (5)
C160.7891 (4)0.4355 (3)0.7642 (3)0.0443 (8)
H16A0.80660.34390.75400.066*
H16B0.74750.45180.83990.066*
H16C0.87260.46490.75650.066*
C170.9312 (5)0.3374 (7)0.4821 (4)0.107 (3)
H17A1.02780.31940.48550.129*
H17B0.89510.27730.53520.129*
H17C0.89450.42450.50300.129*
C180.5752 (4)0.6311 (4)0.0836 (3)0.0627 (12)
H18A0.64800.59190.03240.094*
H18B0.59440.70860.11030.094*
H18C0.49300.65290.04300.094*
C190.3701 (4)0.8873 (3)0.3386 (3)0.0447 (8)
H19A0.39310.88980.25690.067*
H19B0.29460.95680.35450.067*
H19C0.34680.80550.36330.067*
C200.8243 (6)0.7872 (6)0.8340 (5)0.0872 (18)
H20A0.77120.87190.81380.105*
H20B0.89510.79510.88220.105*
H20C0.76790.73470.87540.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0219 (2)0.01533 (19)0.01792 (18)0.00658 (15)0.00285 (14)0.00226 (14)
Mn10.02230 (19)0.01651 (17)0.01929 (16)0.00688 (13)0.00547 (12)0.00386 (12)
Mn20.02245 (18)0.01363 (16)0.01896 (16)0.00712 (13)0.00365 (12)0.00290 (12)
O10.0270 (8)0.0128 (7)0.0225 (7)0.0092 (6)0.0070 (6)0.0038 (6)
O20.0284 (9)0.0234 (8)0.0260 (8)0.0104 (7)0.0107 (7)0.0053 (7)
O30.0324 (10)0.0250 (8)0.0282 (8)0.0149 (7)0.0028 (7)0.0055 (7)
O40.0251 (8)0.0171 (7)0.0159 (7)0.0070 (6)0.0043 (6)0.0030 (6)
O50.0260 (9)0.0164 (7)0.0218 (7)0.0078 (6)0.0024 (6)0.0045 (6)
O60.0324 (10)0.0275 (9)0.0264 (8)0.0139 (8)0.0112 (7)0.0094 (7)
O70.0271 (9)0.0227 (8)0.0223 (8)0.0066 (7)0.0000 (7)0.0004 (6)
O80.0261 (9)0.0262 (9)0.0265 (8)0.0084 (7)0.0030 (7)0.0003 (7)
O90.0228 (10)0.0386 (11)0.0400 (11)0.0006 (8)0.0007 (8)0.0037 (9)
O100.0312 (11)0.0416 (11)0.0267 (9)0.0048 (9)0.0037 (8)0.0075 (8)
O110.0385 (11)0.0183 (8)0.0342 (9)0.0087 (7)0.0071 (8)0.0038 (7)
O120.0352 (14)0.156 (4)0.076 (2)0.0347 (19)0.0118 (14)0.064 (2)
O130.170 (9)0.188 (12)0.099 (5)0.036 (9)0.009 (6)0.026 (9)
N10.0229 (9)0.0162 (8)0.0158 (8)0.0051 (7)0.0033 (7)0.0037 (6)
N20.0247 (10)0.0144 (8)0.0224 (8)0.0090 (7)0.0039 (7)0.0026 (7)
C10.0225 (11)0.0198 (10)0.0216 (10)0.0061 (8)0.0018 (8)0.0010 (8)
C20.0194 (11)0.0181 (10)0.0292 (11)0.0081 (8)0.0040 (9)0.0018 (9)
C30.0238 (12)0.0255 (11)0.0316 (12)0.0070 (9)0.0073 (9)0.0009 (10)
C40.0276 (13)0.0286 (13)0.0435 (15)0.0095 (11)0.0084 (11)0.0089 (11)
C50.0299 (14)0.0229 (12)0.0506 (16)0.0116 (10)0.0051 (12)0.0034 (11)
C60.0309 (14)0.0200 (11)0.0418 (14)0.0117 (10)0.0027 (11)0.0021 (10)
C70.0179 (11)0.0193 (10)0.0326 (12)0.0053 (8)0.0003 (9)0.0001 (9)
C80.0186 (10)0.0170 (9)0.0188 (9)0.0031 (8)0.0005 (8)0.0019 (8)
C90.0216 (11)0.0224 (10)0.0164 (9)0.0032 (8)0.0014 (8)0.0043 (8)
C100.0273 (12)0.0303 (12)0.0251 (11)0.0091 (10)0.0031 (9)0.0110 (10)
C110.0294 (13)0.0437 (15)0.0297 (12)0.0135 (12)0.0040 (10)0.0200 (11)
C120.0279 (13)0.0466 (16)0.0219 (11)0.0090 (12)0.0045 (9)0.0132 (11)
C130.0253 (12)0.0313 (12)0.0197 (10)0.0039 (10)0.0035 (9)0.0031 (9)
C140.0217 (11)0.0211 (10)0.0212 (10)0.0033 (8)0.0010 (8)0.0018 (8)
C150.0257 (12)0.0288 (12)0.0213 (10)0.0024 (10)0.0002 (9)0.0020 (9)
C160.0485 (19)0.0448 (17)0.0405 (16)0.0108 (14)0.0223 (14)0.0105 (14)
C170.070 (3)0.176 (6)0.044 (2)0.061 (4)0.022 (2)0.035 (3)
C180.051 (2)0.073 (3)0.051 (2)0.0006 (19)0.0063 (17)0.033 (2)
C190.058 (2)0.0368 (16)0.0437 (17)0.0176 (15)0.0181 (15)0.0064 (13)
C200.092 (4)0.097 (4)0.088 (4)0.048 (3)0.031 (3)0.047 (3)
Geometric parameters (Å, º) top
Ni1—O11.9673 (16)N2—C11.309 (3)
Ni1—O1i1.9673 (16)C1—C21.470 (3)
Ni1—O4i2.0082 (15)C2—C31.401 (3)
Ni1—O42.0082 (15)C2—C71.414 (4)
Ni1—O72.0874 (17)C3—C41.382 (4)
Ni1—O7i2.0874 (17)C3—H30.9500
Mn1—O6i1.8480 (17)C4—C51.387 (4)
Mn1—O11.8799 (16)C4—H40.9500
Mn1—N1i1.9990 (19)C5—C61.383 (4)
Mn1—O22.0003 (18)C5—H50.9500
Mn1—O92.182 (2)C6—C71.404 (3)
Mn1—O102.275 (2)C6—H60.9500
Mn2—O31.8578 (18)C8—C91.477 (3)
Mn2—O41.9208 (17)C9—C101.405 (3)
Mn2—N21.9772 (19)C9—C141.415 (3)
Mn2—O51.9789 (17)C10—C111.380 (3)
Mn2—O82.2048 (18)C10—H100.9500
Mn2—O112.2170 (18)C11—C121.386 (4)
O1—N21.403 (2)C11—H110.9500
O2—C11.294 (3)C12—C131.378 (4)
O3—C71.339 (3)C12—H120.9500
O4—N11.413 (2)C13—C141.402 (3)
O5—C81.306 (3)C13—H130.9500
O6—C141.335 (3)C15—C161.504 (4)
O6—Mn1i1.8480 (17)C16—H16A0.9800
O7—C151.270 (3)C16—H16B0.9800
O8—C151.254 (3)C16—H16C0.9800
O9—C171.377 (5)C17—H17A0.9800
O9—H9O0.820 (19)C17—H17B0.9800
O10—C181.416 (4)C17—H17C0.9800
O10—H10O0.838 (18)C18—H18A0.9800
O11—C191.431 (4)C18—H18B0.9800
O11—H11O0.834 (18)C18—H18C0.9800
O12—C201.285 (5)C19—H19A0.9800
O12—H12A0.8400C19—H19B0.9800
O13—H13A0.8912C19—H19C0.9800
O13—H13B0.8940C20—H20A0.9800
N1—C81.313 (3)C20—H20B0.9800
N1—Mn1i1.9991 (19)C20—H20C0.9800
O1—Ni1—O1i180.0O2—C1—C2121.6 (2)
O1—Ni1—O4i85.54 (6)N2—C1—C2118.0 (2)
O1i—Ni1—O4i94.46 (6)C3—C2—C7119.7 (2)
O1—Ni1—O494.46 (6)C3—C2—C1118.1 (2)
O1i—Ni1—O485.54 (6)C7—C2—C1122.2 (2)
O4i—Ni1—O4180.0C4—C3—C2121.0 (3)
O1—Ni1—O789.30 (7)C4—C3—H3119.5
O1i—Ni1—O790.70 (7)C2—C3—H3119.5
O4i—Ni1—O789.35 (7)C3—C4—C5119.2 (3)
O4—Ni1—O790.65 (7)C3—C4—H4120.4
O1—Ni1—O7i90.70 (7)C5—C4—H4120.4
O1i—Ni1—O7i89.30 (7)C6—C5—C4121.0 (2)
O4i—Ni1—O7i90.65 (7)C6—C5—H5119.5
O4—Ni1—O7i89.35 (7)C4—C5—H5119.5
O7—Ni1—O7i180.0C5—C6—C7120.7 (3)
O6i—Mn1—O1177.99 (8)C5—C6—H6119.7
O6i—Mn1—N1i90.59 (8)C7—C6—H6119.7
O1—Mn1—N1i87.90 (7)O3—C7—C6117.3 (2)
O6i—Mn1—O2101.75 (7)O3—C7—C2124.3 (2)
O1—Mn1—O279.66 (7)C6—C7—C2118.4 (2)
N1i—Mn1—O2166.99 (7)O5—C8—N1120.2 (2)
O6i—Mn1—O987.57 (8)O5—C8—C9120.09 (19)
O1—Mn1—O993.84 (8)N1—C8—C9119.7 (2)
N1i—Mn1—O993.75 (8)C10—C9—C14118.9 (2)
O2—Mn1—O990.88 (8)C10—C9—C8117.4 (2)
O6i—Mn1—O1088.50 (8)C14—C9—C8123.6 (2)
O1—Mn1—O1090.20 (8)C11—C10—C9121.3 (2)
N1i—Mn1—O1090.55 (8)C11—C10—H10119.4
O2—Mn1—O1085.74 (8)C9—C10—H10119.4
O9—Mn1—O10174.20 (8)C10—C11—C12119.7 (2)
O3—Mn2—O4176.03 (8)C10—C11—H11120.2
O3—Mn2—N288.18 (8)C12—C11—H11120.2
O4—Mn2—N293.66 (7)C13—C12—C11120.3 (2)
O3—Mn2—O598.67 (7)C13—C12—H12119.9
O4—Mn2—O579.85 (7)C11—C12—H12119.9
N2—Mn2—O5171.17 (7)C12—C13—C14121.4 (2)
O3—Mn2—O893.89 (8)C12—C13—H13119.3
O4—Mn2—O889.72 (7)C14—C13—H13119.3
N2—Mn2—O886.94 (8)O6—C14—C13116.8 (2)
O5—Mn2—O887.05 (7)O6—C14—C9124.7 (2)
O3—Mn2—O1187.30 (8)C13—C14—C9118.5 (2)
O4—Mn2—O1189.15 (7)O8—C15—O7124.9 (2)
N2—Mn2—O1191.20 (8)O8—C15—C16118.4 (2)
O5—Mn2—O1194.65 (7)O7—C15—C16116.7 (2)
O8—Mn2—O11177.77 (7)C15—C16—H16A109.5
N2—O1—Mn1115.37 (13)C15—C16—H16B109.5
N2—O1—Ni1116.20 (13)H16A—C16—H16B109.5
Mn1—O1—Ni1121.46 (8)C15—C16—H16C109.5
C1—O2—Mn1111.39 (15)H16A—C16—H16C109.5
C7—O3—Mn2126.39 (15)H16B—C16—H16C109.5
N1—O4—Mn2112.52 (12)O9—C17—H17A109.5
N1—O4—Ni1114.00 (12)O9—C17—H17B109.5
Mn2—O4—Ni1109.98 (8)H17A—C17—H17B109.5
C8—O5—Mn2111.06 (13)O9—C17—H17C109.5
C14—O6—Mn1i129.29 (16)H17A—C17—H17C109.5
C15—O7—Ni1126.98 (16)H17B—C17—H17C109.5
C15—O8—Mn2132.85 (17)O10—C18—H18A109.5
C17—O9—Mn1127.6 (2)O10—C18—H18B109.5
C17—O9—H9O111 (3)H18A—C18—H18B109.5
Mn1—O9—H9O113 (3)O10—C18—H18C109.5
C18—O10—Mn1126.2 (2)H18A—C18—H18C109.5
C18—O10—H10O111 (3)H18B—C18—H18C109.5
Mn1—O10—H10O108 (3)O11—C19—H19A109.5
C19—O11—Mn2127.54 (17)O11—C19—H19B109.5
C19—O11—H11O104 (3)H19A—C19—H19B109.5
Mn2—O11—H11O128 (3)O11—C19—H19C109.5
C20—O12—H12A109.5H19A—C19—H19C109.5
H13A—O13—H13B97.8H19B—C19—H19C109.5
C8—N1—O4111.81 (18)O12—C20—H20A109.5
C8—N1—Mn1i129.84 (16)O12—C20—H20B109.5
O4—N1—Mn1i118.35 (13)H20A—C20—H20B109.5
C1—N2—O1111.30 (18)O12—C20—H20C109.5
C1—N2—Mn2131.90 (16)H20A—C20—H20C109.5
O1—N2—Mn2115.94 (14)H20B—C20—H20C109.5
O2—C1—N2120.4 (2)
N1i—Mn1—O1—N2163.95 (16)Mn2—O3—C7—C6153.19 (19)
O2—Mn1—O1—N212.24 (15)Mn2—O3—C7—C230.0 (3)
O9—Mn1—O1—N2102.43 (16)C5—C6—C7—O3178.2 (2)
O10—Mn1—O1—N273.40 (15)C5—C6—C7—C21.2 (4)
N1i—Mn1—O1—Ni114.29 (10)C3—C2—C7—O3178.3 (2)
O2—Mn1—O1—Ni1161.89 (11)C1—C2—C7—O30.3 (4)
O9—Mn1—O1—Ni1107.91 (11)C3—C2—C7—C61.4 (4)
O10—Mn1—O1—Ni176.26 (10)C1—C2—C7—C6176.6 (2)
N2—Mn2—O3—C732.0 (2)Mn2—O5—C8—N111.7 (3)
O5—Mn2—O3—C7153.54 (19)Mn2—O5—C8—C9168.76 (16)
O8—Mn2—O3—C7118.9 (2)O4—N1—C8—O54.0 (3)
O11—Mn2—O3—C759.2 (2)Mn1i—N1—C8—O5175.17 (16)
Mn2—O4—N1—C818.3 (2)O4—N1—C8—C9175.55 (18)
Ni1—O4—N1—C8144.44 (16)Mn1i—N1—C8—C95.3 (3)
Mn2—O4—N1—Mn1i160.92 (9)O5—C8—C9—C102.0 (3)
Ni1—O4—N1—Mn1i34.81 (17)N1—C8—C9—C10178.5 (2)
Mn1—O1—N2—C114.5 (2)O5—C8—C9—C14176.4 (2)
Ni1—O1—N2—C1165.81 (15)N1—C8—C9—C143.1 (3)
Mn1—O1—N2—Mn2174.82 (9)C14—C9—C10—C110.5 (4)
Ni1—O1—N2—Mn223.53 (19)C8—C9—C10—C11179.0 (2)
Mn1—O2—C1—N22.2 (3)C9—C10—C11—C120.1 (4)
Mn1—O2—C1—C2178.51 (18)C10—C11—C12—C130.5 (5)
O1—N2—C1—O27.6 (3)C11—C12—C13—C140.4 (4)
Mn2—N2—C1—O2176.28 (17)Mn1i—O6—C14—C13167.37 (18)
O1—N2—C1—C2171.72 (19)Mn1i—O6—C14—C914.8 (4)
Mn2—N2—C1—C23.0 (3)C12—C13—C14—O6177.8 (2)
O2—C1—C2—C314.8 (4)C12—C13—C14—C90.2 (4)
N2—C1—C2—C3165.9 (2)C10—C9—C14—O6177.2 (2)
O2—C1—C2—C7163.2 (2)C8—C9—C14—O61.2 (4)
N2—C1—C2—C716.1 (3)C10—C9—C14—C130.6 (3)
C7—C2—C3—C40.8 (4)C8—C9—C14—C13179.1 (2)
C1—C2—C3—C4177.3 (2)Mn2—O8—C15—O72.6 (4)
C2—C3—C4—C50.2 (4)Mn2—O8—C15—C16176.5 (2)
C3—C4—C5—C60.5 (4)Ni1—O7—C15—O813.4 (4)
C4—C5—C6—C70.2 (4)Ni1—O7—C15—C16167.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9O···O12ii0.82 (2)1.82 (2)2.630 (4)172 (4)
O10—H10O···O7i0.84 (2)1.97 (3)2.713 (3)148 (4)
O11—H11O···O5iii0.83 (2)1.95 (2)2.778 (2)178 (4)
O12—H12A···O80.841.942.743 (3)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1.
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the nickel and manganese ions of 1 top
Avg. bond lengthBVS valueAssigned oxidation state
Ni12.0212.342+
Mn12.0313.063+
Mn22.0263.063+
Continuous Shapes Measures (CShM) values for the geometry about the six-coordinate central NiII and ring MnIII ions of 1 top
ShapeHexagon (D6h)Pentagonal pyramid (C5v)Octahedron (Oh)Trigonal prism (D3h)Johnson pentagonal pyramid (J2; C5v)
Ni131.65629.2420.16416.20132.416
Mn131.78226.0771.10613.69829.622
Mn231.09926.5750.82115.37729.523
 

Acknowledgements

CMZ would like to thank Vincent L. Pecoraro at the University of Michigan for useful discussions regarding the structure of the reported compound.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE 1625543 to M. Zeller); Shippensburg University Student/Faculty Research Engagement (SFRE) Program (award to C. M. Zaleski).

References

First citationAzar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationGole, B., Chakrabarty, R., Mukherjee, S., Song, Y. & Mukherjee, P. S. (2010). Dalton Trans. 39, 9766–9778.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHapp, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308–15312.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationLewis, A. J., Garlatti, E., Cugini, F., Solzi, M., Zeller, M., Carretta, S. & Zaleski, C. M. (2020). Inorg. Chem. 59, 11894–11900.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain.  Google Scholar
First citationLutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177–246. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNesterova, O. V., Chygorin, E. N., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V., Boča, R. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 14918–14924.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNguyen, T. N. & Pecoraro, V. L. (2017). Comprehensive Supra­mol­ecular Chemistry II, edited by J. L. Atwood, pp. 195–212. Amsterdam: Elsevier.  Google Scholar
First citationPecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83–177. New York: John Wiley & Sons.  Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPsomas, G., Stemmler, A. J., Dendrinou-Samara, C., Bodwin, J. J., Schneider, M., Alexiou, M., Kampf, J. W., Kessissoglou, D. P. & Pecoraro, V. L. (2001). Inorg. Chem. 40, 1562–1570.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiga, T., Maruyama, K., Newton, G. N., Inglis, R., Brechin, E. K. & Oshio, H. (2014). Inorg. Chem. 53, 4272–4274.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSzyrwiel, Ł., Brasuń, J., Szewczuk, Z. & Hołyńska, M. (2013). Polyhedron, 51, 90–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaleski, C. M., Tricard, S., Depperman, E. C., Wernsdorfer, W., Mallah, T., Kirk, M. L. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 11348–11352.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Wei, C.-Y. & Liu, T.-F. (2014). Chin. Chem. Lett. 25, 937–940.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds