research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (aqua-κO)(methanol-κO)[N-(2-oxido­benzyl­­idene)threoninato-κ3O,N,O′]copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and bChemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700-064, India
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 30 July 2020; accepted 26 August 2020; online 28 August 2020)

In the title complex mol­ecule, [Cu(C11H11NO4)(CH4O)(H2O)], the Cu atom is coordinated in a distorted square-pyramidal geometry by a tridentate ligand synthesized from L-threonine and salicyl­aldehyde, one methanol mol­ecule and one water mol­ecule. In the crystal, the mol­ecules show intra- and inter­molecular O—H⋯O hydrogen bonds. The Hirshfeld surface analysis indicates that the most important contributions to the packing are H⋯H (49.4%) and H⋯O/O⋯H (31.3%) contacts.

1. Chemical context

Amino acid Schiff bases, which can be easily synthesized by condensation of primary amines with carbonyl components, are organic ligands having an azomethine (>C=N–) group. They play an important and diverse role in coordination chemistry (Qiu et al., 2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]; Li et al., 2010[Li, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.]; Xue et al., 2009[Xue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, 1237-1237.]). On the other hand, copper has various oxidation states, of which the +2 oxidation state is the most stable. Copper ions readily form complexes and produce abundant coordination chemistry, while Schiff base–copper(II) complexes are known to increase the catalytic efficiency of redox reactions (Cozzi, 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Roy & Manassero, 2010[Roy, P. & Manassero, M. (2010). Dalton Trans. 39, 1539-1545.]).

[Scheme 1]

One method of reducing highly toxic CrVI compounds to less toxic CrIII compounds is the use of titanium(IV) oxide, a heterogeneous photocatalyst. Although useful for such redox reactions (Kitano et al., 2007[Kitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007). Appl. Catal. A, 325, 1-14.]; Sun et al., 2006[Sun, J., Wang, X., Sun, J., Sun, R., Sun, S. & Qiao, L. (2006). J. Mol. Catal. A Chem. 260, 241-246.]; Tuprakay & Liengcharernsit, 2005[Tuprakay, S. & Liengcharernsit, W. (2005). J. Hazard. Mater. 124, 53-58.]), it is only active under UV illumination (Schneider et al., 2014[Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. & Bahnemann, D. W. (2014). Chem. Rev. 114, 9919-9986.]). In our laboratory, a heterogeneous titanium (IV) oxide photocatalyst was combined with a Schiff base–CuII complex and irradiated with visible light. The presence of a π-conjugated ligand system increases the efficiency (Yoshida et al., 2017[Yoshida, N., Tsaturyan, A., Akitsu, T., Tsunoda, Y. & Shcherbakov, I. (2017). Russ. Chem. Bull. 66, 2057-2065.]; Nakagame et al., 2019[Nakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221-231.]). It can be said that the Schiff base–copper complex has a photocatalytic effect. In the present study, the title Schiff base–copper complex was synthesized by microwave irradiation in order to shorten the synthesis time and to obtain high purity. The crystal structure is reported here.

2. Structural commentary

The mol­ecular structure of the title compound consists of a tridentate ligand synthesized from L-threonine and salicyl­aldehyde, one methanol mol­ecule, and one water mol­ecule coordinating to copper (Fig. 1[link]) in a distorted square-pyramidal coordination geometry. The C8=N1 double-bond distance is 1.286 (5) Å, close to a typical C=N double-bond length for an imine. The Cu1—O2, Cu1—O3 and Cu1—O4 bond lengths are 1.968 (3), 1.937 (3) and 1.910 (3) Å, respectively, which are close to a typical Cu—O single bond length. The Cu1—N1 bond length of 1.922 (3) Å corresponds to the typical Cu—N single-bond length. These four atoms coordinated to Cu1 have similar bond-distance values, and the contribution degree of the electron cloud is almost the same. The Cu1—O6 bond [2.471 (3) Å] has been lengthened by a pseudo Jahn–Teller effect. One intra­molecular O—H⋯O hydrogen bond (O5—H5⋯O6; Table 1[link]) is observed between the meth­oxy function and the amino acid side chain (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O4i 0.87 (7) 1.84 (7) 2.692 (4) 169 (6)
O3—H3⋯O2ii 0.81 (6) 1.89 (6) 2.687 (4) 167 (6)
O5—H5⋯O6 0.82 1.97 2.783 (4) 171
O6—H4⋯O1iii 0.82 1.84 2.653 (4) 175
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the intra- and inter­molecular O—H⋯O hydrogen bonds, shown as dashed lines. [Symmetry codes: (i) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (iv) x − 1, y, z.]

3. Supra­molecular features

Three inter­molecular O—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]) are observed in the crystal; one hydrogen bond (O6—H4⋯O1iii; symmetry code given in Table 1[link]) forms a chain along the a-axis direction and while the other two hydrogen bonds (O3—H2⋯O4i and O3—H3⋯O2ii; Table 1[link]) form a hydrogen-bonded O2/Cu1/O3/H2/O4i/Cu1i/O3i/H3i ring with an R22(8) motif (Table 1[link] and Fig. 2[link]). The mol­ecules are stacked in a double-column along the a-axis direction via these three hydrogen bonds.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) was performed to better understand the inter­molecular inter­actions and contacts. The O—H⋯O hydrogen bonds are indicated by bright-red spots appearing near O1, O2, O4 and water H atoms on the Hirshfeld surfaces mapped over dnorm and by two sharp spikes of almost the same length in the region 1.6 Å < (de + di) < 2.0 Å in the 2D finger plots (Fig. 3[link]). The contributions to the packing from H⋯H and H⋯O/O⋯H contacts are 49.4 and 31.3%, respectively. The calculated atomic charge on the surface is shown in Fig. 4[link]. There are negative charge distributions around the O atoms of hydrogen-bond acceptors; this and other features of the inter­molecular inter­actions are in agreement with the electronegativity of atoms in the crystal structure.

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm (left) and two-dimensional fingerprint plots (right), showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H and (c) H⋯H contacts. de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.
[Figure 4]
Figure 4
Distribution of atomic charges (red: negative, blue: positive) on the Hirshfeld surface.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned three relevant entries: (2,2′-bi­pyridine-N,N′)[N-(2-oxido-1-naphthyl­idene)threoninato-N,O,O′]copper(II) (refcode BIZGIB; Qiu et al., 2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]), di­aqua­(N-salicyl­idene-L-threoninato)copper(II) (SLCDCU; Korhonen & Hämäläinen, 1981[Korhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829-834.]) and {N-[2-(hy­droxy)-3-meth­oxy­benzyl­idene]threo­nin­ato}(1,10-phenanthroline)copper hemihydrate (UQUYUB; Jing et al., 2011[Jing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536.]). In the crystal of BIZGIB, a two-dimensional network is formed by a combination of inter­molecular O—H⋯O and C—H⋯O hydrogen bonds. In the crystal of SLCDCU, two mol­ecules form square planes by two inter­molecular hydrogen bonds. In the crystal of UQUYUB, inter­molecular O—H⋯O hydrogen bonds form a one-dimensional left-handed helical structure running along [001].

5. Synthesis and crystallization

L-Threonine (0.0234 g, 0.196 mmol) and salicyl­aldehyde (0.0295 g, 0.242 mmol) were dissolved in methanol (15 ml), which was treated for 5 min with microwave irradiation at 358 K to yield a transparent yellow ligand solution. To this solution, copper(II) acetate dihydrate (0.0421 g, 0.211 mmol) was added and treated for 5 min while being irradiated with microwaves at 358 K. The solution was placed in the air, and the solvent was removed. The title compound (0.0533 g, 0.169 mmol, yield 85.9%) was obtained as a green solid. IR (KBr, cm−1): 1633 (C=N double bond). A part of the obtained solid was dissolved in a small amount of methanol and left in air, and single crystals suitable for X-ray diffraction were obtained after several days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed on geometrically calculated positions (C—H = 0.93–0.98 Å) and were constrained using a riding model with Uiso(H) = 1.2Ueq(C) for R2CH and R3CH H atoms and 1.5Ueq(C) for the methyl H atoms. The O-bound H atoms were located based on a difference-Fourier map. Atoms H4 and H5 of the terminal OH group were constrained using a riding model with O—H = 0.82 Å. H5 was assigned Uiso(H) = 1.2Ueq(O), while the Uiso of H4 (attached to O6 was refined. Atoms H2 and H3 of the water mol­ecule were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C11H11NO4)(CH4O)(H2O)]
Mr 334.80
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 7.0614 (4), 11.0738 (6), 17.6541 (10)
V3) 1380.49 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.61
Crystal size (mm) 0.58 × 0.25 × 0.11
 
Data collection
Diffractometer Bruker APEXIII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). SADABS, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.65, 0.70
No. of measured, independent and observed [I > 2σ(I)] reflections 21250, 3706, 2981
Rint 0.078
(sin θ/λ)max−1) 0.728
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.097, 1.33
No. of reflections 3706
No. of parameters 195
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.40, −2.47
Absolute structure Flack x determined using 1080 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.013 (6)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). SADABS, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: APEX3 (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Aqua-κO)(methanol-κO)[N-(2-oxidobenzylidene)threoninato-κ3O,N,O']copper(II) top
Crystal data top
[Cu(C11H11NO4)(CH4O)(H2O)]Dx = 1.611 Mg m3
Mr = 334.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3748 reflections
a = 7.0614 (4) Åθ = 3.5–27.2°
b = 11.0738 (6) ŵ = 1.61 mm1
c = 17.6541 (10) ÅT = 173 K
V = 1380.49 (13) Å3Prism, green
Z = 40.58 × 0.25 × 0.11 mm
F(000) = 692
Data collection top
Bruker APEXIII CCD
diffractometer
3706 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.078
φ and ω scansθmax = 31.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1010
Tmin = 0.65, Tmax = 0.70k = 1514
21250 measured reflectionsl = 2424
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0366P)2 + 0.3357P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.097Δρmax = 1.40 e Å3
S = 1.33Δρmin = 2.47 e Å3
3706 reflectionsExtinction correction: SHELXL-2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
195 parametersExtinction coefficient: 0.0061 (19)
0 restraintsAbsolute structure: Flack x determined using 1080 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.013 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61538 (6)0.62966 (4)0.57142 (2)0.01921 (15)
N10.5954 (4)0.5019 (3)0.64462 (16)0.0182 (6)
O10.1357 (4)0.6119 (3)0.68853 (17)0.0321 (7)
C10.2945 (5)0.6045 (4)0.6605 (2)0.0213 (8)
O20.3562 (4)0.6679 (3)0.60469 (15)0.0236 (6)
C20.9302 (5)0.4684 (4)0.5454 (2)0.0226 (8)
O30.5999 (5)0.7596 (3)0.49822 (19)0.0312 (7)
H30.681 (8)0.770 (5)0.467 (3)0.030 (14)*
H20.510 (9)0.813 (6)0.497 (4)0.043 (16)*
C31.1020 (7)0.4402 (4)0.5083 (2)0.0305 (9)
H3A1.1438870.4892730.4689090.037*
O40.8381 (4)0.5673 (3)0.52418 (16)0.0238 (6)
C41.2084 (6)0.3414 (5)0.5293 (3)0.0357 (11)
H4A1.3212030.3253880.5040010.043*
C51.1509 (7)0.2654 (4)0.5873 (3)0.0359 (11)
H5A1.2255530.2001810.6017610.043*
O50.5433 (4)0.6871 (3)0.76923 (17)0.0270 (7)
H50.6308510.6940200.7390060.040*
C60.9816 (7)0.2880 (4)0.6233 (3)0.0295 (10)
H6A0.9402050.2358790.6611220.035*
O60.8220 (4)0.7368 (3)0.66221 (19)0.0277 (7)
H40.9146630.6941520.6703410.043 (16)*
C70.8696 (6)0.3893 (3)0.6037 (2)0.0225 (8)
C80.7002 (5)0.4070 (3)0.6473 (2)0.0203 (8)
H7A0.6635500.3453510.6799670.024*
C90.4331 (5)0.5140 (4)0.6951 (2)0.0205 (8)
H8A0.3706340.4355230.7008650.025*
C100.4885 (6)0.5637 (4)0.7740 (2)0.0224 (8)
H10A0.3736830.5611850.8051010.027*
C110.6344 (7)0.4869 (4)0.8141 (2)0.0310 (9)
H11A0.5978990.4035180.8112740.046*
H11B0.6423610.5109860.8662730.046*
H11C0.7555150.4974660.7903460.046*
C120.8794 (7)0.8592 (4)0.6574 (3)0.0387 (10)
H12A0.9909080.8650770.6265170.058*
H12B0.9065690.8892300.7072500.058*
H12C0.7796120.9062560.6351900.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0168 (2)0.0205 (2)0.0203 (2)0.00153 (18)0.00096 (18)0.00462 (17)
N10.0179 (14)0.0197 (16)0.0170 (14)0.0001 (13)0.0011 (13)0.0003 (11)
O10.0178 (12)0.0454 (18)0.0330 (15)0.0048 (13)0.0040 (12)0.0103 (13)
C10.0173 (16)0.025 (2)0.0212 (19)0.0012 (14)0.0032 (15)0.0023 (15)
O20.0177 (12)0.0286 (15)0.0246 (14)0.0036 (11)0.0010 (12)0.0074 (11)
C20.0219 (18)0.025 (2)0.0209 (18)0.0039 (15)0.0024 (15)0.0038 (15)
O30.0224 (15)0.0358 (17)0.0354 (16)0.0069 (14)0.0069 (15)0.0201 (13)
C30.027 (2)0.037 (2)0.028 (2)0.003 (2)0.006 (2)0.0015 (16)
O40.0224 (13)0.0229 (14)0.0261 (15)0.0020 (11)0.0049 (12)0.0036 (11)
C40.025 (2)0.046 (3)0.036 (3)0.0113 (19)0.0019 (18)0.011 (2)
C50.036 (2)0.037 (3)0.034 (2)0.018 (2)0.006 (2)0.0042 (19)
O50.0306 (16)0.0244 (16)0.0260 (16)0.0016 (12)0.0025 (13)0.0043 (12)
C60.036 (2)0.025 (2)0.028 (2)0.0063 (18)0.0023 (19)0.0003 (17)
O60.0183 (13)0.0266 (16)0.0384 (17)0.0004 (11)0.0019 (13)0.0006 (13)
C70.0235 (17)0.022 (2)0.0225 (17)0.0017 (16)0.0028 (16)0.0054 (14)
C80.0249 (18)0.0161 (19)0.0198 (18)0.0005 (14)0.0011 (15)0.0001 (14)
C90.0175 (16)0.022 (2)0.0219 (18)0.0005 (13)0.0023 (15)0.0028 (14)
C100.0246 (19)0.023 (2)0.0193 (19)0.0008 (15)0.0016 (16)0.0007 (15)
C110.039 (2)0.030 (2)0.0239 (19)0.005 (2)0.0079 (19)0.0002 (16)
C120.042 (2)0.031 (2)0.043 (2)0.005 (2)0.004 (2)0.0045 (19)
Geometric parameters (Å, º) top
Cu1—O62.471 (3)C5—H5A0.9300
Cu1—O41.910 (3)O5—C101.423 (5)
Cu1—N11.922 (3)O5—H50.8200
Cu1—O31.937 (3)C6—C71.415 (6)
Cu1—O21.968 (3)C6—H6A0.9300
N1—C81.286 (5)O6—C121.417 (5)
N1—C91.458 (5)O6—H40.8200
O1—C11.228 (5)C7—C81.436 (6)
C1—O21.286 (5)C8—H7A0.9300
C1—C91.528 (5)C9—C101.548 (6)
C2—O41.327 (5)C9—H8A0.9800
C2—C31.414 (6)C10—C111.512 (6)
C2—C71.418 (6)C10—H10A0.9800
O3—H30.81 (6)C11—H11A0.9600
O3—H20.87 (7)C11—H11B0.9600
C3—C41.378 (7)C11—H11C0.9600
C3—H3A0.9300C12—H12A0.9600
C4—C51.387 (7)C12—H12B0.9600
C4—H4A0.9300C12—H12C0.9600
C5—C61.376 (7)
O4—Cu1—N195.03 (13)C7—C6—H6A119.4
O4—Cu1—O391.37 (14)C12—O6—H4109.5
N1—Cu1—O3172.54 (15)C6—C7—C2119.9 (4)
O4—Cu1—O2166.91 (13)C6—C7—C8116.3 (4)
N1—Cu1—O283.64 (13)C2—C7—C8123.8 (4)
O3—Cu1—O289.26 (13)N1—C8—C7124.8 (4)
C8—N1—C9120.3 (3)N1—C8—H7A117.6
C8—N1—Cu1125.8 (3)C7—C8—H7A117.6
C9—N1—Cu1113.6 (2)N1—C9—C1108.7 (3)
O1—C1—O2125.6 (4)N1—C9—C10112.6 (3)
O1—C1—C9117.9 (4)C1—C9—C10106.8 (3)
O2—C1—C9116.6 (3)N1—C9—H8A109.6
C1—O2—Cu1115.3 (2)C1—C9—H8A109.6
O4—C2—C3118.1 (4)C10—C9—H8A109.6
O4—C2—C7124.5 (4)O5—C10—C11112.5 (3)
C3—C2—C7117.4 (4)O5—C10—C9110.9 (3)
Cu1—O3—H3122 (4)C11—C10—C9113.2 (3)
Cu1—O3—H2124 (4)O5—C10—H10A106.6
H3—O3—H2114 (5)C11—C10—H10A106.6
C4—C3—C2121.2 (4)C9—C10—H10A106.6
C4—C3—H3A119.4C10—C11—H11A109.5
C2—C3—H3A119.4C10—C11—H11B109.5
C2—O4—Cu1125.3 (3)H11A—C11—H11B109.5
C3—C4—C5121.4 (4)C10—C11—H11C109.5
C3—C4—H4A119.3H11A—C11—H11C109.5
C5—C4—H4A119.3H11B—C11—H11C109.5
C6—C5—C4119.0 (4)O6—C12—H12A109.5
C6—C5—H5A120.5O6—C12—H12B109.5
C4—C5—H5A120.5H12A—C12—H12B109.5
C10—O5—H5109.5O6—C12—H12C109.5
C5—C6—C7121.1 (4)H12A—C12—H12C109.5
C5—C6—H6A119.4H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O4i0.87 (7)1.84 (7)2.692 (4)169 (6)
O3—H3···O2ii0.81 (6)1.89 (6)2.687 (4)167 (6)
O5—H5···O60.821.972.783 (4)171
O6—H4···O1iii0.821.842.653 (4)175
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y, z.
 

Funding information

This work was supported by a Grant-in-Aid for Scientific Research (A) KAKENHI (20H00336).

References

First citationBruker (2017). SADABS, APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJing, B., Li, L., Dong, J. & Li, J. (2011). Acta Cryst. E67, m536.  CSD CrossRef IUCr Journals Google Scholar
First citationKitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007). Appl. Catal. A, 325, 1–14.  CrossRef CAS Google Scholar
First citationKorhonen, K. & Hämäläinen, R. (1981). Acta Cryst. B37, 829–834.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, J., Guo, Z., Li, L. & Wang, D. (2010). Acta Cryst. E66, m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221–231.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoy, P. & Manassero, M. (2010). Dalton Trans. 39, 1539–1545.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. & Bahnemann, D. W. (2014). Chem. Rev. 114, 9919–9986.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSun, J., Wang, X., Sun, J., Sun, R., Sun, S. & Qiao, L. (2006). J. Mol. Catal. A Chem. 260, 241–246.  CrossRef CAS Google Scholar
First citationTuprakay, S. & Liengcharernsit, W. (2005). J. Hazard. Mater. 124, 53–58.  CrossRef PubMed CAS Google Scholar
First citationXue, L.-W., Li, X.-W., Zhao, G.-Q. & Peng, Q.-L. (2009). Acta Cryst. E65, 1237–1237.  CSD CrossRef IUCr Journals Google Scholar
First citationYoshida, N., Tsaturyan, A., Akitsu, T., Tsunoda, Y. & Shcherbakov, I. (2017). Russ. Chem. Bull. 66, 2057–2065.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds