research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a novel one-dimensional zigzag chain-like cobalt(II) coordination polymer constructed from 4,4′-bi­pyridine and 2-hy­dr­oxy­benzoate ligands

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and cDepartment of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
*Correspondence e-mail: nwan0110@tu.ac.th

Edited by H. Ishida, Okayama University, Japan (Received 23 June 2020; accepted 12 July 2020; online 17 July 2020)

A novel one-dimensional zigzag chain-like CoII coordination polymer constructed from 4,4′-bi­pyridine (4,4′-bpy) and 2-hy­droxy­benzoate (2-OHbenz) ligands, namely, catena-poly[[(4,4′-bi­pyridine-κN)­(μ-2-hy­droxy­benzoato-κ2O:O′)(2-hy­droxy­benzoato-κ2O,O′)cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′-[aquahemi(μ-4,4′-bi­pyridine-κ2N:N′)(2-hy­droxy­benzoato-κO(2-hy­droxy­benzoato-κ2O:O′)cobalt(II)], [Co2(C7H5O3)4(C10H8N2)2.5(H2O)]n, has been synthesized by reacting cobalt(II) nitrate trihydrate, 4,4′-bpy and 2-hy­droxy­benzoic acid in a mixture of water and methanol at room temperature. There are two independent CoII centers, Co1 and Co2, in the asymmetric unit, revealing a distorted octa­hedral geometry with chromophore types of [CoN2O4] and [CoN2O3O′], respectively. The Co1 ions are doubly bridged by 2-OHbenz ligands with synanti coordination mode, generating a dinuclear unit. The bridging 4,4′-bpy ligands connect these dinuclear units and the mononuclear Co2 chromophores, providing a one-dimensional alternating zigzag chain-like structure. In the crystal, inter­molecular hydrogen bonds, C—H⋯π and ππ stacking inter­actions are observed and these help to consolidate the packing. In addition, the physical properties of the title compound are reported.

1. Chemical context

The design and construction of new coordination polymers (CPs) is of current inter­est and attracts researchers in the fields of modern structural chemistry and materials science because of their potential applications in areas such as ion-exchange, catalysis, sensors, magnetism, and non-linear optics (Dzhardimalieva & Uflyand, 2017[Dzhardimalieva, G. I. & Uflyand, I. E. (2017). RSC Adv. 7, 42242-42288.]; Loukopoulos & Kostakis, 2018[Loukopoulos, E. & Kostakis, G. E. (2018). J. Coord. Chem. 71, 371-410.]; Horike et al., 2020[Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. (2020). Angew. Chem. Int. Ed. 59, 6652-6664.]). It is well known that the construction of CPs depends on a variety of factors such as the nature of metal ions and the organic ligands, the molar ratio of the reactants, and the reaction conditions e.g. reaction time, pH, solvents, and temperature (Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]; Noro et al., 2009[Noro, S.-I., Kitagawa, S., Akutagawa, T. & Nakamura, T. (2009). Prog. Polym. Sci. 34, 240-279.]). The structure–property relationships of hybrid polymeric materials with 4,4′-bi­pyridine (4,4′-bipy) have been studied intensively (Biradha et al., 2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]; Khrizanforova et al., 2020[Khrizanforova, V., Shekurov, R., Miluykov, V., Khrizanforov, M., Bon, V., Kaskel, S., Gubaidullin, A., Sinyashin, O. & Budnikova, Y. (2020). Dalton Trans. 49, 2794-2802.]). This is because 4,4′-bpy is a rigid mol­ecule that can link the metal centers to form a network with well-defined structures and also support the stability of the structures through aromatic ππ and C—H⋯π inter­actions (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]). Furthermore, many researchers incorporate carboxyl­ate-based ligands for the construction of CPs, giving rise to frameworks with a variety of dimensions and topologies (Gu et al., 2019[Gu, J., Wen, M., Cai, Y., Shi, Z., Nesterov, D. S., Kirillova, M. V. & Kirillov, A. M. (2019). Inorg. Chem. 58, 5875-5885.]; Horike et al., 2020[Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. (2020). Angew. Chem. Int. Ed. 59, 6652-6664.]). Benzoate and its derivatives have been widely used to construct the CPs because of the variety of their coordination modes, resulting in a variety of coordination geometries for the metal centers and inter­esting properties and applications of their CPs (Tong et al., 2000[Tong, M.-L., Chen, H.-J. & Chen, X.-M. (2000). Inorg. Chem. 39, 2235-2238.]; Busskamp et al., 2007[Busskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). CrystEngComm, 9, 394-411.]; Zhang et al., 2007[Zhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276-1280.]; Song et al., 2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]).

[Scheme 1]

This work was undertaken as part of a search for new first-row transition-metal coordination polymers constructed from 4,4′-bpy and carboxyl­ate ligands. The CoII ion and hy­droxy­benzoate derivatives such as 2-hy­droxy­benzoate (2-OHbenz), 3-hy­droxy­benzoate (3-OHbenz) and 4-hy­droxy­benzoate (4-OHbenz) have been utilized for this. As a result, a CoII coordination polymer containing 4,4′-bpy and 2-OHbenz, [Co2(2-OHbenz)4(4,4′-bpy)2.5(H2O)]n, with a novel 1D alternating zigzag chain-like structure has been successfully synthesized and characterized and its crystal structure has been determined. Herein, we report the synthesis and crystal structure and physical properties of this compound.

2. Structural commentary

The asymmetric unit consists of two independent CoII atoms, two and a half of 4,4′-bpy ligands, four 2-OHbenz ligands and one water mol­ecule (Fig. 1[link]). Both CoII centers exhibit a distorted octa­hedral geometry with [CoN2O4] and [CoN2O3O′] chromophores for Co1 and Co2, respectively (Fig. 2[link]). The Co1 ion is coordinated by two N atoms from two 4,4′-bpy ligands with different monodentate and bridging coordination modes in a trans-configuration, and four O atoms from carboxyl­ate groups of one terminal chelating and two bridging 2-OHbenz ligands, while the Co2 ion is bound to two N atoms of two 4,4′-bpy linkers in a cis-configuration, and four O atoms from carboxyl­ate groups of two terminally monodentate and chelating 2-OHbenz ligands, and an aqua ligand. The Co—O and Co—N bond lengths fall in the ranges 2.0408 (14)–2.348 (15) and 2.1177 (16)–2.1568 (17) Å, respectively. Two Co1 centers are doubly bridged by two bridging 2-OHbenz ligands with a synanti coordination mode to form a discrete dinuclear unit. The dinuclear units are connected to Co2 atoms by the bridging 4,4′-bpy ligands, providing a one-dimensional zigzag chain-like structure along [101] (Fig. 3[link]). The Co1⋯Co1i [symmetry code: (i) = −x + 1, −y, −z + 1] and Co1⋯Co2 distances are 4.099 (2) and 11.381 (2) Å, respectively.

[Figure 1]
Figure 1
A segment of [Co2(2-OHbenz)4(4,4′-bpy)2.5(H2O)]n with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y, −z + 1.]
[Figure 2]
Figure 2
The coordination environments of CoII centers in the title compound. The hydrogen atoms on the aromatic rings and phenol ring on 2-OHbenz ligands have been omitted for clarity. [Symmetry code: (i) −x + 1, −y, −z + 1.]
[Figure 3]
Figure 3
(a) View of the one-dimensional alternating zigzag chain-like structure and (b) the schematic skeleton representing the topology of the title compound

Intra­molecular hydrogen bonds (Table 1[link]) comprise (i) O—H⋯O inter­actions formed by hydrogen donor atoms from the hydroxyl groups of 2-OHbenz and aqua ligands to oxygen acceptors in the carboxyl­ate groups of the 2-OHbenz ligands and (ii) an O—H⋯N inter­action formed by a hydrogen-atom donor of the aqua ligand to an uncoordinated nitro­gen acceptor atom in the terminal 4,4′-bpy ligand. The intra­molecular ππ stacking inter­actions involve the pyridyl rings of the 4,4′-bpy ligands, the inter­centroid distances Cg1⋯Cg3i and Cg2⋯Cg4i being 3.965 (1) and 3.652 (1) Å, respectively, where Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15 and N4/C16–C20 rings, respectively [symmetry code: (i) −x + 1, −y, −z + 1; Fig. 4[link]].

Table 1
Hydrogen-bond geometry (Å, °)

Cg4, Cg7 and Cg9 are the centroids of the N4/C16–C20, C34–C39 and C48–C53 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.85 (3) 1.77 (3) 2.553 (3) 153 (4)
O6—H8⋯O5 0.84 (2) 1.86 (2) 2.587 (2) 145 (2)
O9—H13⋯O7 0.84 (2) 1.79 (2) 2.568 (3) 152 (4)
O12—H18⋯O11 0.85 (2) 1.74 (2) 2.531 (2) 154 (3)
O13—H26⋯O11 0.84 (1) 1.82 (2) 2.625 (2) 160 (2)
O13—H27⋯N2i 0.83 (2) 2.05 (2) 2.860 (3) 167 (2)
C25—H25⋯O8 0.93 2.55 3.143 (3) 122
C39—H39⋯O1 0.93 2.38 3.271 (3) 160
C5—H5⋯O12ii 0.93 2.59 3.324 (3) 136
C6—H6⋯O7iii 0.93 2.48 3.300 (3) 147
C12—H12⋯O3iv 0.93 2.58 3.173 (3) 122
C15—H15⋯O6v 0.93 2.51 3.292 (3) 142
C2—H2⋯Cg9iii 0.93 2.95 3.833 (2) 160
C31—H31⋯Cg4vi 0.93 2.85 3.681 (4) 149
C51—H51⋯Cg7vii 0.93 2.72 3.623 (3) 165
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z+1; (iii) x+1, y-1, z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x, -y+1, -z+1; (vii) x-1, y+1, z-1.
[Figure 4]
Figure 4
The intra­molecular inter­actions in the title compound. The hydrogen atoms on aromatic rings have been omitted for clarity. Cg1, Cg2, Cg3 and Cg4 are the centroids of N1/C1–C5, N2/C6–C10, N3/C11–C15 and N4/C16–C20 rings, respectively. [Symmetry code: (i) −x + 1, −y, −z + 1.]

3. Supra­molecular features

The extended structure of the title compound is consolidated by hydrogen bonds and ππ stacking and C—H⋯π inter­actions. The details of these weak inter­actions are summarized in Tables 1[link] and 2[link]. The inter­molecular inter­actions between the adjacent 1D zigzag chains are (i) C—H⋯O hydrogen bonds between the benzene rings and hydroxyl groups of 2-OHbenz, (ii) ππ stacking inter­actions between the bridging 4,4′-bpy and the terminal chelating 2-OHbenz and also between the phenyl rings of terminal chelating 2-OHbenz ligands, (iii) C—H⋯π inter­actions between the C—H of the terminal monodentate 2-OHbenz ligand and the pyridine ring of 4,4′-bpy ligands and (iv) C—H⋯π inter­actions between the terminal chelating 2-OHbenz ligands. A packing diagram showing adjacent 1D zigzag chains in the (110) plane is shown in Fig. 5[link].

Table 2
Analysis of short ring inter­actions (Å)

Cg(I) and Cg(J) are the centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, N4/C16–C20, N5/C21–C25, C27–C32, C34–C39 and C41–C46 rings, respectively.

Cg(I) Cg(J) Symmetry_Cg(J) Cg(I)⋯Cg(J) CgI_Perp CgJ_Perp Slippage
Cg1 Cg3 x + 1, −y, −z + 1 3.9651 (13) 3.7526 (9) 3.6199 (8) 1.618
Cg2 Cg4 x + 1, −y, −z + 1 3.6515 (13) 3.5063 (9) 3.5546 (8) 0.836
Cg5 Cg8 x, −y + 2, −z 4.0381 (19) 3.5840 (10) 3.5978 (13) 1.832
Cg6 Cg7 x + 1, −y + 1, −z + 1 4.2986 (18) 4.2205 (13) 3.9319 (10) 1.737
Cg6 Cg8 x, −z + 1, −z + 1 3.814 (2) 3.7674 (13) 3.7372 (14) 0.765
[Figure 5]
Figure 5
(a) Top and (b) side views of packing diagram in the (110) plane with a space-filling plot of adjacent one-dimensional zigzag chains of the title compound.

4. Database survey

No transition-metal CPs related to the title compound containing a 1D alternating zigzag chain-like structure have been reported. To the best of our knowledge, some related 1D chain-like CoII CPs containing 4,4′-bpy and benzoate or hy­droxy­benzoate derivatives have been reported with two different topologies. The 1D ladder-like structure topology has been found for two CoII CPs, namely, [Co2(4,4′-bpy)3(H2O)2(phba)2](NO3)2·4H2O, (phba = 4-hy­droxy­benzoate) (MEDROC; Tong et al., 2000[Tong, M.-L., Chen, H.-J. & Chen, X.-M. (2000). Inorg. Chem. 39, 2235-2238.]) and [Co2(μ2-4,4′-bpy)2(μ2-benz)2(benz)2]n, (benz = benzoate) (RIPSUF; Zhang et al., 2007[Zhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276-1280.]), while a normal 1D zigzag chain-like structure has been found for [Co2(benz)4(4,4′-bpy)2]n (RIPSUF01; Song et al., 2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]).

5. Synthesis and crystallization

A solution of 4,4′-bpy (0.1562 g, 1.0 mmol) in MeOH (5 mL) was slowly added into a solution of Co(NO3)2·6H2O (0.2910 g, 1.0 mmol) in a 4:1 mixture of methanol and water (10 mL). The resulting solution was stirred for 20 min. Next, a solution of 2-OHbenzH (0.1382 g, 1.0 mmol) in methanol (5 mL) was slowly added dropwise and stirred over a period of 15 min. After that, the mixture was filtered. The filtered solution was left to stand without disturbance and allowed to slowly evaporate in the air. After five days, red crystals suitable for single crystal X-ray diffraction were obtained [56.18% yield based on cobalt(II) salt]. Elemental analysis; calculated for C53H42Co2N5O13: C 59.06, H 4.21, N 6.50%; found: C 59.14, H 3.99, N 6.41%. IR (KBr, ν/cm−1): 3087s, 1595s, 1485s, 1460s, 1459s, 1413m, 1389s, 1359s, 1308w, 1252m, 1218m, 1143w, 1068w, 1029w, 871w, 814s, 749s, 701w, 671w, 633w, 530w.

The IR spectrum of the title compound (see Fig. S1 in the supporting information) shows a characteristic broad peak centered at 3087 cm−1, which is assigned to OH stretching vibrations of the water mol­ecule and the hydroxyl groups of 2-OHbenz. Strong and sharp peaks at 1595 and 1485 cm−1 can be assigned as the asymmetric and symmetric COO stretching vibrations of the chelating 2-OHbenz ligands, respectively. Peaks in the region of 600–1000 cm−1 are assigned to CH bending of the aromatic rings in the ligands (Zhu et al., 2016[Zhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87-96.]).

The solid-state electronic spectrum of the title compound (Fig. S2) shows two broad bands in the visible region with the main peak centered about 515 nm (19.42 kK), which can be assigned to the ν3: 4T1g4T1g(P) transition. There is a small peak as a shoulder at around 655 nm (15.27 kK), assigned to the ν2: 4T1g4A2g transition and a broad band centered about 1095 nm (13.24 kK), which can be assigned to the ν1: 4T1g4T2g transition. The characteristic bands of this electronic spectrum correspond to a distorted octa­hedral geometry for CoII compounds as confirmed by the X-ray structure (Piromchom et al., 2014[Piromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). Inorg. Chem. Commun. 40, 59-61.]).

The PXRD pattern of the title compound (Fig. S3) was used to check the phase purity of the bulk sample in the solid state. The measured PXRD pattern of the title compound closely matches the simulated pattern generated from the single-crystal X-ray diffraction data, confirming the title compound is pure.

The TGA curve shown in (Fig. S4) demonstrates the thermal stability of the title compound up to 160°C. The first weight-loss step of 27.37% is observed from 160 to 277°C and can be attributed to the loss of coordinated water and two 2-OHbenz mol­ecules. The next step weight-loss step of 25.7% observed from 277 to 356°C corresponds to the loss of a coordinated 2-OHbenz mol­ecule. Finally, the weight loss of about 36.33% from 356 to 520°C can be assigned to the removal of two and half of the 4,4′-bpy ligands. The residual product is assumed to be CoO.

The solid-state photoluminescent properties of the title compound and free ligands were investigated at room temperature. As shown in Fig. S5, the emission spectra of the free ligands 4,4′-bpy and 2-OHbenzH (λex = 340 nm) exhibit strong emission bands at 425 and 439 nm, respectively. However, no detectable emission can be observed for the title compound (λex = 340 nm). This complete PL quenching is the result of the low energy dd transitions in the partially filled metal ion centers found for CoII compounds described above and reported elsewhere (Yang et al., 2012[Yang, J., Shen, L., Yang, G.-W., Li, Q.-Y., Shen, W., Jin, J.-N., Zhao, J.-J. & Dai, J. (2012). J. Solid State Chem. 186, 124-133.]; Zhu et al., 2014[Zhu, D., Tian, H., Li, F., Xie, J., Zhang, P., Zou, J., Zhao, L., Zhang, F., Yang, G. & Li, Q. (2014). J. Inorg. Organomet. Polym. 24, 1103-1109.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and the Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in a difference electron-density map, and were refined with bond-length restraints of O—H = 0.84 (1) Å.

Table 3
Experimental details

Crystal data
Chemical formula [Co2(C7H5O3)4(C10H8N2)2.5(H2O)]
Mr 1074.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.8832 (18), 11.4742 (19), 19.905 (3)
α, β, γ (°) 74.295 (5), 89.791 (5), 88.502 (6)
V3) 2392.0 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.32 × 0.24 × 0.2
 
Data collection
Diffractometer Bruker D8 Quest CMOS Photon II
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 60283, 9771, 7780
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.05
No. of reflections 9771
No. of parameters 682
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[(4,4'-bipyridine-κN)(µ-2-hydroxybenzoato-κ2O:O')(2-hydroxybenzoato-κ2O,O')cobalt(II)]-µ-4,4'-bipyridine-κ2N:N'-[aquahemi(µ-4,4'-bipyridine-κ2N:N')(2-hydroxybenzoato-κO)(2-hydroxybenzoato-κ2O,O')cobalt(II)] top
Crystal data top
[Co2(C7H5O3)4(C10H8N2)2.5(H2O)]Z = 2
Mr = 1074.77F(000) = 1106
Triclinic, P1Dx = 1.492 Mg m3
a = 10.8832 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4742 (19) ÅCell parameters from 9918 reflections
c = 19.905 (3) Åθ = 3.1–28.2°
α = 74.295 (5)°µ = 0.77 mm1
β = 89.791 (5)°T = 296 K
γ = 88.502 (6)°Block, red
V = 2392.0 (7) Å30.32 × 0.24 × 0.2 mm
Data collection top
Bruker D8 Quest CMOS Photon II
diffractometer
9771 independent reflections
Radiation source: sealed x-ray tube, Mo7780 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.39 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.677, Tmax = 0.746l = 2424
60283 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.8816P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
9771 reflectionsΔρmax = 0.43 e Å3
682 parametersΔρmin = 0.29 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.38320 (2)0.10363 (2)0.54244 (2)0.02725 (7)
Co20.06977 (2)0.72632 (2)0.02018 (2)0.03175 (8)
O10.40605 (13)0.25879 (14)0.58404 (9)0.0484 (4)
O20.23200 (13)0.16721 (13)0.59633 (8)0.0409 (3)
O30.4298 (2)0.4553 (2)0.61905 (15)0.0980 (9)
H30.443 (4)0.398 (2)0.6003 (19)0.121 (14)*
O40.55720 (12)0.11808 (13)0.50300 (8)0.0402 (3)
O50.72507 (12)0.03072 (12)0.47519 (7)0.0344 (3)
O60.93656 (14)0.12657 (17)0.47886 (11)0.0602 (5)
H80.888 (2)0.077 (2)0.4705 (14)0.071 (9)*
O70.11751 (13)0.67237 (13)0.06159 (7)0.0406 (3)
O80.03026 (13)0.83546 (13)0.07254 (8)0.0438 (4)
O90.3306 (2)0.6158 (2)0.11428 (13)0.0875 (7)
H130.2608 (17)0.610 (3)0.0971 (18)0.106 (13)*
O100.00286 (14)0.81713 (14)0.07657 (7)0.0454 (4)
O110.10789 (16)0.73590 (15)0.14789 (8)0.0543 (4)
O120.08458 (17)0.81806 (18)0.27880 (9)0.0592 (5)
H180.107 (3)0.775 (2)0.2386 (9)0.088 (11)*
O130.13809 (16)0.59112 (14)0.02174 (8)0.0441 (4)
H260.135 (3)0.623 (2)0.0648 (6)0.078 (10)*
H270.2003 (16)0.549 (2)0.0066 (13)0.063 (9)*
N10.44634 (15)0.01847 (15)0.63825 (8)0.0339 (4)
N20.66774 (18)0.43591 (18)0.94863 (9)0.0474 (5)
N30.32399 (14)0.22088 (14)0.44421 (8)0.0311 (3)
N40.13327 (15)0.61430 (14)0.11989 (8)0.0332 (4)
N50.22979 (15)0.83133 (15)0.00504 (9)0.0357 (4)
C10.56246 (19)0.0201 (2)0.66090 (11)0.0418 (5)
H10.6165180.0353410.6343470.050*
C20.60535 (19)0.0993 (2)0.72121 (11)0.0417 (5)
H20.6870500.0972340.7342680.050*
C30.52771 (18)0.18256 (17)0.76293 (10)0.0331 (4)
C40.40701 (18)0.18020 (19)0.73970 (11)0.0393 (5)
H40.3508220.2338330.7656560.047*
C50.37092 (18)0.09847 (19)0.67830 (11)0.0393 (5)
H50.2897950.0988110.6638570.047*
C60.7144 (2)0.3259 (2)0.92367 (11)0.0451 (5)
H60.7803260.3053130.9473740.054*
C70.67096 (19)0.24166 (19)0.86514 (11)0.0386 (5)
H70.7072400.1665640.8502640.046*
C80.57241 (18)0.26897 (18)0.82815 (10)0.0342 (4)
C90.5219 (2)0.3816 (2)0.85489 (11)0.0444 (5)
H9A0.4545410.4039620.8330140.053*
C100.5716 (2)0.4605 (2)0.91394 (12)0.0514 (6)
H100.5359300.5355690.9306570.062*
C110.39719 (18)0.30579 (18)0.40608 (11)0.0373 (5)
H110.4756410.3121090.4229130.045*
C120.36219 (18)0.38385 (18)0.34346 (11)0.0367 (5)
H120.4167360.4407940.3187900.044*
C130.24535 (17)0.37796 (17)0.31686 (10)0.0299 (4)
C140.16882 (17)0.29091 (18)0.35696 (10)0.0365 (5)
H140.0894330.2836000.3417280.044*
C150.21083 (17)0.21556 (19)0.41926 (10)0.0366 (5)
H150.1580010.1581960.4452610.044*
C160.20919 (19)0.65071 (18)0.16245 (10)0.0376 (5)
H160.2377710.7292460.1481370.045*
C170.24722 (19)0.57804 (18)0.22630 (10)0.0372 (5)
H170.3001670.6076700.2539750.045*
C180.20611 (16)0.45990 (17)0.24934 (10)0.0301 (4)
C190.12639 (18)0.42283 (18)0.20528 (10)0.0345 (4)
H190.0958610.3449870.2183310.041*
C200.09266 (18)0.50133 (18)0.14235 (10)0.0361 (4)
H200.0388140.4744990.1139010.043*
C210.3388 (2)0.7903 (2)0.01008 (16)0.0613 (7)
H210.3432650.7151880.0195100.074*
C220.4454 (2)0.8530 (2)0.01252 (17)0.0668 (8)
H220.5193500.8199010.0233100.080*
C230.44329 (18)0.96475 (18)0.00095 (11)0.0361 (4)
C240.32980 (19)1.00692 (19)0.01651 (12)0.0419 (5)
H240.3229451.0814780.0264490.050*
C250.22646 (19)0.93955 (19)0.01745 (12)0.0416 (5)
H250.1510310.9712180.0272000.050*
C260.29583 (18)0.25023 (18)0.60563 (10)0.0342 (4)
C270.24654 (18)0.33984 (19)0.64101 (11)0.0382 (5)
C280.3152 (2)0.4384 (2)0.64491 (15)0.0584 (7)
C290.2655 (3)0.5232 (3)0.67603 (19)0.0848 (10)
H290.3098330.5909620.6769960.102*
C300.1514 (3)0.5073 (3)0.7053 (2)0.0926 (11)
H300.1190790.5638850.7267260.111*
C310.0841 (3)0.4094 (3)0.7035 (2)0.0870 (11)
H310.0069360.3988070.7240940.104*
C320.1313 (2)0.3262 (2)0.67084 (14)0.0585 (7)
H320.0849070.2602270.6689290.070*
C330.67051 (16)0.11563 (17)0.49469 (9)0.0278 (4)
C340.74627 (17)0.21332 (16)0.50758 (9)0.0289 (4)
C350.87402 (18)0.21315 (18)0.50003 (11)0.0368 (5)
C360.9411 (2)0.3034 (2)0.51642 (14)0.0539 (6)
H361.0261950.3033080.5119120.065*
C370.8821 (2)0.3925 (2)0.53918 (14)0.0581 (7)
H370.9278650.4519840.5503890.070*
C380.7565 (2)0.3953 (2)0.54571 (15)0.0600 (7)
H380.7171580.4571270.5602910.072*
C390.6895 (2)0.3055 (2)0.53040 (13)0.0454 (5)
H390.6044910.3065890.5354360.055*
C400.11856 (18)0.76483 (18)0.08531 (10)0.0351 (4)
C410.2240 (2)0.7879 (2)0.12733 (11)0.0417 (5)
C420.3247 (2)0.7133 (3)0.13934 (14)0.0596 (7)
C430.4237 (3)0.7394 (4)0.17739 (19)0.0996 (12)
H430.4918880.6904370.1846630.119*
C440.4210 (4)0.8365 (5)0.2040 (2)0.1126 (15)
H440.4870790.8523230.2303150.135*
C450.3231 (4)0.9112 (4)0.19291 (19)0.1003 (12)
H450.3229020.9779120.2109640.120*
C460.2246 (3)0.8869 (3)0.15467 (14)0.0654 (7)
H460.1576870.9375170.1471310.079*
C470.03259 (19)0.81423 (19)0.13648 (11)0.0389 (5)
C480.01849 (19)0.90816 (18)0.19807 (10)0.0369 (5)
C490.0107 (2)0.9058 (2)0.26616 (11)0.0408 (5)
C500.0378 (2)0.9945 (2)0.32279 (12)0.0532 (6)
H500.0182130.9925670.3680020.064*
C510.1141 (3)1.0846 (2)0.31211 (13)0.0557 (6)
H510.1464841.1433410.3501120.067*
C520.1430 (3)1.0884 (2)0.24526 (13)0.0585 (7)
H520.1944111.1500240.2382050.070*
C530.0959 (2)1.0013 (2)0.18913 (12)0.0492 (6)
H530.1161541.0045310.1442230.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02255 (13)0.02972 (14)0.03064 (14)0.00244 (10)0.00050 (10)0.01000 (11)
Co20.03023 (15)0.03340 (15)0.03044 (14)0.00662 (11)0.00272 (11)0.00606 (11)
O10.0320 (8)0.0574 (10)0.0669 (10)0.0087 (7)0.0140 (7)0.0352 (8)
O20.0345 (8)0.0414 (8)0.0535 (9)0.0060 (6)0.0036 (7)0.0236 (7)
O30.0613 (13)0.0969 (17)0.171 (2)0.0421 (12)0.0432 (14)0.0927 (18)
O40.0227 (7)0.0500 (9)0.0494 (9)0.0074 (6)0.0033 (6)0.0153 (7)
O50.0289 (7)0.0325 (7)0.0456 (8)0.0027 (6)0.0020 (6)0.0167 (6)
O60.0283 (8)0.0663 (11)0.1028 (15)0.0096 (8)0.0154 (9)0.0514 (11)
O70.0401 (8)0.0434 (8)0.0424 (8)0.0058 (6)0.0009 (6)0.0182 (7)
O80.0373 (8)0.0409 (8)0.0534 (9)0.0087 (7)0.0015 (7)0.0127 (7)
O90.0702 (15)0.1036 (17)0.1071 (18)0.0508 (13)0.0321 (13)0.0558 (15)
O100.0473 (9)0.0540 (9)0.0305 (8)0.0016 (7)0.0051 (7)0.0036 (7)
O110.0608 (11)0.0557 (10)0.0417 (9)0.0114 (8)0.0053 (8)0.0064 (8)
O120.0549 (11)0.0758 (13)0.0468 (10)0.0011 (9)0.0071 (9)0.0164 (10)
O130.0557 (10)0.0367 (8)0.0393 (9)0.0024 (7)0.0089 (8)0.0092 (7)
N10.0301 (9)0.0372 (9)0.0343 (9)0.0013 (7)0.0024 (7)0.0094 (7)
N20.0479 (11)0.0517 (12)0.0379 (10)0.0049 (9)0.0037 (9)0.0049 (9)
N30.0268 (8)0.0334 (9)0.0318 (8)0.0035 (7)0.0002 (7)0.0064 (7)
N40.0327 (9)0.0344 (9)0.0316 (8)0.0037 (7)0.0008 (7)0.0070 (7)
N50.0326 (9)0.0345 (9)0.0385 (9)0.0076 (7)0.0018 (7)0.0068 (7)
C10.0350 (11)0.0470 (13)0.0396 (11)0.0116 (9)0.0019 (9)0.0040 (10)
C20.0302 (11)0.0512 (13)0.0409 (12)0.0069 (9)0.0067 (9)0.0073 (10)
C30.0331 (10)0.0342 (10)0.0336 (10)0.0006 (8)0.0004 (8)0.0118 (8)
C40.0303 (11)0.0445 (12)0.0394 (11)0.0076 (9)0.0015 (9)0.0044 (9)
C50.0275 (10)0.0487 (13)0.0388 (11)0.0029 (9)0.0024 (9)0.0067 (10)
C60.0419 (12)0.0562 (14)0.0381 (12)0.0028 (10)0.0074 (10)0.0149 (11)
C70.0382 (11)0.0393 (11)0.0386 (11)0.0034 (9)0.0020 (9)0.0108 (9)
C80.0309 (10)0.0381 (11)0.0345 (10)0.0023 (8)0.0007 (8)0.0115 (9)
C90.0421 (12)0.0433 (12)0.0436 (12)0.0082 (10)0.0071 (10)0.0037 (10)
C100.0566 (15)0.0435 (13)0.0474 (13)0.0068 (11)0.0021 (11)0.0002 (11)
C110.0298 (10)0.0392 (11)0.0411 (11)0.0077 (8)0.0068 (9)0.0072 (9)
C120.0310 (10)0.0360 (11)0.0396 (11)0.0102 (8)0.0012 (9)0.0034 (9)
C130.0275 (10)0.0308 (10)0.0324 (10)0.0008 (8)0.0002 (8)0.0099 (8)
C140.0230 (9)0.0440 (12)0.0393 (11)0.0046 (8)0.0035 (8)0.0055 (9)
C150.0248 (10)0.0434 (12)0.0369 (11)0.0058 (8)0.0024 (8)0.0023 (9)
C160.0434 (12)0.0323 (11)0.0352 (11)0.0083 (9)0.0019 (9)0.0053 (9)
C170.0386 (11)0.0370 (11)0.0366 (11)0.0077 (9)0.0060 (9)0.0105 (9)
C180.0257 (9)0.0331 (10)0.0312 (10)0.0001 (8)0.0031 (8)0.0083 (8)
C190.0350 (11)0.0317 (10)0.0358 (10)0.0074 (8)0.0002 (8)0.0070 (8)
C200.0355 (11)0.0389 (11)0.0339 (10)0.0087 (9)0.0038 (8)0.0092 (9)
C210.0431 (14)0.0479 (14)0.106 (2)0.0135 (11)0.0171 (14)0.0420 (15)
C220.0359 (13)0.0581 (16)0.122 (2)0.0137 (11)0.0255 (14)0.0501 (17)
C230.0341 (11)0.0350 (11)0.0393 (11)0.0083 (8)0.0037 (9)0.0094 (9)
C240.0360 (11)0.0338 (11)0.0580 (14)0.0054 (9)0.0032 (10)0.0158 (10)
C250.0325 (11)0.0388 (12)0.0526 (13)0.0029 (9)0.0028 (10)0.0109 (10)
C260.0299 (10)0.0381 (11)0.0357 (10)0.0003 (8)0.0004 (8)0.0121 (9)
C270.0330 (11)0.0404 (12)0.0462 (12)0.0006 (9)0.0023 (9)0.0201 (10)
C280.0446 (14)0.0581 (15)0.0853 (19)0.0104 (11)0.0096 (13)0.0407 (14)
C290.078 (2)0.073 (2)0.129 (3)0.0116 (16)0.013 (2)0.071 (2)
C300.078 (2)0.091 (2)0.138 (3)0.0048 (18)0.023 (2)0.081 (2)
C310.0585 (18)0.097 (2)0.128 (3)0.0012 (17)0.0335 (19)0.070 (2)
C320.0396 (13)0.0647 (16)0.0810 (19)0.0055 (12)0.0138 (13)0.0363 (15)
C330.0254 (10)0.0308 (10)0.0246 (9)0.0042 (7)0.0008 (7)0.0029 (7)
C340.0272 (9)0.0293 (10)0.0302 (10)0.0034 (7)0.0011 (8)0.0079 (8)
C350.0286 (10)0.0380 (11)0.0457 (12)0.0073 (8)0.0062 (9)0.0139 (9)
C360.0348 (12)0.0587 (15)0.0755 (17)0.0201 (11)0.0094 (12)0.0292 (13)
C370.0599 (16)0.0484 (14)0.0749 (18)0.0248 (12)0.0078 (13)0.0301 (13)
C380.0595 (16)0.0454 (14)0.087 (2)0.0055 (12)0.0106 (14)0.0386 (14)
C390.0342 (11)0.0426 (12)0.0652 (15)0.0023 (9)0.0045 (10)0.0242 (11)
C400.0346 (11)0.0376 (11)0.0318 (10)0.0014 (9)0.0060 (8)0.0071 (9)
C410.0383 (12)0.0491 (13)0.0380 (11)0.0010 (10)0.0012 (9)0.0125 (10)
C420.0449 (14)0.084 (2)0.0532 (15)0.0119 (13)0.0088 (12)0.0232 (14)
C430.0530 (19)0.157 (4)0.094 (3)0.018 (2)0.0313 (18)0.042 (3)
C440.087 (3)0.166 (4)0.095 (3)0.029 (3)0.030 (2)0.056 (3)
C450.116 (3)0.112 (3)0.089 (3)0.033 (3)0.010 (2)0.058 (2)
C460.0744 (19)0.0665 (18)0.0634 (17)0.0101 (14)0.0003 (14)0.0325 (14)
C470.0361 (11)0.0408 (12)0.0378 (12)0.0121 (9)0.0052 (9)0.0061 (9)
C480.0381 (11)0.0371 (11)0.0341 (10)0.0133 (9)0.0041 (9)0.0057 (9)
C490.0376 (11)0.0456 (12)0.0382 (11)0.0123 (9)0.0011 (9)0.0088 (10)
C500.0615 (16)0.0614 (16)0.0324 (12)0.0167 (13)0.0008 (11)0.0041 (11)
C510.0699 (17)0.0436 (14)0.0453 (14)0.0119 (12)0.0150 (12)0.0034 (11)
C520.0750 (18)0.0418 (13)0.0565 (15)0.0047 (12)0.0135 (13)0.0100 (12)
C530.0622 (15)0.0460 (13)0.0398 (12)0.0014 (11)0.0079 (11)0.0124 (10)
Geometric parameters (Å, º) top
Co1—O12.1772 (15)C14—H140.9300
Co1—O22.1769 (14)C14—C151.377 (3)
Co1—O42.0408 (14)C15—H150.9300
Co1—O5i2.0686 (13)C16—H160.9300
Co1—N12.1412 (16)C16—C171.376 (3)
Co1—N32.1421 (16)C17—H170.9300
Co2—O72.2348 (15)C17—C181.393 (3)
Co2—O82.1135 (15)C18—C191.389 (3)
Co2—O102.0739 (14)C19—H190.9300
Co2—O132.0717 (16)C19—C201.375 (3)
Co2—N42.1568 (16)C20—H200.9300
Co2—N52.1177 (16)C21—H210.9300
Co2—C402.514 (2)C21—C221.375 (3)
O1—C261.270 (2)C22—H220.9300
O2—C261.247 (2)C22—C231.379 (3)
O3—H30.845 (10)C23—C23ii1.488 (4)
O3—C281.346 (3)C23—C241.379 (3)
O4—C331.244 (2)C24—H240.9300
O5—C331.275 (2)C24—C251.378 (3)
O6—H80.838 (10)C25—H250.9300
O6—C351.348 (3)C26—C271.484 (3)
O7—C401.272 (2)C27—C281.391 (3)
O8—C401.254 (2)C27—C321.380 (3)
O9—H130.839 (10)C28—C291.386 (4)
O9—C421.346 (3)C29—H290.9300
O10—C471.261 (3)C29—C301.365 (4)
O11—C471.266 (3)C30—H300.9300
O12—H180.853 (10)C30—C311.366 (4)
O12—C491.348 (3)C31—H310.9300
O13—H260.837 (10)C31—C321.379 (4)
O13—H270.832 (10)C32—H320.9300
N1—C11.341 (3)C33—C341.486 (3)
N1—C51.338 (3)C34—C351.398 (3)
N2—C61.338 (3)C34—C391.390 (3)
N2—C101.333 (3)C35—C361.392 (3)
N3—C111.340 (2)C36—H360.9300
N3—C151.339 (2)C36—C371.369 (3)
N4—C161.338 (3)C37—H370.9300
N4—C201.338 (2)C37—C381.373 (4)
N5—C211.329 (3)C38—H380.9300
N5—C251.330 (3)C38—C391.378 (3)
C1—H10.9300C39—H390.9300
C1—C21.370 (3)C40—C411.478 (3)
C2—H20.9300C41—C421.388 (3)
C2—C31.387 (3)C41—C461.386 (3)
C3—C41.391 (3)C42—C431.387 (4)
C3—C81.479 (3)C43—H430.9300
C4—H40.9300C43—C441.358 (6)
C4—C51.375 (3)C44—H440.9300
C5—H50.9300C44—C451.364 (6)
C6—H60.9300C45—H450.9300
C6—C71.373 (3)C45—C461.379 (4)
C7—H70.9300C46—H460.9300
C7—C81.392 (3)C47—C481.494 (3)
C8—C91.385 (3)C48—C491.398 (3)
C9—H9A0.9300C48—C531.392 (3)
C9—C101.377 (3)C49—C501.393 (3)
C10—H100.9300C50—H500.9300
C11—H110.9300C50—C511.369 (4)
C11—C121.372 (3)C51—H510.9300
C12—H120.9300C51—C521.378 (4)
C12—C131.390 (3)C52—H520.9300
C13—C141.391 (3)C52—C531.372 (3)
C13—C181.474 (3)C53—H530.9300
O2—Co1—O159.82 (5)C18—C17—H17120.1
O4—Co1—O191.69 (6)C17—C18—C13121.87 (17)
O4—Co1—O2151.47 (6)C19—C18—C13121.51 (17)
O4—Co1—O5i117.97 (6)C19—C18—C17116.62 (17)
O4—Co1—N191.32 (6)C18—C19—H19120.0
O4—Co1—N387.16 (6)C20—C19—C18119.94 (18)
O5i—Co1—O1150.29 (5)C20—C19—H19120.0
O5i—Co1—O290.48 (5)N4—C20—C19123.42 (18)
O5i—Co1—N189.68 (6)N4—C20—H20118.3
O5i—Co1—N389.31 (6)C19—C20—H20118.3
N1—Co1—O191.38 (6)N5—C21—H21118.3
N1—Co1—O290.90 (6)N5—C21—C22123.4 (2)
N1—Co1—N3177.53 (6)C22—C21—H21118.3
N3—Co1—O190.61 (6)C21—C22—H22119.8
N3—Co1—O291.37 (6)C21—C22—C23120.4 (2)
O7—Co2—C4030.36 (6)C23—C22—H22119.8
O8—Co2—O760.20 (5)C22—C23—C23ii122.0 (2)
O8—Co2—N489.11 (6)C22—C23—C24115.94 (19)
O8—Co2—N595.55 (6)C24—C23—C23ii122.1 (2)
O8—Co2—C4029.87 (6)C23—C24—H24119.7
O10—Co2—O791.19 (6)C25—C24—C23120.6 (2)
O10—Co2—O893.29 (6)C25—C24—H24119.7
O10—Co2—N4173.40 (6)N5—C25—C24122.9 (2)
O10—Co2—N593.17 (6)N5—C25—H25118.5
O10—Co2—C4093.68 (6)C24—C25—H25118.5
O13—Co2—O7107.21 (6)O1—C26—C27118.92 (18)
O13—Co2—O8167.09 (6)O2—C26—O1119.20 (18)
O13—Co2—O1089.66 (6)O2—C26—C27121.87 (18)
O13—Co2—N486.68 (6)C28—C27—C26120.90 (19)
O13—Co2—N596.83 (7)C32—C27—C26120.2 (2)
O13—Co2—C40137.40 (7)C32—C27—C28118.9 (2)
N4—Co2—O784.66 (6)O3—C28—C27122.1 (2)
N4—Co2—C4085.34 (6)O3—C28—C29118.0 (2)
N5—Co2—O7155.58 (6)C29—C28—C27119.8 (2)
N5—Co2—N492.71 (6)C28—C29—H29120.0
N5—Co2—C40125.28 (7)C30—C29—C28119.9 (3)
C26—O1—Co190.17 (12)C30—C29—H29120.0
C26—O2—Co190.79 (12)C29—C30—H30119.6
C28—O3—H3105 (3)C29—C30—C31120.9 (3)
C33—O4—Co1165.49 (14)C31—C30—H30119.6
C33—O5—Co1i117.07 (11)C30—C31—H31120.2
C35—O6—H8110 (2)C30—C31—C32119.6 (3)
C40—O7—Co287.04 (12)C32—C31—H31120.2
C40—O8—Co293.04 (12)C27—C32—H32119.6
C42—O9—H13104 (3)C31—C32—C27120.7 (2)
C47—O10—Co2129.12 (15)C31—C32—H32119.6
C49—O12—H18105 (2)O4—C33—O5121.83 (17)
Co2—O13—H26103 (2)O4—C33—C34120.09 (17)
Co2—O13—H27123.7 (19)O5—C33—C34118.09 (16)
H26—O13—H27117 (3)C35—C34—C33122.02 (17)
C1—N1—Co1122.34 (13)C39—C34—C33119.26 (17)
C5—N1—Co1121.01 (13)C39—C34—C35118.67 (18)
C5—N1—C1116.64 (17)O6—C35—C34122.54 (18)
C10—N2—C6115.94 (19)O6—C35—C36117.85 (19)
C11—N3—Co1121.43 (13)C36—C35—C34119.59 (19)
C15—N3—Co1121.58 (13)C35—C36—H36119.9
C15—N3—C11116.95 (16)C37—C36—C35120.1 (2)
C16—N4—Co2124.46 (13)C37—C36—H36119.9
C16—N4—C20116.83 (17)C36—C37—H37119.5
C20—N4—Co2118.69 (13)C36—C37—C38121.1 (2)
C21—N5—Co2123.24 (14)C38—C37—H37119.5
C21—N5—C25116.75 (18)C37—C38—H38120.4
C25—N5—Co2119.69 (14)C37—C38—C39119.2 (2)
N1—C1—H1118.4C39—C38—H38120.4
N1—C1—C2123.22 (19)C34—C39—H39119.3
C2—C1—H1118.4C38—C39—C34121.3 (2)
C1—C2—H2119.8C38—C39—H39119.3
C1—C2—C3120.44 (19)O7—C40—Co262.59 (11)
C3—C2—H2119.8O7—C40—C41119.59 (18)
C2—C3—C4116.31 (18)O8—C40—Co257.09 (11)
C2—C3—C8121.21 (18)O8—C40—O7119.58 (19)
C4—C3—C8122.48 (18)O8—C40—C41120.83 (19)
C3—C4—H4120.0C41—C40—Co2176.31 (14)
C5—C4—C3119.91 (19)C42—C41—C40121.4 (2)
C5—C4—H4120.0C46—C41—C40120.0 (2)
N1—C5—C4123.47 (18)C46—C41—C42118.6 (2)
N1—C5—H5118.3O9—C42—C41121.9 (2)
C4—C5—H5118.3O9—C42—C43118.2 (3)
N2—C6—H6118.0C43—C42—C41120.0 (3)
N2—C6—C7124.0 (2)C42—C43—H43120.0
C7—C6—H6118.0C44—C43—C42120.0 (3)
C6—C7—H7120.1C44—C43—H43120.0
C6—C7—C8119.8 (2)C43—C44—H44119.4
C8—C7—H7120.1C43—C44—C45121.1 (3)
C7—C8—C3121.04 (18)C45—C44—H44119.4
C9—C8—C3122.60 (18)C44—C45—H45120.3
C9—C8—C7116.33 (19)C44—C45—C46119.5 (3)
C8—C9—H9A120.1C46—C45—H45120.3
C10—C9—C8119.8 (2)C41—C46—H46119.6
C10—C9—H9A120.1C45—C46—C41120.8 (3)
N2—C10—C9124.1 (2)C45—C46—H46119.6
N2—C10—H10118.0O10—C47—O11124.1 (2)
C9—C10—H10118.0O10—C47—C48118.1 (2)
N3—C11—H11118.4O11—C47—C48117.77 (19)
N3—C11—C12123.28 (18)C49—C48—C47121.1 (2)
C12—C11—H11118.4C53—C48—C47120.76 (19)
C11—C12—H12120.0C53—C48—C49118.1 (2)
C11—C12—C13120.09 (18)O12—C49—C48121.4 (2)
C13—C12—H12120.0O12—C49—C50118.5 (2)
C12—C13—C14116.58 (17)C50—C49—C48120.1 (2)
C12—C13—C18121.10 (17)C49—C50—H50119.9
C14—C13—C18122.32 (17)C51—C50—C49120.2 (2)
C13—C14—H14120.1C51—C50—H50119.9
C15—C14—C13119.89 (17)C50—C51—H51119.9
C15—C14—H14120.1C50—C51—C52120.3 (2)
N3—C15—C14123.20 (18)C52—C51—H51119.9
N3—C15—H15118.4C51—C52—H52120.0
C14—C15—H15118.4C53—C52—C51120.0 (2)
N4—C16—H16118.3C53—C52—H52120.0
N4—C16—C17123.43 (18)C48—C53—H53119.3
C17—C16—H16118.3C52—C53—C48121.3 (2)
C16—C17—H17120.1C52—C53—H53119.3
C16—C17—C18119.76 (18)
Co1—O1—C26—O21.3 (2)C11—N3—C15—C141.1 (3)
Co1—O1—C26—C27178.48 (17)C11—C12—C13—C140.4 (3)
Co1—O2—C26—O11.3 (2)C11—C12—C13—C18179.31 (19)
Co1—O2—C26—C27178.48 (18)C12—C13—C14—C150.5 (3)
Co1—O4—C33—O598.2 (6)C12—C13—C18—C1733.3 (3)
Co1—O4—C33—C3481.8 (6)C12—C13—C18—C19146.4 (2)
Co1i—O5—C33—O40.1 (2)C13—C14—C15—N30.2 (3)
Co1i—O5—C33—C34179.90 (12)C13—C18—C19—C20179.36 (18)
Co1—N1—C1—C2178.47 (17)C14—C13—C18—C17147.0 (2)
Co1—N1—C5—C4178.93 (16)C14—C13—C18—C1933.2 (3)
Co1—N3—C11—C12178.99 (16)C15—N3—C11—C121.2 (3)
Co1—N3—C15—C14178.79 (16)C16—N4—C20—C190.9 (3)
Co2—O7—C40—O83.61 (18)C16—C17—C18—C13179.20 (18)
Co2—O7—C40—C41176.61 (17)C16—C17—C18—C190.6 (3)
Co2—O8—C40—O73.81 (19)C17—C18—C19—C200.4 (3)
Co2—O8—C40—C41176.41 (16)C18—C13—C14—C15179.13 (19)
Co2—O10—C47—O1113.9 (3)C18—C19—C20—N40.4 (3)
Co2—O10—C47—C48166.89 (13)C20—N4—C16—C170.8 (3)
Co2—N4—C16—C17179.12 (15)C21—N5—C25—C241.3 (3)
Co2—N4—C20—C19179.40 (16)C21—C22—C23—C23ii179.8 (3)
Co2—N5—C21—C22172.7 (2)C21—C22—C23—C240.0 (4)
Co2—N5—C25—C24172.38 (17)C22—C23—C24—C250.6 (3)
O1—C26—C27—C286.0 (3)C23ii—C23—C24—C25179.7 (2)
O1—C26—C27—C32173.9 (2)C23—C24—C25—N51.3 (4)
O2—C26—C27—C28173.8 (2)C25—N5—C21—C220.8 (4)
O2—C26—C27—C326.4 (3)C26—C27—C28—O32.1 (4)
O3—C28—C29—C30177.5 (3)C26—C27—C28—C29177.7 (3)
O4—C33—C34—C35178.91 (18)C26—C27—C32—C31179.6 (3)
O4—C33—C34—C391.4 (3)C27—C28—C29—C302.7 (5)
O5—C33—C34—C351.0 (3)C28—C27—C32—C310.6 (4)
O5—C33—C34—C39178.55 (18)C28—C29—C30—C311.0 (6)
O6—C35—C36—C37179.0 (2)C29—C30—C31—C320.9 (6)
O7—C40—C41—C422.6 (3)C30—C31—C32—C271.1 (5)
O7—C40—C41—C46178.6 (2)C32—C27—C28—O3177.8 (3)
O8—C40—C41—C42177.2 (2)C32—C27—C28—C292.5 (4)
O8—C40—C41—C461.7 (3)C33—C34—C35—O61.8 (3)
O9—C42—C43—C44179.5 (4)C33—C34—C35—C36176.5 (2)
O10—C47—C48—C49175.88 (19)C33—C34—C39—C38177.4 (2)
O10—C47—C48—C534.6 (3)C34—C35—C36—C370.6 (4)
O11—C47—C48—C493.4 (3)C35—C34—C39—C380.2 (3)
O11—C47—C48—C53176.1 (2)C35—C36—C37—C380.6 (4)
O12—C49—C50—C51179.4 (2)C36—C37—C38—C391.3 (4)
N1—C1—C2—C30.8 (3)C37—C38—C39—C340.9 (4)
N2—C6—C7—C80.0 (3)C39—C34—C35—O6179.3 (2)
N3—C11—C12—C130.6 (3)C39—C34—C35—C361.0 (3)
N4—C16—C17—C180.0 (3)C40—C41—C42—O91.0 (4)
N5—C21—C22—C230.1 (5)C40—C41—C42—C43178.2 (3)
C1—N1—C5—C40.4 (3)C40—C41—C46—C45178.8 (3)
C1—C2—C3—C40.2 (3)C41—C42—C43—C441.3 (5)
C1—C2—C3—C8179.9 (2)C42—C41—C46—C450.1 (4)
C2—C3—C4—C50.2 (3)C42—C43—C44—C451.3 (7)
C2—C3—C8—C726.8 (3)C43—C44—C45—C460.8 (7)
C2—C3—C8—C9151.4 (2)C44—C45—C46—C410.2 (5)
C3—C4—C5—N10.1 (3)C46—C41—C42—O9179.9 (3)
C3—C8—C9—C10176.7 (2)C46—C41—C42—C430.7 (4)
C4—C3—C8—C7153.5 (2)C47—C48—C49—O120.8 (3)
C4—C3—C8—C928.2 (3)C47—C48—C49—C50179.83 (19)
C5—N1—C1—C20.8 (3)C47—C48—C53—C52179.7 (2)
C6—N2—C10—C91.4 (4)C48—C49—C50—C510.1 (3)
C6—C7—C8—C3176.81 (19)C49—C48—C53—C520.2 (3)
C6—C7—C8—C91.6 (3)C49—C50—C51—C520.3 (4)
C7—C8—C9—C101.6 (3)C50—C51—C52—C530.4 (4)
C8—C3—C4—C5179.44 (19)C51—C52—C53—C480.2 (4)
C8—C9—C10—N20.1 (4)C53—C48—C49—O12179.7 (2)
C10—N2—C6—C71.5 (3)C53—C48—C49—C500.3 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg4, Cg7 and Cg9 are the centroids of the N4/C16–C20, C34–C39 and C48–C53 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.85 (3)1.77 (3)2.553 (3)153 (4)
O6—H8···O50.84 (2)1.86 (2)2.587 (2)145 (2)
O9—H13···O70.84 (2)1.79 (2)2.568 (3)152 (4)
O12—H18···O110.85 (2)1.74 (2)2.531 (2)154 (3)
O13—H26···O110.84 (1)1.82 (2)2.625 (2)160 (2)
O13—H27···N2i0.83 (2)2.05 (2)2.860 (3)167 (2)
C25—H25···O80.932.553.143 (3)122
C39—H39···O10.932.383.271 (3)160
C5—H5···O12iii0.932.593.324 (3)136
C6—H6···O7iv0.932.483.300 (3)147
C12—H12···O3v0.932.583.173 (3)122
C15—H15···O6vi0.932.513.292 (3)142
C2—H2···Cg9iv0.932.953.833 (2)160
C31—H31···Cg4vii0.932.853.681 (4)149
C51—H51···Cg7viii0.932.723.623 (3)165
Symmetry codes: (i) x+1, y, z+1; (iii) x, y1, z+1; (iv) x+1, y1, z+1; (v) x+1, y+1, z+1; (vi) x1, y, z; (vii) x, y+1, z+1; (viii) x1, y+1, z1.
Analysis of short ring interactions (Å) top
Cg(I) and Cg(J) are the centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, N4/C16–C20, N5/C21–C25, C27–C32, C34–C39 and C41–C46 rings, respectively.
Cg(I)Cg(J)Symmetry_Cg(J)Cg(I)···Cg(J)CgI_PerpCgJ_PerpSlippage
Cg1Cg3-x + 1, -y, -z + 13.9651 (13)3.7526 (9)3.6199 (8)1.618
Cg2Cg4-x + 1, -y, -z + 13.6515 (13)3.5063 (9)3.5546 (8)0.836
Cg5Cg8-x, -y+2, -z4.0381 (19)3.5840 (10)3.5978 (13)1.832
Cg6Cg7-x + 1, -y + 1, -z + 14.2986 (18)4.2205 (13)3.9319 (10)1.737
Cg6Cg8x, -z + 1, -z + 13.814 (2)3.7674 (13)3.7372 (14)0.765
 

Acknowledgements

The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Faculty of Science and Technology, Thammasat University (contract No. SciGR7/2563 to N. Wannarit); Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) (grant to K. Chainok, N. Wannarit).

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). CrystEngComm, 9, 394–411.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDzhardimalieva, G. I. & Uflyand, I. E. (2017). RSC Adv. 7, 42242–42288.  Web of Science CrossRef CAS Google Scholar
First citationGu, J., Wen, M., Cai, Y., Shi, Z., Nesterov, D. S., Kirillova, M. V. & Kirillov, A. M. (2019). Inorg. Chem. 58, 5875–5885.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHorike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. (2020). Angew. Chem. Int. Ed. 59, 6652–6664.  CrossRef CAS Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhrizanforova, V., Shekurov, R., Miluykov, V., Khrizanforov, M., Bon, V., Kaskel, S., Gubaidullin, A., Sinyashin, O. & Budnikova, Y. (2020). Dalton Trans. 49, 2794–2802.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLoukopoulos, E. & Kostakis, G. E. (2018). J. Coord. Chem. 71, 371–410.  Web of Science CrossRef CAS Google Scholar
First citationNoro, S.-I., Kitagawa, S., Akutagawa, T. & Nakamura, T. (2009). Prog. Polym. Sci. 34, 240–279.  Web of Science CrossRef CAS Google Scholar
First citationPiromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). Inorg. Chem. Commun. 40, 59–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, M.-L., Chen, H.-J. & Chen, X.-M. (2000). Inorg. Chem. 39, 2235–2238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, J., Shen, L., Yang, G.-W., Li, Q.-Y., Shen, W., Jin, J.-N., Zhao, J.-J. & Dai, J. (2012). J. Solid State Chem. 186, 124–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, D., Tian, H., Li, F., Xie, J., Zhang, P., Zou, J., Zhao, L., Zhang, F., Yang, G. & Li, Q. (2014). J. Inorg. Organomet. Polym. 24, 1103–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). Transition Met. Chem. 41, 87–96.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds