research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystallographic characterization of a mononuclear cobalt(III) complex possessing both thiol­ate and thio­ether donors: reactivity of an thiol­ate-bridged penta­nuclear Co2Ag3 complex with iodo­methane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 3 April 2017; accepted 6 April 2017; online 11 April 2017)

Treatment of an S-bridged penta­nuclear AgI3CoIII2 complex, [Ag3{Co(L)}2]3+ [L3– = N(CH2NHCH2CH2S)3], in which two tris­(thiol­ate)-type mononuclear CoIII units ([Co(L)]) are bridged by three AgI ions through S atoms, with iodo­methane (CH3I) gave a new CoIII mononuclear complex, [Co(LMe2)]2+ [LMe2 = N(CH2NHCH2CH2S)(CH2NHCH2CH2SCH3)2], systematic name: {2-[(bis{[2-(methylsulfanyl)ethyl]aminomethyl}aminomethyl)amino]ethanethiolato}cobalt(III) bis(hexafluoridophosphate). This cationic complex was crystallized with PF6 anions to form the title compound, [Co(LMe2)](PF6)2. In the [Co(LMe2)]2+ cation, two of three thiol­ate groups in [Co(L)] are methyl­ated while one thiol­ate group remains unreacted. Although a total of eight stereoisomers are possible for [Co(LMe2)]2+, only a pair of enanti­omers {ΛRR- and ΔSS-[Co(LMe2)]2+} are selectively formed. In the crystal, the complex cations and the PF­6 anions are connected through weak N—H⋯F, C—H⋯F and C—H⋯S hydrogen bonds into a three-dimensional structure. Two F atoms in one PF6 anion are disordered over two sets of sites with refined occupancies of 0.61 (4) and 0.39 (4) and two F atoms in the other PF6 anion are disordered over two sets of sites with occupancies of 0.5.

1. Chemical context

It has long been recognized that thiol­ate groups (R1S) bound to a transition metal center readily react with alkyl halides (R2X) to form a transition metal complex with thio­ether groups (R1SR2). Since the resulting thio­ether S atoms generally turn to be asymmetric (chiral), the alkyl­ated species are an inter­esting research target of coordination stereochemistry. Among a variety of alkyl halides, iodo­methane (CH3I) is one of the most common alkyl­ation reagent because of its high reactivity and simple mol­ecular structure. For example, the reaction of a mono(thiol­ate)-type CoIII mononuclear complex, [Co(aet)(en)2]2+ (aet = NH2CH2CH2S, en = ethyl­enedi­amine), with iodo­methane selectively produces the corresponding mono(thio­ether)-type complex, [Co(mtea)(en)2]3+ (mtea = NH2CH2CH2SCH3) (Elder et al., 1978[Elder, R. C., Kennard, G. J., Payne, M. D. & Deutsch, E. (1978). Inorg. Chem. 17, 1296-1303.]). Moreover, Busch et al. (1964[Busch, D. H., Jicha, D. C., Thompson, M. C., Wrathall, J. W. & Blinn, E. (1964). J. Am. Chem. Soc. 86, 3642-3650.]) showed that a bis­(thiol­ate)-type NiII complex, [Ni(aet)2], is also easily converted to the corres­ponding bis­(thio­ether)-type complex, [Ni(mtea)2]2+, by treating with iodo­methane. Unlike mono(thiol­ate)- or bis­(thiol­ate)-type complexes, tris­(thiol­ate)-type complexes have been found to show different reactivity toward iodo­methane. That is, the reaction of a tris­(thiol­ate)-type mononuclear rhodium(III) complex, fac(S)-[Rh(aet)3], with iodo­methane afforded a unique di­methyl­ated mono(thiol­ate)bis­(thio­ether)-type complex, fac(S)-[Rh(aet)(mtea)2]2+, whereas the mono­methyl­ated bis­(thiol­ate)mono(thio­ether)-type and tri­methyl­ated tris­(thio­ether)-type species were little formed (Hirotsu et al., 2002[Hirotsu, M., Kobayashi, A., Yoshimura, T. & Konno, T. (2002). J. Chem. Soc. Dalton Trans. pp. 878-884.]). Based on the 13C{1H} NMR measurements, it was suggested that only a pair of enanti­omers is formed for fac(S)-[Rh(aet)(mtea)2]2+. However, the lack of crystallographic analytical data for fac(S)-[Rh(aet)(mtea)2]2+ prevented the further study on the stereochemistry of the di­alkyl­ated complex.

[Scheme 1]

In the course of our continuing study of the alkyl­ation reaction of metal complexes with amino­thiol­ate ligands (Okamoto et al., 1999[Okamoto, K., Sasaki, C., Yamada, Y. & Konno, T. (1999). Bull. Chem. Soc. Jpn, 72, 1685-1696.]; Chikamoto et al., 2005[Chikamoto, Y., Hirotsu, M., Kawamoto, T. & Konno, T. (2005). Chem. Lett. 34, 362-363.], 2007[Chikamoto, Y., Yoshinari, N., Kawamoto, T. & Konno, T. (2007). J. Organomet. Chem. 692, 156-165.]; Yoshinari & Konno, 2008[Yoshinari, N. & Konno, T. (2008). Inorg. Chem. 47, 7450-7452.], 2009[Yoshinari, N. & Konno, T. (2009). Chem. Eur. J. 15, 10021-10024.]), we herein report that an S-bridged AgI3CoIII2 penta­nuclear complex, {Ag3[Co(L)]2}3+ [L3– = N(CH2NHCH2CH2S)3] (Tokuda et al., 2000[Tokuda, K., Okamoto, K. & Konno, T. (2000). Inorg. Chem. 39, 333-339.]), in which two tris­(thiol­ate)-type octa­hedrally shaped CoIII moieties with an aet derivative ligand, [Co(L)], are linearly linked by three AgI ions, reacts with iodo­methane to give a mono(thiol­ate)bis­(thio­ether)-type complex, [Co(LMe2)]2+ [LMe2 = N(CH2NHCH2CH2S)(CH2NHCH2CH2SCH3)2]. It is noteworthy that the complex was crystallized as a hexa­fluorido­phosphate salt, [Co(LMe2)](PF6)2, and its mol­ecular structure was fully determined by single-crystal X-ray diffraction analysis. As far as we know, this is the first crystallographic characterization of a cobalt(III) complex that has two thio­ether and one thiol­ate donor groups. In addition, this is a unique example of a direct conversion of a thiol­ate-bridged multinuclear complex to a mononuclear thio­ether complex by alkyl­ation reaction. Treatment of the thiol­ate-bridged penta­nuclear complex {Ag3[Co(L)]2}3+ with excess iodo­methane in water gave a greenish-brown suspension. After removing the insoluble solid by filtration, the purple–brown filtrate was purified by a cation–exchange column (SP-Sephadex C-25). The product was isolated as purple–brown crystals by adding a hexa­fluorido­phosphate anion. The geometrical parameters and stereoisomerism of the title compound based on the X-ray analysis, together with the spectroscopic data, are described in this paper.

2. Structural commentary

X-ray structural analysis revealed that there are two crystallographically independent yet essentially the same complex cations, [Co(LMe2)]2+, and four PF6 anions in the asymmetric unit (Fig. 1[link]). The number of PF6 anions indicates that each complex cation is divalent. Each complex cation consists of a hexa­dentate-N,N′,N′′,S,S′,S′′-binding LMe2 ligand that coordinates to a CoIII atom in a slightly distorted octa­hedral geometry. This result clearly indicates that two of three thiol­ate groups in the [Co(L)] moiety were methyl­ated to form [Co(LMe2)]2+. No apparent difference was observed among the Co—S bond lengths for thiol­ate S atoms (Sthiol­ate) [2.2384 (13)–2.2478 (11) Å] and those for thio­ether S atoms (Sthio­ether) [2.2190 (13)–2.2599 (11) Å] in [Co(LMe2)]2+. However, the Co—N bonds trans to Sthiol­ate [2.061 (4)–2.062 (3) Å] are ca 0.05 Å longer than the Co—N bonds trans to Sthio­ether [2.004 (4)–2.020 (4) Å]. The difference is reasonably explained by the decrease of the trans influence due to the alkyl­ation on S atoms. As a result of the steric repulsion between the methyl groups on the S atoms, the S—Co—S angles in [Co(LMe2)]2+ deviate considerably from 90° [86.58 (4)–95.07 (4)°].

[Figure 1]
Figure 1
A perspective view of the molecular components in the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as light-blue balls. [Symmetry codes: (i) −x, y, −z + [{1\over 2}]; (ii) −x + [{1\over 2}], −y + [{3\over 2}], −z.]

Each CoIII ion is surrounded by three S and three N atoms in a fac-(S) geometry, like the parent [Co(L)] units. Considering the absolute configurations of the cobalt(III) atom (Δ and Λ) and the two asymmetric sulfur atoms (R and S), four pairs of diastereomers, ΔSS/ΛRR, ΔSR/ΛRS, ΔRS/ΛSR and ΔRR/ΛSS, are possible for [Co(LMe2)]2+. However, the asymmetric unit of this crystal contains two ΛRR isomers. As indicated by the space group C2/c, the title crystal is a racemic compound consisting of a pair of enanti­omers, ΛRR and ΔSS. This result is consistent with the observation that the 13C{1H} NMR spectrum of the title compound in DMSO-d6 exhibits a total of 10 sharp singlet signals, assignable to the C1 symmetrical ΛRR and ΔSS isomers of [Co(LMe2)]2+ (Fig. 2[link]). For both complex cations [Co(LMe2)]2+ in the crystal, two of three N,S-chelate rings have a gauche form with the lel (λ for Δ and δ for Λ) conformation, while one has a gauche form with the ob (λ for Λ and δ for Δ) conformation.

[Figure 2]
Figure 2
13C{H} NMR spectrum of the title compound in DMSO-d6.

In summary, we report here the first example of a crystallographically characterized mono(thiol­ate)bis­(thio­ether)-type mononuclear cobalt(III) complex, [Co(LMe2)]2+. This complex was obtained by the unprecedented direct conversion of a thiol­ate-bridged AgI3CoIII2 penta­nuclear complex by alkyl­ation reaction using iodo­methane. The selective formation of the ΛRR and ΔSS isomers of [Co(LMe2)]2+ observed in the crystal structure is consistent with the result of 13C{1H} NMR. The findings reported herein will provide insight into the synthesis and structures of coordination compounds containing both thiol­ate and thio­ether donor groups.

3. Supra­molecular features

In the crystal, the complex cations and the PF6 anions are connected through many weak N—H⋯F, C—H⋯F and C—H⋯S hydrogen bonds (Table 1[link]), forming a three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯F15i 0.89 (2) 2.18 (3) 2.964 (5) 146 (4)
N1—H1⋯F17i 0.89 (2) 2.52 (3) 3.255 (5) 140 (4)
N2—H2⋯F3ii 0.89 (2) 2.55 (4) 3.204 (5) 130 (4)
N2—H2⋯F5ii 0.89 (2) 2.37 (3) 3.120 (5) 142 (4)
N3—H3⋯F1 0.89 (2) 2.34 (4) 3.068 (5) 139 (4)
N5—H4⋯F6 0.91 (2) 2.51 (3) 3.387 (6) 161 (5)
N7—H6⋯F11iii 0.90 (2) 2.28 (3) 3.158 (6) 163 (5)
C3—H11⋯F3ii 0.99 2.41 3.138 (5) 130
C4—H14⋯F15i 0.99 2.23 3.193 (5) 165
C7—H19⋯F15i 0.99 2.45 3.126 (6) 125
C7—H19⋯F18iv 0.99 2.33 3.106 (5) 134
C8—H22⋯F16iv 0.99 2.32 3.248 (6) 157
C8—H22⋯F18iv 0.99 2.55 3.267 (6) 129
C9—H24⋯F19 0.99 2.46 3.384 (7) 155
C10—H26⋯F11v 0.98 2.49 3.458 (6) 168
C10—H26⋯F12v 0.98 2.50 3.295 (6) 138
C10—H27⋯S3 0.98 2.68 3.315 (5) 123
C11—H30⋯S1vi 0.98 2.83 3.770 (5) 162
C14—H35⋯F18iv 0.99 2.27 3.091 (6) 140
C15—H38⋯F25Bvii 0.99 2.41 3.294 (16) 148
C16—H40⋯F17 0.99 2.41 3.246 (5) 142
C19—H45⋯F8vii 0.99 2.32 3.269 (7) 159
C19—H46⋯F24vii 0.99 2.44 3.420 (7) 172
C19—H46⋯F26Avii 0.99 2.52 3.290 (13) 134
C20—H47⋯F9iii 0.99 2.39 3.299 (8) 152
C21—H51⋯S5 0.98 2.77 3.386 (6) 122
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+2, z+{\script{1\over 2}}]; (vi) -x, -y+1, -z+1; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Synthesis and crystallization

To a dark-purple solution of {Ag3[Co(L)]2}(NO3)3·4H2O (0.30 g, 0.25 mmol) in 100 ml of water was added CH3I (0.5 ml, 8.0 mmol). The mixture was stirred at room temperature for 1.5 days in the dark. After removing a brown powder (200 mg) by filtration, the purple–brown filtrate was poured onto an SP-Sephadex C-25 column (Na+ form, 1.5 × 30 cm). First, a purple band was eluted with 0.05 M aqueous NaCl. Then, a purple–brown band of [Co(LMe2)]2+ was eluted with 0.15 M aqueous NaCl. To the concentrated purple–brown eluate was added 1.0 M aqueous NH4PF6 (5 ml) and the solution was allowed to stand at room temperature for 20 d. The resulting dark purple–brown block crystals of the title compound were collected by filtration. Yield: 0.08 g (29%). Single crystals suitable for X-ray analysis were obtained by recrystallization from water by adding 1.0 M aqueous NH4PF6. Analysis: calculated for [Co(LMe2)](PF6)2: C 20.01, H 4.12, N 8.48%; found: C 20.25, H 4.06, N 8.51%. 13C{1H} NMR (DMSO-d6): δ 17.40, 18.05, 28.97, 37.20, 47.82, 49.42, 58.22, 64.39, 67.05, 67.50. One of the 13C signals overlaps with the signal from solvent. IR(KBr, ν cm−1): 3266.8(m), 3029.6(w), 1432.8(m), 1245.8(w), 1158.0(w), 1113.7(w), 1034.6(w), 955.5(m), 839.8(s), 558.3(s).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to C atoms were placed at calculated positions [C—H = 0.99 Å (CH2) or 0.98 Å (CH3)] and refined as riding with Uiso(H) = 1.2Ueq(C) for CH2 and Uiso(H) = 1.5Ueq(C) for CH3. All H atoms bound to N atoms were refined with bond-length restraints [N—H = 0.90 (2) Å] and with Uiso(H) = 1.2Ueq(N). Two F atoms in one PF6 anion are disordered over two positions (F25A/F25B and F26A/F26B) with refined occupancies of 0.61 (4) and 0.39 (4). Two F atoms in another PF6 anion are also disordered over two positions (F20A, F21A, F22A, F23A) with site occupancies of 0.5. Reflections ([\overline{1}][\overline{1}] 7 24) and (24 2 3) were omitted omitted owing to poor agreement between measured and calculated intensities.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C11H27N4S3)]·2PF6
Mr 660.41
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 32.440 (3), 10.3197 (8), 29.869 (2)
β (°) 110.629 (8)
V3) 9358.1 (13)
Z 16
Radiation type Mo Kα
μ (mm−1) 1.24
Crystal size (mm) 0.15 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.776, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 44747, 10620, 8276
Rint 0.034
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.05
No. of reflections 10620
No. of parameters 652
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.26, −0.66
Computer programs: PROCESS-AUTO (Rigaku, 2000[Rigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2000); cell refinement: PROCESS-AUTO (Rigaku, 2000); data reduction: PROCESS-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and Mercury (Macrae et al., 2006).

{2-[(Bis{[2-(methylsulfanyl)ethyl]aminomethyl}aminomethyl)amino]ethanethiolato}cobalt(III) bis(hexafluoridophosphate) top
Crystal data top
[Co(C11H27N4S3)]·2PF6F(000) = 5344
Mr = 660.41Dx = 1.875 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 32.440 (3) ÅCell parameters from 27114 reflections
b = 10.3197 (8) Åθ = 3.1–27.4°
c = 29.869 (2) ŵ = 1.24 mm1
β = 110.629 (8)°T = 200 K
V = 9358.1 (13) Å3Block, purple–brown
Z = 160.15 × 0.05 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10620 independent reflections
Radiation source: fine-focus sealed tube8276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 4242
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.776, Tmax = 0.940l = 3838
44747 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.069P)2 + 65.6905P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
10620 reflectionsΔρmax = 2.26 e Å3
652 parametersΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.08029 (2)0.71216 (5)0.48620 (2)0.01652 (12)
Co20.15690 (2)0.27337 (5)0.27070 (2)0.02012 (13)
S10.05707 (4)0.57397 (10)0.53048 (4)0.0262 (2)
S20.11361 (3)0.82080 (9)0.55401 (3)0.0245 (2)
S30.01920 (3)0.83717 (9)0.46457 (4)0.0230 (2)
S40.09529 (4)0.24869 (12)0.20807 (4)0.0353 (3)
S50.12972 (4)0.42822 (11)0.30553 (5)0.0360 (3)
S60.17945 (4)0.41336 (12)0.22687 (4)0.0379 (3)
N10.13304 (11)0.5972 (3)0.49852 (12)0.0227 (7)
H10.1551 (12)0.643 (4)0.5189 (14)0.027*
N20.10806 (11)0.8448 (3)0.45360 (12)0.0225 (7)
H20.0870 (12)0.896 (4)0.4346 (14)0.027*
N30.05072 (12)0.6070 (3)0.42700 (12)0.0239 (7)
H30.0536 (16)0.526 (2)0.4373 (16)0.029*
N40.11984 (12)0.6467 (3)0.41348 (13)0.0278 (7)
N50.13157 (13)0.1384 (4)0.30484 (14)0.0318 (8)
H40.1273 (18)0.186 (4)0.3285 (14)0.038*
N60.21531 (13)0.2955 (4)0.32452 (13)0.0307 (8)
H50.2342 (14)0.301 (5)0.3088 (17)0.037*
N70.18589 (14)0.1309 (4)0.24699 (14)0.0334 (8)
H60.1650 (14)0.086 (5)0.2242 (14)0.040*
N80.20751 (15)0.0615 (4)0.33089 (16)0.0419 (10)
C10.10998 (15)0.4941 (4)0.55955 (16)0.0316 (9)
H70.12950.54960.58540.038*
H80.10570.41080.57380.038*
C20.13023 (15)0.4709 (4)0.52253 (17)0.0302 (9)
H90.11210.40830.49850.036*
H100.16010.43370.53770.036*
C30.12854 (15)0.9674 (4)0.52985 (15)0.0290 (9)
H110.10301.02660.51800.035*
H120.15281.01290.55480.035*
C40.14313 (14)0.9257 (4)0.48903 (16)0.0273 (9)
H130.14911.00320.47280.033*
H140.17070.87490.50180.033*
C50.00327 (15)0.7825 (4)0.40281 (15)0.0311 (9)
H150.03500.80410.38890.037*
H160.01210.82600.38360.037*
C60.00295 (14)0.6384 (4)0.40208 (16)0.0307 (9)
H170.01490.59460.41840.037*
H180.00690.60720.36860.037*
C70.14570 (16)0.5748 (5)0.45501 (16)0.0324 (10)
H190.17710.59840.46310.039*
H200.14270.48120.44710.039*
C80.12538 (17)0.7852 (4)0.41757 (18)0.0346 (10)
H210.11000.82490.38590.042*
H220.15710.80590.42690.042*
C90.07530 (16)0.6046 (5)0.39253 (15)0.0314 (9)
H230.07490.51520.38040.038*
H240.05980.66100.36490.038*
C100.07503 (17)0.8821 (5)0.58003 (16)0.0362 (11)
H250.06440.81050.59460.043*
H260.08970.94650.60460.043*
H270.05010.92260.55510.043*
C110.02201 (14)0.7763 (4)0.48704 (17)0.0318 (9)
H280.01390.79940.52090.038*
H290.05060.81460.46880.038*
H300.02380.68180.48360.038*
C120.06268 (17)0.1607 (6)0.23686 (19)0.0447 (13)
H310.05050.22110.25480.054*
H320.03800.11460.21270.054*
C130.09328 (17)0.0671 (5)0.26994 (18)0.0377 (11)
H330.10410.00470.25140.045*
H340.07760.01800.28750.045*
C140.17427 (18)0.4229 (6)0.36311 (18)0.0435 (12)
H350.17410.50260.38150.052*
H360.17050.34750.38180.052*
C150.21699 (17)0.4123 (5)0.35474 (17)0.0377 (11)
H370.22190.49110.33830.045*
H380.24160.40420.38570.045*
C160.1932 (2)0.2920 (6)0.19060 (18)0.0471 (14)
H390.16610.26220.16490.057*
H400.21320.32980.17550.057*
C170.21506 (18)0.1810 (5)0.2211 (2)0.0440 (13)
H410.24370.20870.24460.053*
H420.22060.11130.20120.053*
C180.16580 (19)0.0451 (6)0.3356 (2)0.0495 (14)
H430.16900.05770.36950.059*
H440.15550.04480.32660.059*
C190.23114 (17)0.1749 (5)0.35411 (18)0.0420 (12)
H450.26290.16270.36010.050*
H460.22750.18590.38540.050*
C200.21048 (19)0.0348 (5)0.2865 (2)0.0471 (13)
H470.19860.05320.27650.057*
H480.24200.03420.28980.057*
C210.0641 (2)0.3959 (6)0.1894 (2)0.0624 (18)
H490.07880.45200.17320.075*
H500.03440.37500.16750.075*
H510.06220.44090.21750.075*
C220.1360 (2)0.5917 (5)0.2862 (2)0.0495 (14)
H520.11350.60800.25480.059*
H530.13270.65420.30940.059*
H540.16530.60110.28410.059*
P10.05584 (4)0.18660 (11)0.38937 (4)0.0296 (2)
P20.14674 (5)0.80321 (13)0.16331 (5)0.0396 (3)
P30.24920 (4)0.27568 (10)0.09047 (4)0.0244 (2)
P40.00000.7599 (2)0.25000.0460 (5)
P50.25000.75000.00000.0578 (7)
F10.03836 (15)0.3159 (3)0.40550 (14)0.0682 (11)
F20.00936 (15)0.1243 (5)0.38190 (19)0.0924 (15)
F30.07238 (15)0.1369 (5)0.44241 (12)0.0823 (15)
F40.03814 (14)0.2313 (5)0.33558 (12)0.0750 (12)
F50.07380 (19)0.0568 (4)0.37470 (16)0.0943 (17)
F60.10139 (14)0.2515 (5)0.39524 (18)0.0919 (15)
F70.1835 (2)0.8970 (6)0.1613 (2)0.125 (2)
F80.16976 (15)0.6799 (4)0.15072 (18)0.0881 (14)
F90.1735 (2)0.7779 (5)0.21836 (16)0.117 (2)
F100.10903 (15)0.7066 (4)0.16580 (16)0.0770 (12)
F110.12389 (16)0.9221 (4)0.17849 (15)0.0790 (13)
F120.11752 (15)0.8265 (4)0.10919 (12)0.0712 (12)
F130.21775 (9)0.1639 (3)0.09755 (11)0.0408 (7)
F140.27659 (10)0.2728 (3)0.14668 (9)0.0409 (7)
F150.22093 (10)0.2779 (3)0.03391 (9)0.0415 (7)
F160.28000 (9)0.3869 (3)0.08289 (10)0.0363 (6)
F170.21670 (9)0.3829 (3)0.09833 (10)0.0390 (6)
F180.28079 (10)0.1681 (3)0.08159 (12)0.0437 (7)
F190.04851 (15)0.7647 (6)0.28725 (17)0.0966 (16)
F20A0.0024 (10)0.6209 (14)0.2713 (7)0.190 (11)0.5
F21A0.0161 (5)0.686 (2)0.2156 (5)0.117 (7)0.5
F22A0.0033 (4)0.8942 (10)0.2309 (4)0.122 (7)0.5
F23A0.0201 (5)0.799 (3)0.2890 (5)0.142 (8)0.5
F240.29174 (18)0.6997 (7)0.04286 (15)0.113 (2)
F25A0.2683 (6)0.8853 (11)0.0199 (6)0.122 (8)0.61 (4)
F26A0.2210 (4)0.746 (3)0.0318 (4)0.114 (9)0.61 (4)
F25B0.2339 (10)0.840 (4)0.0313 (6)0.138 (19)0.39 (4)
F26B0.2294 (7)0.635 (3)0.0177 (13)0.133 (17)0.39 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0164 (3)0.0153 (2)0.0182 (2)0.00006 (18)0.00651 (19)0.00067 (19)
Co20.0229 (3)0.0202 (3)0.0188 (2)0.0004 (2)0.0093 (2)0.0001 (2)
S10.0260 (5)0.0244 (5)0.0303 (5)0.0010 (4)0.0125 (4)0.0068 (4)
S20.0254 (5)0.0221 (4)0.0224 (4)0.0003 (4)0.0042 (4)0.0007 (4)
S30.0198 (5)0.0224 (4)0.0268 (5)0.0022 (4)0.0081 (4)0.0020 (4)
S40.0317 (6)0.0391 (6)0.0282 (5)0.0027 (5)0.0020 (5)0.0042 (5)
S50.0348 (6)0.0319 (6)0.0458 (6)0.0000 (5)0.0200 (5)0.0067 (5)
S60.0437 (7)0.0372 (6)0.0359 (6)0.0061 (5)0.0182 (5)0.0054 (5)
N10.0220 (18)0.0197 (15)0.0267 (17)0.0016 (13)0.0090 (14)0.0010 (13)
N20.0211 (18)0.0218 (16)0.0267 (17)0.0005 (13)0.0110 (14)0.0026 (13)
N30.0236 (18)0.0239 (16)0.0232 (16)0.0019 (13)0.0071 (14)0.0029 (14)
N40.030 (2)0.0276 (17)0.0305 (18)0.0009 (15)0.0166 (15)0.0012 (15)
N50.030 (2)0.0329 (19)0.0300 (18)0.0015 (16)0.0077 (16)0.0029 (16)
N60.0240 (19)0.040 (2)0.0271 (18)0.0012 (16)0.0078 (15)0.0044 (16)
N70.032 (2)0.036 (2)0.034 (2)0.0015 (16)0.0141 (17)0.0059 (17)
N80.041 (2)0.037 (2)0.045 (2)0.0102 (18)0.011 (2)0.0131 (19)
C10.032 (2)0.028 (2)0.032 (2)0.0014 (18)0.0067 (18)0.0118 (18)
C20.027 (2)0.0194 (18)0.042 (2)0.0065 (16)0.0090 (19)0.0071 (18)
C30.032 (2)0.0187 (18)0.030 (2)0.0036 (16)0.0036 (18)0.0004 (16)
C40.022 (2)0.0233 (19)0.036 (2)0.0044 (16)0.0086 (17)0.0028 (17)
C50.026 (2)0.038 (2)0.025 (2)0.0008 (18)0.0026 (17)0.0028 (18)
C60.021 (2)0.038 (2)0.028 (2)0.0065 (18)0.0035 (17)0.0067 (18)
C70.034 (3)0.034 (2)0.034 (2)0.0100 (19)0.019 (2)0.0007 (19)
C80.045 (3)0.029 (2)0.043 (3)0.0027 (19)0.032 (2)0.001 (2)
C90.035 (3)0.037 (2)0.025 (2)0.0017 (19)0.0144 (18)0.0048 (18)
C100.046 (3)0.038 (2)0.028 (2)0.000 (2)0.017 (2)0.0111 (19)
C110.021 (2)0.036 (2)0.042 (2)0.0013 (17)0.0161 (19)0.002 (2)
C120.027 (3)0.053 (3)0.045 (3)0.010 (2)0.001 (2)0.010 (2)
C130.040 (3)0.035 (2)0.040 (3)0.011 (2)0.017 (2)0.001 (2)
C140.044 (3)0.056 (3)0.034 (2)0.010 (2)0.019 (2)0.018 (2)
C150.038 (3)0.045 (3)0.029 (2)0.011 (2)0.010 (2)0.015 (2)
C160.059 (4)0.060 (3)0.035 (2)0.022 (3)0.032 (3)0.009 (2)
C170.039 (3)0.053 (3)0.052 (3)0.006 (2)0.030 (2)0.020 (3)
C180.044 (3)0.044 (3)0.051 (3)0.001 (2)0.007 (3)0.027 (3)
C190.033 (3)0.052 (3)0.034 (2)0.004 (2)0.004 (2)0.007 (2)
C200.045 (3)0.039 (3)0.055 (3)0.020 (2)0.015 (3)0.004 (2)
C210.047 (4)0.047 (3)0.068 (4)0.005 (3)0.012 (3)0.021 (3)
C220.058 (4)0.023 (2)0.069 (4)0.002 (2)0.023 (3)0.006 (2)
P10.0333 (6)0.0279 (5)0.0304 (6)0.0035 (5)0.0148 (5)0.0061 (4)
P20.0383 (7)0.0350 (6)0.0364 (6)0.0008 (5)0.0018 (5)0.0048 (5)
P30.0188 (5)0.0282 (5)0.0262 (5)0.0015 (4)0.0081 (4)0.0010 (4)
P40.0453 (12)0.0578 (12)0.0330 (9)0.0000.0114 (8)0.000
P50.0677 (15)0.0786 (16)0.0216 (8)0.0354 (13)0.0088 (9)0.0055 (9)
F10.094 (3)0.0412 (18)0.076 (2)0.0213 (19)0.038 (2)0.0003 (17)
F20.070 (3)0.097 (3)0.117 (4)0.040 (3)0.042 (3)0.012 (3)
F30.105 (3)0.111 (3)0.0423 (18)0.067 (3)0.040 (2)0.037 (2)
F40.078 (3)0.101 (3)0.0385 (18)0.022 (2)0.0118 (18)0.0202 (19)
F50.169 (5)0.060 (2)0.082 (3)0.054 (3)0.080 (3)0.011 (2)
F60.041 (2)0.134 (4)0.099 (3)0.028 (3)0.024 (2)0.005 (3)
F70.107 (4)0.113 (4)0.171 (6)0.078 (4)0.069 (4)0.036 (4)
F80.071 (3)0.070 (3)0.117 (4)0.012 (2)0.025 (3)0.025 (3)
F90.148 (5)0.084 (3)0.058 (3)0.020 (3)0.041 (3)0.005 (2)
F100.081 (3)0.068 (2)0.081 (3)0.019 (2)0.028 (2)0.015 (2)
F110.101 (3)0.061 (2)0.070 (2)0.025 (2)0.023 (2)0.016 (2)
F120.108 (3)0.054 (2)0.0348 (17)0.008 (2)0.0039 (19)0.0041 (15)
F130.0325 (15)0.0400 (15)0.0523 (17)0.0091 (12)0.0179 (13)0.0015 (13)
F140.0392 (16)0.0475 (16)0.0278 (13)0.0010 (13)0.0014 (12)0.0038 (12)
F150.0383 (16)0.0545 (18)0.0263 (13)0.0067 (13)0.0048 (12)0.0036 (12)
F160.0340 (15)0.0340 (14)0.0439 (15)0.0083 (11)0.0174 (12)0.0021 (12)
F170.0371 (16)0.0403 (15)0.0459 (15)0.0168 (12)0.0223 (13)0.0058 (13)
F180.0402 (17)0.0351 (14)0.0628 (19)0.0093 (12)0.0269 (15)0.0031 (14)
F190.060 (3)0.139 (4)0.073 (3)0.005 (3)0.000 (2)0.022 (3)
F20A0.37 (3)0.069 (8)0.131 (15)0.062 (13)0.08 (2)0.014 (7)
F21A0.114 (12)0.180 (19)0.058 (8)0.076 (14)0.030 (7)0.015 (11)
F22A0.079 (8)0.082 (6)0.148 (14)0.029 (7)0.030 (11)0.069 (7)
F23A0.098 (10)0.28 (2)0.062 (7)0.009 (15)0.049 (7)0.045 (13)
F240.093 (4)0.191 (6)0.041 (2)0.009 (4)0.007 (2)0.009 (3)
F25A0.169 (14)0.088 (7)0.088 (10)0.061 (7)0.019 (9)0.029 (6)
F26A0.083 (7)0.22 (3)0.050 (5)0.032 (11)0.032 (5)0.015 (9)
F25B0.13 (3)0.22 (3)0.042 (8)0.05 (3)0.007 (10)0.053 (15)
F26B0.122 (15)0.12 (2)0.16 (3)0.037 (13)0.051 (15)0.05 (2)
Geometric parameters (Å, º) top
Co1—N12.007 (3)C10—H260.9800
Co1—N32.007 (3)C10—H270.9800
Co1—N22.062 (3)C11—H280.9800
Co1—S22.2327 (11)C11—H290.9800
Co1—S12.2478 (11)C11—H300.9800
Co1—S32.2599 (11)C12—C131.484 (7)
Co2—N72.004 (4)C12—H310.9900
Co2—N62.020 (4)C12—H320.9900
Co2—N52.061 (4)C13—H330.9900
Co2—S42.2190 (13)C13—H340.9900
Co2—S62.2384 (13)C14—C151.496 (7)
Co2—S52.2494 (12)C14—H350.9900
S1—C11.825 (5)C14—H360.9900
S2—C101.805 (5)C15—H370.9900
S2—C31.814 (4)C15—H380.9900
S3—C111.807 (4)C16—C171.480 (8)
S3—C51.818 (4)C16—H390.9900
S4—C211.801 (6)C16—H400.9900
S4—C121.823 (5)C17—H410.9900
S5—C141.816 (5)C17—H420.9900
S5—C221.818 (5)C18—H430.9900
S6—C161.812 (5)C18—H440.9900
N1—C21.506 (5)C19—H450.9900
N1—C71.512 (5)C19—H460.9900
N1—H10.893 (19)C20—H470.9900
N2—C41.504 (5)C20—H480.9900
N2—C81.509 (5)C21—H490.9800
N2—H20.893 (19)C21—H500.9800
N3—C61.499 (6)C21—H510.9800
N3—C91.508 (5)C22—H520.9800
N3—H30.889 (19)C22—H530.9800
N4—C91.425 (6)C22—H540.9800
N4—C71.435 (6)P1—F31.569 (3)
N4—C81.441 (6)P1—F41.573 (3)
N5—C131.503 (6)P1—F61.575 (4)
N5—C181.512 (6)P1—F21.581 (4)
N5—H40.913 (19)P1—F51.583 (4)
N6—C151.496 (6)P1—F11.590 (3)
N6—C191.508 (6)P2—F71.554 (4)
N6—H50.895 (19)P2—F121.578 (4)
N7—C171.508 (6)P2—F111.580 (4)
N7—C201.533 (6)P2—F81.587 (4)
N7—H60.904 (19)P2—F91.587 (4)
N8—C201.391 (7)P2—F101.600 (4)
N8—C181.419 (7)P3—F161.589 (3)
N8—C191.436 (7)P3—F181.595 (3)
C1—C21.491 (6)P3—F141.599 (3)
C1—H70.9900P3—F171.602 (3)
C1—H80.9900P3—F131.603 (3)
C2—H90.9900P3—F151.614 (3)
C2—H100.9900P4—F21A1.515 (11)
C3—C41.517 (6)P4—F21Ai1.515 (11)
C3—H110.9900P4—F22A1.516 (9)
C3—H120.9900P4—F20A1.560 (15)
C4—H130.9900P4—F23A1.575 (11)
C4—H140.9900P4—F19i1.576 (4)
C5—C61.501 (6)P4—F191.576 (4)
C5—H150.9900P5—F25Bii1.535 (17)
C5—H160.9900P5—F25B1.535 (17)
C6—H170.9900P5—F26B1.543 (14)
C6—H180.9900P5—F26Bii1.544 (14)
C7—H190.9900P5—F25A1.551 (9)
C7—H200.9900P5—F25Aii1.551 (9)
C8—H210.9900P5—F26A1.556 (11)
C8—H220.9900P5—F26Aii1.557 (11)
C9—H230.9900P5—F241.588 (5)
C9—H240.9900P5—F24ii1.588 (5)
C10—H250.9800
N1—Co1—N387.36 (14)S4—C12—H32110.5
N1—Co1—N289.58 (14)H31—C12—H32108.7
N3—Co1—N295.48 (14)C12—C13—N5109.8 (4)
N1—Co1—S291.23 (10)C12—C13—H33109.7
N3—Co1—S2177.38 (11)N5—C13—H33109.7
N2—Co1—S286.72 (10)C12—C13—H34109.7
N1—Co1—S187.59 (10)N5—C13—H34109.7
N3—Co1—S191.15 (10)H33—C13—H34108.2
N2—Co1—S1172.66 (10)C15—C14—S5108.6 (3)
S2—Co1—S186.58 (4)C15—C14—H35110.0
N1—Co1—S3174.34 (10)S5—C14—H35110.0
N3—Co1—S387.59 (11)C15—C14—H36110.0
N2—Co1—S388.35 (10)S5—C14—H36110.0
S2—Co1—S393.91 (4)H35—C14—H36108.4
S1—Co1—S395.07 (4)N6—C15—C14108.7 (4)
N7—Co2—N686.49 (16)N6—C15—H37109.9
N7—Co2—N589.86 (16)C14—C15—H37109.9
N6—Co2—N596.21 (16)N6—C15—H38109.9
N7—Co2—S490.77 (13)C14—C15—H38109.9
N6—Co2—S4176.01 (11)H37—C15—H38108.3
N5—Co2—S486.67 (11)C17—C16—S6109.4 (3)
N7—Co2—S688.63 (12)C17—C16—H39109.8
N6—Co2—S689.11 (12)S6—C16—H39109.8
N5—Co2—S6174.37 (12)C17—C16—H40109.8
S4—Co2—S687.93 (5)S6—C16—H40109.8
N7—Co2—S5173.60 (13)H39—C16—H40108.2
N6—Co2—S587.84 (12)C16—C17—N7109.3 (4)
N5—Co2—S587.81 (12)C16—C17—H41109.8
S4—Co2—S595.05 (5)N7—C17—H41109.8
S6—Co2—S594.25 (5)C16—C17—H42109.8
C1—S1—Co196.47 (15)N7—C17—H42109.8
C10—S2—C3101.6 (2)H41—C17—H42108.3
C10—S2—Co1112.28 (16)N8—C18—N5112.7 (4)
C3—S2—Co199.77 (14)N8—C18—H43109.1
C11—S3—C5100.6 (2)N5—C18—H43109.1
C11—S3—Co1112.61 (15)N8—C18—H44109.1
C5—S3—Co196.35 (15)N5—C18—H44109.1
C21—S4—C12102.1 (3)H43—C18—H44107.8
C21—S4—Co2113.9 (2)N8—C19—N6112.1 (4)
C12—S4—Co299.18 (17)N8—C19—H45109.2
C14—S5—C22100.8 (3)N6—C19—H45109.2
C14—S5—Co296.08 (18)N8—C19—H46109.2
C22—S5—Co2114.0 (2)N6—C19—H46109.2
C16—S6—Co295.95 (17)H45—C19—H46107.9
C2—N1—C7110.9 (3)N8—C20—N7114.4 (4)
C2—N1—Co1114.1 (3)N8—C20—H47108.7
C7—N1—Co1113.9 (3)N7—C20—H47108.7
C2—N1—H1107 (3)N8—C20—H48108.7
C7—N1—H1106 (3)N7—C20—H48108.7
Co1—N1—H1104 (3)H47—C20—H48107.6
C4—N2—C8110.4 (3)S4—C21—H49109.5
C4—N2—Co1112.6 (2)S4—C21—H50109.5
C8—N2—Co1113.6 (3)H49—C21—H50109.5
C4—N2—H2110 (3)S4—C21—H51109.5
C8—N2—H2101 (3)H49—C21—H51109.5
Co1—N2—H2109 (3)H50—C21—H51109.5
C6—N3—C9111.6 (3)S5—C22—H52109.5
C6—N3—Co1114.2 (3)S5—C22—H53109.5
C9—N3—Co1114.0 (3)H52—C22—H53109.5
C6—N3—H3110 (3)S5—C22—H54109.5
C9—N3—H3102 (3)H52—C22—H54109.5
Co1—N3—H3104 (3)H53—C22—H54109.5
C9—N4—C7114.5 (4)F3—P1—F4177.7 (3)
C9—N4—C8114.6 (4)F3—P1—F693.0 (3)
C7—N4—C8115.0 (4)F4—P1—F688.8 (3)
C13—N5—C18111.1 (4)F3—P1—F288.8 (3)
C13—N5—Co2111.3 (3)F4—P1—F289.3 (3)
C18—N5—Co2113.3 (3)F6—P1—F2178.1 (3)
C13—N5—H4119 (4)F3—P1—F588.5 (2)
C18—N5—H499 (3)F4—P1—F590.2 (2)
Co2—N5—H4102 (3)F6—P1—F588.2 (3)
C15—N6—C19112.3 (4)F2—P1—F592.4 (3)
C15—N6—Co2113.3 (3)F3—P1—F190.0 (2)
C19—N6—Co2113.8 (3)F4—P1—F191.3 (2)
C15—N6—H5113 (3)F6—P1—F191.7 (3)
C19—N6—H5102 (3)F2—P1—F187.7 (3)
Co2—N6—H5102 (3)F5—P1—F1178.5 (2)
C17—N7—C20111.4 (4)F7—P2—F1293.3 (3)
C17—N7—Co2112.8 (3)F7—P2—F1188.4 (3)
C20—N7—Co2112.6 (3)F12—P2—F1190.1 (2)
C17—N7—H6103 (3)F7—P2—F893.3 (3)
C20—N7—H6107 (4)F12—P2—F892.4 (2)
Co2—N7—H6109 (4)F11—P2—F8176.8 (3)
C20—N8—C18117.3 (5)F7—P2—F989.8 (4)
C20—N8—C19114.7 (5)F12—P2—F9176.5 (3)
C18—N8—C19114.5 (5)F11—P2—F988.3 (3)
C2—C1—S1107.8 (3)F8—P2—F989.0 (3)
C2—C1—H7110.1F7—P2—F10179.6 (4)
S1—C1—H7110.1F12—P2—F1087.1 (2)
C2—C1—H8110.1F11—P2—F1091.6 (3)
S1—C1—H8110.1F8—P2—F1086.7 (3)
H7—C1—H8108.5F9—P2—F1089.8 (3)
C1—C2—N1109.3 (3)F16—P3—F1890.34 (16)
C1—C2—H9109.8F16—P3—F1491.06 (16)
N1—C2—H9109.8F18—P3—F1490.56 (17)
C1—C2—H10109.8F16—P3—F1790.09 (15)
N1—C2—H10109.8F18—P3—F17178.79 (19)
H9—C2—H10108.3F14—P3—F1790.57 (16)
C4—C3—S2106.6 (3)F16—P3—F13179.37 (19)
C4—C3—H11110.4F18—P3—F1389.83 (16)
S2—C3—H11110.4F14—P3—F1389.55 (16)
C4—C3—H12110.4F17—P3—F1389.74 (16)
S2—C3—H12110.4F16—P3—F1589.69 (16)
H11—C3—H12108.6F18—P3—F1589.84 (17)
N2—C4—C3110.5 (3)F14—P3—F15179.15 (18)
N2—C4—H13109.6F17—P3—F1589.03 (16)
C3—C4—H13109.6F13—P3—F1589.70 (16)
N2—C4—H14109.6F21A—P4—F21Ai119.1 (19)
C3—C4—H14109.6F21A—P4—F22A97.0 (9)
H13—C4—H14108.1F21Ai—P4—F22A143.5 (13)
C6—C5—S3108.3 (3)F21A—P4—F20A80.3 (15)
C6—C5—H15110.0F22A—P4—F20A173.6 (13)
S3—C5—H15110.0F21A—P4—F23A164.4 (19)
C6—C5—H16110.0F21Ai—P4—F23A45.4 (8)
S3—C5—H16110.0F22A—P4—F23A98.3 (15)
H15—C5—H16108.4F20A—P4—F23A84.8 (11)
N3—C6—C5109.1 (3)F21A—P4—F19i91.9 (6)
N3—C6—H17109.9F21Ai—P4—F19i89.9 (6)
C5—C6—H17109.9F22A—P4—F19i83.7 (5)
N3—C6—H18109.9F20A—P4—F19i102.1 (11)
C5—C6—H18109.9F23A—P4—F19i86.7 (6)
H17—C6—H18108.3F21A—P4—F1989.9 (6)
N4—C7—N1114.2 (3)F21Ai—P4—F1991.9 (6)
N4—C7—H19108.7F22A—P4—F1993.0 (5)
N1—C7—H19108.7F20A—P4—F1981.3 (11)
N4—C7—H20108.7F23A—P4—F1992.3 (6)
N1—C7—H20108.7F19i—P4—F19176.4 (5)
H19—C7—H20107.6F25Bii—P5—F25B180.0 (9)
N4—C8—N2113.4 (3)F25Bii—P5—F26B91.2 (13)
N4—C8—H21108.9F25B—P5—F26B88.8 (13)
N2—C8—H21108.9F25Bii—P5—F26Bii88.8 (13)
N4—C8—H22108.9F25B—P5—F26Bii91.2 (13)
N2—C8—H22108.9F26B—P5—F26Bii180.0
H21—C8—H22107.7F25A—P5—F25Aii180.0
N4—C9—N3113.2 (3)F25A—P5—F26A91.3 (7)
N4—C9—H23108.9F25Aii—P5—F26A88.7 (7)
N3—C9—H23108.9F25A—P5—F26Aii88.7 (7)
N4—C9—H24108.9F25Aii—P5—F26Aii91.3 (7)
N3—C9—H24108.9F26A—P5—F26Aii180.0
H23—C9—H24107.8F25Bii—P5—F2485.2 (7)
S2—C10—H25109.5F25B—P5—F2494.8 (7)
S2—C10—H26109.5F26B—P5—F2479.7 (9)
H25—C10—H26109.5F26Bii—P5—F24100.3 (9)
S2—C10—H27109.5F25A—P5—F2483.3 (6)
H25—C10—H27109.5F25Aii—P5—F2496.7 (6)
H26—C10—H27109.5F26A—P5—F2491.5 (6)
S3—C11—H28109.5F26Aii—P5—F2488.5 (6)
S3—C11—H29109.5F25Bii—P5—F24ii94.8 (7)
H28—C11—H29109.5F25B—P5—F24ii85.2 (7)
S3—C11—H30109.5F26B—P5—F24ii100.3 (9)
H28—C11—H30109.5F26Bii—P5—F24ii79.7 (9)
H29—C11—H30109.5F25A—P5—F24ii96.7 (6)
C13—C12—S4105.9 (4)F25Aii—P5—F24ii83.3 (6)
C13—C12—H31110.5F26A—P5—F24ii88.5 (6)
S4—C12—H31110.5F26Aii—P5—F24ii91.5 (6)
C13—C12—H32110.5F24—P5—F24ii180.0
Co1—S1—C1—C242.7 (3)C21—S4—C12—C13157.4 (4)
S1—C1—C2—N155.1 (4)Co2—S4—C12—C1340.4 (4)
C7—N1—C2—C1169.8 (4)S4—C12—C13—N557.6 (5)
Co1—N1—C2—C139.6 (4)C18—N5—C13—C12173.9 (4)
C10—S2—C3—C4154.6 (3)Co2—N5—C13—C1246.5 (5)
Co1—S2—C3—C439.2 (3)C22—S5—C14—C1573.8 (4)
C8—N2—C4—C3170.7 (3)Co2—S5—C14—C1542.0 (4)
Co1—N2—C4—C342.5 (4)C19—N6—C15—C1489.0 (5)
S2—C3—C4—N254.2 (4)Co2—N6—C15—C1441.6 (5)
C11—S3—C5—C672.8 (3)S5—C14—C15—N656.3 (5)
Co1—S3—C5—C641.7 (3)Co2—S6—C16—C1740.8 (4)
C9—N3—C6—C590.8 (4)S6—C16—C17—N755.0 (5)
Co1—N3—C6—C540.3 (4)C20—N7—C17—C16168.5 (4)
S3—C5—C6—N355.0 (4)Co2—N7—C17—C1640.7 (5)
C9—N4—C7—N169.8 (5)C20—N8—C18—N565.0 (6)
C8—N4—C7—N166.1 (5)C19—N8—C18—N573.9 (6)
C2—N1—C7—N4134.6 (4)C13—N5—C18—N8120.4 (5)
Co1—N1—C7—N44.2 (5)Co2—N5—C18—N85.9 (6)
C9—N4—C8—N268.7 (5)C20—N8—C19—N659.4 (6)
C7—N4—C8—N267.2 (5)C18—N8—C19—N680.5 (5)
C4—N2—C8—N4126.6 (4)C15—N6—C19—N8145.3 (4)
Co1—N2—C8—N41.0 (5)Co2—N6—C19—N814.9 (5)
C7—N4—C9—N356.9 (5)C18—N8—C20—N768.8 (6)
C8—N4—C9—N379.1 (5)C19—N8—C20—N769.9 (6)
C6—N3—C9—N4147.1 (4)C17—N7—C20—N8129.2 (5)
Co1—N3—C9—N416.0 (5)Co2—N7—C20—N81.3 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F15iii0.89 (2)2.18 (3)2.964 (5)146 (4)
N1—H1···F17iii0.89 (2)2.52 (3)3.255 (5)140 (4)
N2—H2···F3iv0.89 (2)2.55 (4)3.204 (5)130 (4)
N2—H2···F5iv0.89 (2)2.37 (3)3.120 (5)142 (4)
N3—H3···F10.89 (2)2.34 (4)3.068 (5)139 (4)
N5—H4···F60.91 (2)2.51 (3)3.387 (6)161 (5)
N7—H6···F11v0.90 (2)2.28 (3)3.158 (6)163 (5)
C3—H11···F3iv0.992.413.138 (5)130
C4—H14···F15iii0.992.233.193 (5)165
C7—H19···F15iii0.992.453.126 (6)125
C7—H19···F18vi0.992.333.106 (5)134
C8—H22···F16vi0.992.323.248 (6)157
C8—H22···F18vi0.992.553.267 (6)129
C9—H24···F190.992.463.384 (7)155
C10—H26···F11vii0.982.493.458 (6)168
C10—H26···F12vii0.982.503.295 (6)138
C10—H27···S30.982.683.315 (5)123
C11—H30···S1viii0.982.833.770 (5)162
C14—H35···F18vi0.992.273.091 (6)140
C15—H38···F25Bix0.992.413.294 (16)148
C16—H40···F170.992.413.246 (5)142
C19—H45···F8ix0.992.323.269 (7)159
C19—H46···F24ix0.992.443.420 (7)172
C19—H46···F26Aix0.992.523.290 (13)134
C20—H47···F9v0.992.393.299 (8)152
C21—H51···S50.982.773.386 (6)122
Symmetry codes: (iii) x, y+1, z+1/2; (iv) x, y+1, z; (v) x, y1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+2, z+1/2; (viii) x, y+1, z+1; (ix) x+1/2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: CREST, JST (award No. JPMJCR13L3); JSPS KAKENHI (award No. 15K21127); Tokuyama Science Foundation.

References

First citationBusch, D. H., Jicha, D. C., Thompson, M. C., Wrathall, J. W. & Blinn, E. (1964). J. Am. Chem. Soc. 86, 3642–3650.  CrossRef CAS Web of Science Google Scholar
First citationChikamoto, Y., Hirotsu, M., Kawamoto, T. & Konno, T. (2005). Chem. Lett. 34, 362–363.  Web of Science CSD CrossRef CAS Google Scholar
First citationChikamoto, Y., Yoshinari, N., Kawamoto, T. & Konno, T. (2007). J. Organomet. Chem. 692, 156–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationElder, R. C., Kennard, G. J., Payne, M. D. & Deutsch, E. (1978). Inorg. Chem. 17, 1296–1303.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHirotsu, M., Kobayashi, A., Yoshimura, T. & Konno, T. (2002). J. Chem. Soc. Dalton Trans. pp. 878–884.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, K., Sasaki, C., Yamada, Y. & Konno, T. (1999). Bull. Chem. Soc. Jpn, 72, 1685–1696.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2000). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTokuda, K., Okamoto, K. & Konno, T. (2000). Inorg. Chem. 39, 333–339.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshinari, N. & Konno, T. (2008). Inorg. Chem. 47, 7450–7452.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshinari, N. & Konno, T. (2009). Chem. Eur. J. 15, 10021–10024.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds