metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­(μ-caproato-κ2O:O′)bis­­[(4-cyano­pyridine-κN1)copper(II)]

aDepartment of Chemistry, Gauhati University, Guwahati 781 014, India, and bDepartment of Instrumentation & USIC, Gauhati University, Guwahati 781 014, India
*Correspondence e-mail: sanjibkab@rediffmail.com, birinchi.das@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 8 September 2015; accepted 9 October 2015; online 14 October 2015)

The title dinuclear complex, [Cu2(C6H11O2)4(C6H4N2)2], has a paddle-wheel structure. The two crystallographically independent CuII atoms are each in a distorted square-pyramidal environment, in which four O atoms from the four bridging caproate ligands form the basal plane and the pyridine N atom of the 4-cyano­pyridine ligand occupies the apical position. The Cu⋯Cu distance is 2.6055 (9) Å. One of the alkyl chains of the caproate ligands is disordered over two sets of sites, with occupancies of 0.725 (5) and 0.275 (5). In the crystal, two pairs of C—H⋯N hydrogen bonds connect the mol­ecules into chains along [11-1] and C—H⋯O hydrogen bonds link the chains into a three-dimensional network.

1. Related literature

For related structures of copper(II) complexes, see: Brown & Chidambaram (1973[Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393-2403.]); Petrič et al. (1995[Petrič, M., Leban, I. & Šegedin, P. (1995). Polyhedron, 14, 983-989.]); Lomer & Perera (1974[Lomer, T. R. & Perera, K. (1974). Acta Cryst. B30, 2912-2913.]); Kozlevčar et al. (2000[Kozlevčar, B., Lah, N., Makuc, S., Šegedin, P. & Pohleven, F. (2000). Acta Chim. Slov. 47, 421-434.]); Catterick & Thornton (1977[Catterick, J. & Thornton, P. (1977). Adv. Inorg. Chem. Radiochem. 20, 291-362.]). For applications as catalysts of dicopper(II) tetra­carboxyl­ates, see: Abied et al. (1987[Abied, H., Guillon, D., Skoulios, A., Weber, P., Giroud-godquin, A. M. & Marchon, J. C. (1987). Liq. Cryst. 2, 269-279.]); Kozlevčar et al. (1999[Kozlevčar, B., Lah, N., Leban, I. & Turel, I. (1999). Croat. Chem. Acta, 72, 427-441.]); Bora et al. (2007[Bora, S. J., Sarmah, P., Phukan, P. & Das, B. K. (2007). Acta Cryst. C63, m392-m394.]); Das et al. (2007[Das, B. K., Bora, S. J. & Sarmah, P. (2007). Acta Cryst. E63, m251-m252.]); Sarmah et al. (2010[Sarmah, P., Das, B. K. & Phukan, P. (2010). Catal. Commun. 11, 932-935.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cu2(C6H11O2)4(C6H4N2)2]

  • Mr = 795.92

  • Monoclinic, P 21 /c

  • a = 8.7740 (4) Å

  • b = 25.3083 (11) Å

  • c = 17.7893 (8) Å

  • β = 101.321 (2)°

  • V = 3873.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 100 K

  • 0.42 × 0.18 × 0.14 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.851

  • 29777 measured reflections

  • 11382 independent reflections

  • 8952 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.03

  • 11382 reflections

  • 502 parameters

  • 155 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.95 2.55 3.301 (2) 137
C4—H4⋯N3ii 0.95 2.58 3.444 (2) 151
C8—H8⋯N4iii 0.95 2.48 3.422 (2) 169
C10—H10⋯O5iv 0.95 2.59 3.432 (2) 148
C20—H20B⋯O6v 0.99 2.66 3.479 (2) 141
C26—H26A⋯O3vi 0.99 2.56 3.532 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+2; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012/9 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2012/9.

Supporting information


Comment top

A few members of the family of dicopper(II) tetracarboxylates of the type Cu2(µ-O2CR)4L2, where R is either an alkyl or aryl group and L is pyridine or a pyridyl ligand, have been demonstrated as homogeneous catalysts in the oxidation of various alcohols (Abied et al., 1987; Kozlevčar et al., 1999; Bora et al., 2007; Das et al., 2007; Sarmah et al., 2010). In view of this it was found instructive to prepare other members of the above general formula having R = a long-chain alkyl group because the presence such alkyl groups could make the resultant dimeric carboxylates more soluble in organic solvents, and hence more effective as catalysts.

We aimed to prepare complexes of long chain carboxylic acids as only a few crystal structures of such complexes of copper(II) have been reported (Petrič et al., 1995; Lomer & Perera, 1974). The structure of the title compound, [Cu2(µ-O2CC5H11)4(4-CNpy)2], (I), is similar to that of copper(II) acetate hydrate (Brown & Chidambaram, 1973). The Cu—Cu distance of 2.6055 (9) Å is shorter than the corresponding distance in [Cu2(µ-O2CCH3)4(H2O)2] (2.614 Å) as well as that in [Cu2(OOCC5H11)4(OCN2H4)2] [2.644 (2) Å] (Kozlevčar et al., 2000). The average Cu—O bond length of 1.9731 (12) Å and the longer average Cu—N distance of 2.1837 (13) Å in the title complex are considered to be normal for [Cu2(µ-O2CR)4L2] (L = axial ligand, R = alkyl group) type of structures (Catterick & Thornton, 1977). In (I), one pair of hydrocarbon chains has the common zigzag conformation while the other pair is distorted, which facilitates efficient packing.

Related literature top

For related structures of copper(II) complexes, see: Brown & Chidambaram (1973); Petrič et al. (1995); Lomer & Perera (1974); Kozlevčar et al. (2000); Catterick & Thornton (1977). For applications as catalysts of dicopper(II) tetracarboxylates, see: Abied et al. (1987); Kozlevčar et al. (1999); Bora et al. (2007); Das et al. (2007); Sarmah et al. (2010).

Experimental top

CuSO4.5H2O (0.749 g, 3 mmol) was dissolved in methanol (25 ml). To this solution, sodium caproate (C5H11COONa; 0.882 g, 6 mmol) and 4-cyanopyridine (0.321 g, 3 mmol) were added and the mixture was stirred for 2 h. The resulting green product was filtered off, washed with small volumes of methanol and dried in a vacuum desiccator over fused CaCl2 (yield 80%). The product was dissolved in acetonitrile to get a greenish homogeneous solution which was allowed to concentrate by evaporation at room temperature. Single crystals suitable for X-ray diffraction were obtained from this solution after one day and collected by filtration.

Refinement top

H atoms were located in a difference Fourier map and were subsequently treated as riding with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). One of the alkyl chains of caproato ligands is disordered over two sites with refined occupancies of 0.725 (5) and 0.275 (5). Restraints of same displacement parameters (SIMU) and same distances (SADI) were applied for the disordered C atoms, C32–C36 and C32'–C36'.

Structure description top

A few members of the family of dicopper(II) tetracarboxylates of the type Cu2(µ-O2CR)4L2, where R is either an alkyl or aryl group and L is pyridine or a pyridyl ligand, have been demonstrated as homogeneous catalysts in the oxidation of various alcohols (Abied et al., 1987; Kozlevčar et al., 1999; Bora et al., 2007; Das et al., 2007; Sarmah et al., 2010). In view of this it was found instructive to prepare other members of the above general formula having R = a long-chain alkyl group because the presence such alkyl groups could make the resultant dimeric carboxylates more soluble in organic solvents, and hence more effective as catalysts.

We aimed to prepare complexes of long chain carboxylic acids as only a few crystal structures of such complexes of copper(II) have been reported (Petrič et al., 1995; Lomer & Perera, 1974). The structure of the title compound, [Cu2(µ-O2CC5H11)4(4-CNpy)2], (I), is similar to that of copper(II) acetate hydrate (Brown & Chidambaram, 1973). The Cu—Cu distance of 2.6055 (9) Å is shorter than the corresponding distance in [Cu2(µ-O2CCH3)4(H2O)2] (2.614 Å) as well as that in [Cu2(OOCC5H11)4(OCN2H4)2] [2.644 (2) Å] (Kozlevčar et al., 2000). The average Cu—O bond length of 1.9731 (12) Å and the longer average Cu—N distance of 2.1837 (13) Å in the title complex are considered to be normal for [Cu2(µ-O2CR)4L2] (L = axial ligand, R = alkyl group) type of structures (Catterick & Thornton, 1977). In (I), one pair of hydrocarbon chains has the common zigzag conformation while the other pair is distorted, which facilitates efficient packing.

For related structures of copper(II) complexes, see: Brown & Chidambaram (1973); Petrič et al. (1995); Lomer & Perera (1974); Kozlevčar et al. (2000); Catterick & Thornton (1977). For applications as catalysts of dicopper(II) tetracarboxylates, see: Abied et al. (1987); Kozlevčar et al. (1999); Bora et al. (2007); Das et al. (2007); Sarmah et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012/9 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2012/9 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound drawn with 30% probability ellipsoid. H-atoms are shown as circles of arbitrary radius. Only one component of the disordered alkyl chain is shown.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown by dotted lines.
Tetrakis(µ-caproato-κ2O:O')bis[(4-cyanopyridine-κN1)copper(II)] top
Crystal data top
[Cu2(C6H11O2)4(C6H4N2)2]F(000) = 1672
Mr = 795.92Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7740 (4) ÅCell parameters from 6882 reflections
b = 25.3083 (11) Åθ = 2.6–28.2°
c = 17.7893 (8) ŵ = 1.15 mm1
β = 101.321 (2)°T = 100 K
V = 3873.3 (3) Å3Plate, green
Z = 40.42 × 0.18 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8952 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
ω and φ scanθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.780, Tmax = 0.851k = 3527
29777 measured reflectionsl = 2520
11382 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.043P]
where P = (Fo2 + 2Fc2)/3
11382 reflections(Δ/σ)max = 0.002
502 parametersΔρmax = 0.47 e Å3
155 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(C6H11O2)4(C6H4N2)2]V = 3873.3 (3) Å3
Mr = 795.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7740 (4) ŵ = 1.15 mm1
b = 25.3083 (11) ÅT = 100 K
c = 17.7893 (8) Å0.42 × 0.18 × 0.14 mm
β = 101.321 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
11382 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8952 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.851Rint = 0.032
29777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035155 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
11382 reflectionsΔρmin = 0.40 e Å3
502 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One of the four pentane side chains was found to be two fold disordered.The components of disorder could be completed through successive difference fourier.The two components were refined with sum of their occupancies restrained as 1. Also the bond distances and thermal parameters of the disordered components were restrained to be with in chemically meaningful range. Finally when the refinement converged the relative occupancies were 0.725 and 0.275. The alkyl and aromatic hydrogens were allowed to ride at a distance of 0.99Å and 0.95Å respectively during refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.60748 (19)0.30675 (7)0.58958 (9)0.0163 (3)
H10.63810.27110.58510.020*
C20.6355 (2)0.34294 (7)0.53544 (10)0.0177 (3)
H20.68340.33240.49430.021*
C30.59136 (19)0.39498 (7)0.54309 (9)0.0164 (3)
C40.52020 (19)0.40919 (7)0.60344 (9)0.0166 (3)
H40.48850.44460.60940.020*
C50.49707 (19)0.37039 (7)0.65427 (9)0.0155 (3)
H50.44900.37980.69580.019*
C60.6159 (2)0.43498 (8)0.48848 (10)0.0223 (4)
C70.24481 (19)0.10600 (7)0.89762 (9)0.0157 (3)
H70.27100.08990.85360.019*
C80.16697 (19)0.07593 (7)0.94337 (9)0.0172 (3)
H80.13950.04020.93120.021*
C90.13064 (19)0.10037 (7)1.00806 (9)0.0157 (3)
C100.17279 (19)0.15263 (7)1.02468 (9)0.0152 (3)
H100.15010.16961.06880.018*
C110.24889 (18)0.17907 (7)0.97479 (9)0.0143 (3)
H110.27710.21500.98520.017*
C120.0483 (2)0.07087 (7)1.05751 (10)0.0202 (4)
C130.48541 (19)0.30546 (7)0.88176 (10)0.0165 (3)
C140.5101 (2)0.34881 (7)0.94087 (10)0.0217 (4)
H14A0.56420.33360.99020.026*
H14B0.40690.36120.94820.026*
C150.6021 (2)0.39649 (7)0.92292 (10)0.0223 (4)
H15A0.69770.38430.90650.027*
H15B0.53920.41650.88000.027*
C160.6459 (2)0.43256 (7)0.99196 (10)0.0220 (4)
H16A0.54970.44351.00900.026*
H16B0.70980.41221.03430.026*
C170.7348 (3)0.48173 (8)0.97790 (11)0.0295 (4)
H17A0.82840.47120.95820.035*
H17B0.66880.50350.93810.035*
C180.7842 (3)0.51469 (8)1.04962 (11)0.0332 (5)
H18A0.69230.52441.07030.050*
H18B0.83630.54681.03700.050*
H18C0.85580.49421.08800.050*
C190.70285 (19)0.19658 (7)0.81562 (9)0.0154 (3)
C200.86267 (19)0.17169 (7)0.82889 (10)0.0176 (3)
H20A0.87260.14580.87130.021*
H20B0.94270.19930.84390.021*
C210.8892 (2)0.14391 (8)0.75616 (10)0.0226 (4)
H21A0.87880.17020.71430.027*
H21B0.99690.13020.76530.027*
C220.7773 (2)0.09835 (8)0.73012 (11)0.0253 (4)
H22A0.66940.11130.72540.030*
H22B0.79030.08670.67860.030*
C230.8004 (2)0.05124 (8)0.78378 (12)0.0297 (4)
H23A0.79360.06330.83600.036*
H23B0.90610.03680.78600.036*
C240.6826 (3)0.00750 (10)0.75984 (13)0.0411 (6)
H24A0.57840.02040.76240.062*
H24B0.70830.02270.79440.062*
H24C0.68490.00340.70720.062*
C250.15800 (19)0.27344 (7)0.74169 (9)0.0150 (3)
C260.00487 (19)0.30213 (7)0.72607 (10)0.0174 (3)
H26A0.07430.28130.74580.021*
H26B0.03100.30690.67020.021*
C270.0260 (2)0.35598 (7)0.76576 (10)0.0198 (4)
H27A0.05920.35050.82170.024*
H27B0.10970.37550.74770.024*
C280.12088 (19)0.38928 (7)0.75090 (10)0.0184 (3)
H28A0.20240.37100.77250.022*
H28B0.15860.39260.69490.022*
C290.0954 (2)0.44412 (8)0.78583 (11)0.0252 (4)
H29A0.07420.44090.84240.030*
H29B0.00250.46000.77100.030*
C300.2329 (2)0.48086 (8)0.76122 (12)0.0325 (5)
H30A0.25000.48630.70560.049*
H30B0.21140.51490.78740.049*
H30C0.32600.46510.77470.049*
C310.36022 (19)0.16115 (7)0.68197 (10)0.0166 (3)
C320.2997 (7)0.1186 (4)0.6233 (6)0.0184 (13)0.725 (5)
H32A0.35230.08480.64050.022*0.725 (5)
H32B0.32790.12820.57390.022*0.725 (5)
C330.1248 (4)0.11020 (16)0.6104 (2)0.0188 (7)0.725 (5)
H33A0.09650.10050.65980.023*0.725 (5)
H33B0.09660.08020.57480.023*0.725 (5)
C340.0300 (3)0.15831 (11)0.57799 (15)0.0245 (7)0.725 (5)
H34A0.08000.15240.58140.029*0.725 (5)
H34B0.06750.18940.61010.029*0.725 (5)
C350.0382 (4)0.17068 (13)0.49539 (17)0.0380 (9)0.725 (5)
H35A0.01190.13840.46420.046*0.725 (5)
H35B0.14620.18060.49290.046*0.725 (5)
C360.0707 (9)0.2152 (2)0.4604 (3)0.0436 (13)0.725 (5)
H36A0.17660.20740.46710.065*0.725 (5)
H36B0.06950.21810.40550.065*0.725 (5)
H36C0.03580.24860.48590.065*0.725 (5)
C32'0.3276 (19)0.1158 (10)0.6250 (17)0.014 (3)0.275 (5)
H32C0.38590.12000.58300.016*0.275 (5)
H32D0.35370.08130.65040.016*0.275 (5)
C33'0.1558 (13)0.1214 (4)0.5961 (6)0.026 (2)0.275 (5)
H33C0.10330.11990.64050.031*0.275 (5)
H33D0.11930.09070.56290.031*0.275 (5)
C34'0.1052 (8)0.1717 (3)0.5512 (4)0.0249 (17)0.275 (5)
H34C0.13500.20230.58560.030*0.275 (5)
H34D0.16320.17440.50890.030*0.275 (5)
C35'0.0658 (9)0.1753 (3)0.5179 (5)0.040 (2)0.275 (5)
H35C0.09630.14610.48100.049*0.275 (5)
H35D0.12570.17170.55930.049*0.275 (5)
C36'0.103 (2)0.2273 (5)0.4779 (9)0.048 (4)0.275 (5)
H36D0.07070.25620.51430.073*0.275 (5)
H36E0.21530.22960.45810.073*0.275 (5)
H36F0.04770.23000.43530.073*0.275 (5)
N10.53919 (15)0.31990 (6)0.64800 (8)0.0139 (3)
N20.28465 (15)0.15633 (5)0.91233 (8)0.0139 (3)
N30.6346 (2)0.46784 (7)0.44711 (10)0.0327 (4)
N40.0195 (2)0.04841 (7)1.09612 (9)0.0286 (4)
O10.49867 (14)0.31614 (5)0.81437 (7)0.0187 (3)
O20.45038 (14)0.26065 (5)0.90499 (7)0.0188 (3)
O30.67962 (13)0.23458 (5)0.76840 (7)0.0201 (3)
O40.60184 (13)0.17736 (5)0.84962 (7)0.0174 (2)
O50.25478 (13)0.28500 (5)0.69930 (7)0.0179 (2)
O60.18508 (13)0.24217 (5)0.79778 (7)0.0189 (3)
O70.42718 (15)0.20116 (5)0.66123 (7)0.0204 (3)
O80.32866 (14)0.15394 (5)0.74747 (7)0.0183 (3)
Cu10.47349 (2)0.26351 (2)0.72892 (2)0.01245 (5)
Cu20.38502 (2)0.20385 (2)0.83178 (2)0.01225 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (8)0.0161 (8)0.0153 (8)0.0002 (6)0.0037 (6)0.0009 (6)
C20.0192 (8)0.0212 (9)0.0132 (8)0.0029 (7)0.0045 (7)0.0000 (7)
C30.0146 (8)0.0197 (9)0.0137 (8)0.0047 (6)0.0004 (6)0.0043 (7)
C40.0174 (8)0.0132 (8)0.0181 (8)0.0003 (6)0.0006 (7)0.0021 (6)
C50.0143 (8)0.0169 (8)0.0151 (8)0.0002 (6)0.0024 (6)0.0006 (6)
C60.0249 (9)0.0231 (9)0.0187 (9)0.0010 (7)0.0040 (7)0.0039 (7)
C70.0185 (8)0.0143 (8)0.0137 (8)0.0000 (6)0.0023 (6)0.0012 (6)
C80.0191 (8)0.0148 (8)0.0162 (8)0.0038 (6)0.0001 (7)0.0010 (6)
C90.0141 (8)0.0186 (8)0.0140 (8)0.0020 (6)0.0019 (6)0.0038 (6)
C100.0153 (8)0.0172 (8)0.0132 (7)0.0017 (6)0.0029 (6)0.0019 (6)
C110.0141 (7)0.0127 (8)0.0158 (8)0.0009 (6)0.0023 (6)0.0010 (6)
C120.0227 (9)0.0199 (9)0.0182 (8)0.0042 (7)0.0046 (7)0.0013 (7)
C130.0169 (8)0.0165 (8)0.0164 (8)0.0008 (6)0.0043 (7)0.0003 (6)
C140.0322 (10)0.0165 (9)0.0179 (8)0.0068 (7)0.0087 (8)0.0037 (7)
C150.0325 (10)0.0156 (8)0.0204 (9)0.0055 (7)0.0090 (8)0.0035 (7)
C160.0308 (10)0.0172 (9)0.0183 (9)0.0037 (7)0.0055 (8)0.0011 (7)
C170.0466 (12)0.0206 (10)0.0233 (10)0.0119 (9)0.0113 (9)0.0036 (8)
C180.0511 (13)0.0228 (10)0.0262 (10)0.0143 (9)0.0086 (10)0.0058 (8)
C190.0150 (8)0.0144 (8)0.0158 (8)0.0002 (6)0.0007 (6)0.0014 (6)
C200.0140 (8)0.0195 (9)0.0184 (8)0.0017 (6)0.0007 (7)0.0008 (7)
C210.0223 (9)0.0238 (9)0.0226 (9)0.0058 (7)0.0064 (7)0.0019 (8)
C220.0250 (10)0.0291 (10)0.0209 (9)0.0052 (8)0.0023 (8)0.0044 (8)
C230.0316 (11)0.0275 (11)0.0303 (11)0.0058 (9)0.0067 (9)0.0024 (9)
C240.0443 (13)0.0426 (14)0.0389 (13)0.0172 (11)0.0144 (11)0.0106 (11)
C250.0139 (8)0.0133 (8)0.0176 (8)0.0014 (6)0.0026 (6)0.0003 (6)
C260.0135 (8)0.0180 (8)0.0208 (8)0.0018 (6)0.0033 (7)0.0031 (7)
C270.0164 (8)0.0202 (9)0.0217 (9)0.0028 (7)0.0012 (7)0.0003 (7)
C280.0164 (8)0.0200 (9)0.0183 (8)0.0030 (7)0.0024 (7)0.0000 (7)
C290.0246 (9)0.0238 (10)0.0269 (10)0.0030 (8)0.0040 (8)0.0046 (8)
C300.0368 (12)0.0248 (10)0.0359 (11)0.0094 (9)0.0077 (9)0.0070 (9)
C310.0176 (8)0.0152 (8)0.0176 (8)0.0013 (6)0.0048 (7)0.0020 (7)
C320.021 (3)0.018 (2)0.0169 (19)0.002 (2)0.007 (2)0.0019 (15)
C330.0200 (16)0.0190 (17)0.0170 (16)0.0056 (12)0.0023 (12)0.0026 (12)
C340.0205 (13)0.0258 (14)0.0264 (14)0.0032 (11)0.0025 (11)0.0049 (11)
C350.052 (2)0.0336 (17)0.0294 (17)0.0076 (15)0.0090 (15)0.0086 (13)
C360.060 (3)0.027 (3)0.040 (3)0.001 (2)0.001 (2)0.003 (2)
C32'0.012 (5)0.012 (5)0.020 (5)0.002 (4)0.009 (4)0.005 (4)
C33'0.037 (5)0.020 (4)0.024 (4)0.015 (3)0.013 (4)0.010 (3)
C34'0.027 (4)0.024 (3)0.021 (3)0.004 (3)0.004 (3)0.002 (3)
C35'0.032 (4)0.038 (4)0.042 (5)0.010 (4)0.015 (4)0.004 (4)
C36'0.066 (10)0.031 (7)0.037 (7)0.003 (6)0.017 (6)0.008 (6)
N10.0129 (6)0.0150 (7)0.0133 (6)0.0012 (5)0.0011 (5)0.0029 (5)
N20.0129 (6)0.0142 (7)0.0139 (6)0.0001 (5)0.0011 (5)0.0024 (5)
N30.0436 (11)0.0296 (10)0.0278 (9)0.0016 (8)0.0139 (8)0.0109 (8)
N40.0367 (9)0.0242 (9)0.0283 (9)0.0082 (7)0.0144 (8)0.0001 (7)
O10.0262 (7)0.0158 (6)0.0146 (6)0.0024 (5)0.0053 (5)0.0003 (5)
O20.0260 (6)0.0155 (6)0.0160 (6)0.0053 (5)0.0066 (5)0.0012 (5)
O30.0140 (6)0.0200 (6)0.0270 (7)0.0019 (5)0.0055 (5)0.0093 (5)
O40.0161 (6)0.0194 (6)0.0170 (6)0.0019 (5)0.0044 (5)0.0040 (5)
O50.0145 (6)0.0217 (6)0.0184 (6)0.0020 (5)0.0050 (5)0.0052 (5)
O60.0156 (6)0.0184 (6)0.0238 (6)0.0021 (5)0.0066 (5)0.0076 (5)
O70.0284 (7)0.0164 (6)0.0188 (6)0.0026 (5)0.0103 (5)0.0018 (5)
O80.0236 (6)0.0170 (6)0.0144 (6)0.0035 (5)0.0039 (5)0.0006 (5)
Cu10.01285 (10)0.01172 (10)0.01342 (10)0.00012 (7)0.00414 (7)0.00229 (7)
Cu20.01339 (10)0.01170 (10)0.01211 (10)0.00084 (7)0.00359 (7)0.00147 (7)
Geometric parameters (Å, º) top
C1—N11.340 (2)C25—O51.2754 (18)
C1—C21.385 (2)C25—C261.504 (2)
C1—H10.9500C26—C271.529 (2)
C2—C31.387 (2)C26—H26A0.9900
C2—H20.9500C26—H26B0.9900
C3—C41.391 (2)C27—C281.519 (2)
C3—C61.448 (2)C27—H27A0.9900
C4—C51.377 (2)C27—H27B0.9900
C4—H40.9500C28—C291.519 (3)
C5—N11.341 (2)C28—H28A0.9900
C5—H50.9500C28—H28B0.9900
C6—N31.143 (2)C29—C301.518 (3)
C7—N21.333 (2)C29—H29A0.9900
C7—C81.388 (2)C29—H29B0.9900
C7—H70.9500C30—H30A0.9800
C8—C91.398 (2)C30—H30B0.9800
C8—H80.9500C30—H30C0.9800
C9—C101.389 (2)C31—O71.262 (2)
C9—C121.450 (2)C31—O81.2627 (19)
C10—C111.383 (2)C31—C32'1.520 (14)
C10—H100.9500C31—C321.520 (6)
C11—N21.342 (2)C32—C331.521 (7)
C11—H110.9500C32—H32A0.9900
C12—N41.144 (2)C32—H32B0.9900
C13—O11.2564 (19)C33—C341.523 (5)
C13—O21.265 (2)C33—H33A0.9900
C13—C141.506 (2)C33—H33B0.9900
C14—C151.520 (2)C34—C351.518 (4)
C14—H14A0.9900C34—H34A0.9900
C14—H14B0.9900C34—H34B0.9900
C15—C161.518 (2)C35—C361.529 (6)
C15—H15A0.9900C35—H35A0.9900
C15—H15B0.9900C35—H35B0.9900
C16—C171.516 (3)C36—H36A0.9800
C16—H16A0.9900C36—H36B0.9800
C16—H16B0.9900C36—H36C0.9800
C17—C181.515 (3)C32'—C33'1.500 (13)
C17—H17A0.9900C32'—H32C0.9900
C17—H17B0.9900C32'—H32D0.9900
C18—H18A0.9800C33'—C34'1.521 (10)
C18—H18B0.9800C33'—H33C0.9900
C18—H18C0.9800C33'—H33D0.9900
C19—O41.2641 (19)C34'—C35'1.504 (9)
C19—O31.267 (2)C34'—H34C0.9900
C19—C201.513 (2)C34'—H34D0.9900
C20—C211.530 (2)C35'—C36'1.500 (12)
C20—H20A0.9900C35'—H35C0.9900
C20—H20B0.9900C35'—H35D0.9900
C21—C221.526 (3)C36'—H36D0.9800
C21—H21A0.9900C36'—H36E0.9800
C21—H21B0.9900C36'—H36F0.9800
C22—C231.516 (3)N1—Cu12.1833 (13)
C22—H22A0.9900N2—Cu22.1841 (13)
C22—H22B0.9900O1—Cu12.0006 (12)
C23—C241.517 (3)O2—Cu21.9489 (12)
C23—H23A0.9900O3—Cu11.9497 (12)
C23—H23B0.9900O4—Cu21.9829 (12)
C24—H24A0.9800O5—Cu11.9643 (12)
C24—H24B0.9800O6—Cu21.9919 (12)
C24—H24C0.9800O7—Cu11.9781 (12)
C25—O61.259 (2)O8—Cu21.9489 (12)
N1—C1—C2122.84 (16)C30—C29—H29A108.9
N1—C1—H1118.6C28—C29—H29A108.9
C2—C1—H1118.6C30—C29—H29B108.9
C1—C2—C3117.95 (15)C28—C29—H29B108.9
C1—C2—H2121.0H29A—C29—H29B107.7
C3—C2—H2121.0C29—C30—H30A109.5
C2—C3—C4119.83 (15)C29—C30—H30B109.5
C2—C3—C6121.12 (15)H30A—C30—H30B109.5
C4—C3—C6119.05 (16)C29—C30—H30C109.5
C5—C4—C3117.96 (16)H30A—C30—H30C109.5
C5—C4—H4121.0H30B—C30—H30C109.5
C3—C4—H4121.0O7—C31—O8125.79 (16)
N1—C5—C4123.13 (15)O7—C31—C32'116.6 (14)
N1—C5—H5118.4O8—C31—C32'117.4 (14)
C4—C5—H5118.4O7—C31—C32119.2 (5)
N3—C6—C3177.7 (2)O8—C31—C32114.9 (5)
N2—C7—C8123.30 (15)C31—C32—C33114.1 (5)
N2—C7—H7118.3C31—C32—H32A108.7
C8—C7—H7118.3C33—C32—H32A108.7
C7—C8—C9117.27 (16)C31—C32—H32B108.7
C7—C8—H8121.4C33—C32—H32B108.7
C9—C8—H8121.4H32A—C32—H32B107.6
C10—C9—C8120.16 (14)C32—C33—C34113.9 (5)
C10—C9—C12120.30 (15)C32—C33—H33A108.8
C8—C9—C12119.54 (16)C34—C33—H33A108.8
C11—C10—C9117.76 (15)C32—C33—H33B108.8
C11—C10—H10121.1C34—C33—H33B108.8
C9—C10—H10121.1H33A—C33—H33B107.7
N2—C11—C10122.99 (15)C35—C34—C33114.0 (2)
N2—C11—H11118.5C35—C34—H34A108.8
C10—C11—H11118.5C33—C34—H34A108.8
N4—C12—C9178.4 (2)C35—C34—H34B108.8
O1—C13—O2125.34 (16)C33—C34—H34B108.8
O1—C13—C14118.83 (15)H34A—C34—H34B107.7
O2—C13—C14115.83 (14)C34—C35—C36113.7 (3)
C13—C14—C15116.17 (14)C34—C35—H35A108.8
C13—C14—H14A108.2C36—C35—H35A108.8
C15—C14—H14A108.2C34—C35—H35B108.8
C13—C14—H14B108.2C36—C35—H35B108.8
C15—C14—H14B108.2H35A—C35—H35B107.7
H14A—C14—H14B107.4C35—C36—H36A109.5
C16—C15—C14111.59 (14)C35—C36—H36B109.5
C16—C15—H15A109.3H36A—C36—H36B109.5
C14—C15—H15A109.3C35—C36—H36C109.5
C16—C15—H15B109.3H36A—C36—H36C109.5
C14—C15—H15B109.3H36B—C36—H36C109.5
H15A—C15—H15B108.0C33'—C32'—C31101.7 (11)
C17—C16—C15114.64 (14)C33'—C32'—H32C111.4
C17—C16—H16A108.6C31—C32'—H32C111.4
C15—C16—H16A108.6C33'—C32'—H32D111.4
C17—C16—H16B108.6C31—C32'—H32D111.4
C15—C16—H16B108.6H32C—C32'—H32D109.3
H16A—C16—H16B107.6C32'—C33'—C34'115.3 (15)
C18—C17—C16112.61 (15)C32'—C33'—H33C108.4
C18—C17—H17A109.1C34'—C33'—H33C108.4
C16—C17—H17A109.1C32'—C33'—H33D108.4
C18—C17—H17B109.1C34'—C33'—H33D108.4
C16—C17—H17B109.1H33C—C33'—H33D107.5
H17A—C17—H17B107.8C35'—C34'—C33'115.1 (7)
C17—C18—H18A109.5C35'—C34'—H34C108.5
C17—C18—H18B109.5C33'—C34'—H34C108.5
H18A—C18—H18B109.5C35'—C34'—H34D108.5
C17—C18—H18C109.5C33'—C34'—H34D108.5
H18A—C18—H18C109.5H34C—C34'—H34D107.5
H18B—C18—H18C109.5C36'—C35'—C34'110.4 (10)
O4—C19—O3124.93 (15)C36'—C35'—H35C109.6
O4—C19—C20118.72 (15)C34'—C35'—H35C109.6
O3—C19—C20116.30 (14)C36'—C35'—H35D109.6
C19—C20—C21110.45 (14)C34'—C35'—H35D109.6
C19—C20—H20A109.6H35C—C35'—H35D108.1
C21—C20—H20A109.6C35'—C36'—H36D109.5
C19—C20—H20B109.6C35'—C36'—H36E109.5
C21—C20—H20B109.6H36D—C36'—H36E109.5
H20A—C20—H20B108.1C35'—C36'—H36F109.5
C22—C21—C20114.11 (14)H36D—C36'—H36F109.5
C22—C21—H21A108.7H36E—C36'—H36F109.5
C20—C21—H21A108.7C1—N1—C5118.29 (14)
C22—C21—H21B108.7C1—N1—Cu1124.42 (11)
C20—C21—H21B108.7C5—N1—Cu1117.09 (10)
H21A—C21—H21B107.6C7—N2—C11118.51 (13)
C23—C22—C21113.86 (16)C7—N2—Cu2121.41 (10)
C23—C22—H22A108.8C11—N2—Cu2119.80 (11)
C21—C22—H22A108.8C13—O1—Cu1124.38 (11)
C23—C22—H22B108.8C13—O2—Cu2120.09 (11)
C21—C22—H22B108.8C19—O3—Cu1122.75 (10)
H22A—C22—H22B107.7C19—O4—Cu2122.28 (11)
C22—C23—C24113.41 (18)C25—O5—Cu1120.44 (11)
C22—C23—H23A108.9C25—O6—Cu2124.38 (10)
C24—C23—H23A108.9C31—O7—Cu1120.94 (11)
C22—C23—H23B108.9C31—O8—Cu2123.24 (11)
C24—C23—H23B108.9O3—Cu1—O5171.42 (5)
H23A—C23—H23B107.7O3—Cu1—O789.14 (5)
C23—C24—H24A109.5O5—Cu1—O789.11 (5)
C23—C24—H24B109.5O3—Cu1—O191.14 (5)
H24A—C24—H24B109.5O5—Cu1—O188.61 (5)
C23—C24—H24C109.5O7—Cu1—O1166.54 (5)
H24A—C24—H24C109.5O3—Cu1—N197.85 (5)
H24B—C24—H24C109.5O5—Cu1—N190.72 (5)
O6—C25—O5124.66 (15)O7—Cu1—N199.76 (5)
O6—C25—C26118.20 (14)O1—Cu1—N193.53 (5)
O5—C25—C26117.01 (14)O3—Cu1—Cu284.98 (3)
C25—C26—C27108.79 (14)O5—Cu1—Cu286.49 (3)
C25—C26—H26A109.9O7—Cu1—Cu284.91 (3)
C27—C26—H26A109.9O1—Cu1—Cu281.71 (3)
C25—C26—H26B109.9N1—Cu1—Cu2174.54 (4)
C27—C26—H26B109.9O8—Cu2—O2171.58 (5)
H26A—C26—H26B108.3O8—Cu2—O489.69 (5)
C28—C27—C26113.11 (14)O2—Cu2—O489.73 (5)
C28—C27—H27A109.0O8—Cu2—O690.38 (5)
C26—C27—H27A109.0O2—Cu2—O688.27 (5)
C28—C27—H27B109.0O4—Cu2—O6166.72 (5)
C26—C27—H27B109.0O8—Cu2—N294.24 (5)
H27A—C27—H27B107.8O2—Cu2—N294.09 (5)
C27—C28—C29112.59 (15)O4—Cu2—N2101.93 (5)
C27—C28—H28A109.1O6—Cu2—N291.31 (5)
C29—C28—H28A109.1O8—Cu2—Cu184.29 (3)
C27—C28—H28B109.1O2—Cu2—Cu187.29 (3)
C29—C28—H28B109.1O4—Cu2—Cu184.23 (3)
H28A—C28—H28B107.8O6—Cu2—Cu182.56 (3)
C30—C29—C28113.38 (16)N2—Cu2—Cu1173.68 (4)
N1—C1—C2—C30.5 (3)O7—C31—C32'—C33'105.1 (16)
C1—C2—C3—C40.6 (3)O8—C31—C32'—C33'80 (2)
C1—C2—C3—C6179.60 (16)C32—C31—C32'—C33'3 (10)
C2—C3—C4—C50.4 (3)C31—C32'—C33'—C34'65 (2)
C6—C3—C4—C5179.51 (16)C32'—C33'—C34'—C35'176.0 (11)
C3—C4—C5—N10.3 (3)C33'—C34'—C35'—C36'177.6 (9)
N2—C7—C8—C90.4 (3)C2—C1—N1—C50.4 (3)
C7—C8—C9—C100.3 (2)C2—C1—N1—Cu1174.28 (13)
C7—C8—C9—C12179.51 (16)C4—C5—N1—C10.2 (3)
C8—C9—C10—C110.8 (2)C4—C5—N1—Cu1174.79 (13)
C12—C9—C10—C11178.94 (16)C8—C7—N2—C110.5 (3)
C9—C10—C11—N20.8 (3)C8—C7—N2—Cu2173.47 (13)
O1—C13—C14—C1520.5 (2)C10—C11—N2—C70.1 (2)
O2—C13—C14—C15160.38 (17)C10—C11—N2—Cu2174.20 (13)
C13—C14—C15—C16169.24 (16)O2—C13—O1—Cu12.0 (2)
C14—C15—C16—C17178.66 (18)C14—C13—O1—Cu1178.98 (12)
C15—C16—C17—C18176.55 (18)O1—C13—O2—Cu28.2 (2)
O4—C19—C20—C21111.20 (17)C14—C13—O2—Cu2170.82 (12)
O3—C19—C20—C2166.5 (2)O4—C19—O3—Cu19.1 (2)
C19—C20—C21—C2262.4 (2)C20—C19—O3—Cu1168.42 (11)
C20—C21—C22—C2368.0 (2)O3—C19—O4—Cu21.3 (2)
C21—C22—C23—C24176.61 (16)C20—C19—O4—Cu2176.17 (11)
O6—C25—C26—C2793.78 (18)O6—C25—O5—Cu110.5 (2)
O5—C25—C26—C2782.38 (18)C26—C25—O5—Cu1165.34 (11)
C25—C26—C27—C28177.65 (14)O5—C25—O6—Cu20.3 (2)
C26—C27—C28—C29175.86 (15)C26—C25—O6—Cu2176.16 (11)
C27—C28—C29—C30170.86 (16)O8—C31—O7—Cu16.6 (2)
O7—C31—C32—C33118.7 (8)C32'—C31—O7—Cu1178.9 (8)
O8—C31—C32—C3357.1 (10)C32—C31—O7—Cu1168.6 (3)
C32'—C31—C32—C33165 (13)O7—C31—O8—Cu22.0 (2)
C31—C32—C33—C3462.9 (10)C32'—C31—O8—Cu2172.4 (8)
C32—C33—C34—C3570.1 (5)C32—C31—O8—Cu2177.4 (3)
C33—C34—C35—C36173.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.553.301 (2)137
C4—H4···N3ii0.952.583.444 (2)151
C8—H8···N4iii0.952.483.422 (2)169
C10—H10···O5iv0.952.593.432 (2)148
C20—H20B···O6v0.992.663.479 (2)141
C26—H26A···O3vi0.992.563.532 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y, z+2; (iv) x, y+1/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.553.301 (2)137
C4—H4···N3ii0.952.583.444 (2)151
C8—H8···N4iii0.952.483.422 (2)169
C10—H10···O5iv0.952.593.432 (2)148
C20—H20B···O6v0.992.663.479 (2)141
C26—H26A···O3vi0.992.563.532 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y, z+2; (iv) x, y+1/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z.
 

Acknowledgements

The authors thank the SAIF, Department of Instrumentation & USIC, Gauhati University, Guwahati, India, for the data collection. SB thanks the UGC, India, for a scholarship awarded under its BSR Fellowship scheme.

References

First citationAbied, H., Guillon, D., Skoulios, A., Weber, P., Giroud-godquin, A. M. & Marchon, J. C. (1987). Liq. Cryst. 2, 269–279.  CrossRef CAS Web of Science Google Scholar
First citationBora, S. J., Sarmah, P., Phukan, P. & Das, B. K. (2007). Acta Cryst. C63, m392–m394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J. & Thornton, P. (1977). Adv. Inorg. Chem. Radiochem. 20, 291–362.  CrossRef CAS Google Scholar
First citationDas, B. K., Bora, S. J. & Sarmah, P. (2007). Acta Cryst. E63, m251–m252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKozlevčar, B., Lah, N., Leban, I. & Turel, I. (1999). Croat. Chem. Acta, 72, 427–441.  Google Scholar
First citationKozlevčar, B., Lah, N., Makuc, S., Šegedin, P. & Pohleven, F. (2000). Acta Chim. Slov. 47, 421–434.  Google Scholar
First citationLomer, T. R. & Perera, K. (1974). Acta Cryst. B30, 2912–2913.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetrič, M., Leban, I. & Šegedin, P. (1995). Polyhedron, 14, 983–989.  Google Scholar
First citationSarmah, P., Das, B. K. & Phukan, P. (2010). Catal. Commun. 11, 932–935.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds