organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o504-o505

Crystal structure of 1,4-dieth­­oxy-9,10-anthra­quinone

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan, bDepartment of Materials Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan, and cDepartment of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 16 June 2015; accepted 22 June 2015; online 24 June 2015)

The asymmetric unit of the title compound, C18H16O4, contains two crystallographically independent mol­ecules. The anthra­quinone ring systems are slightly bent with dihedral angles of 2.33 (8) and 13.31 (9)° between the two terminal benzene rings. In the crystal, the two independent mol­ecules adopt slipped-parallel π-overlap with an average inter­planar distance of 3.45 Å, forming a dimer; the centroid–centroid distances of the ππ inter­actions are 3.6659 (15)–3.8987 (15) Å. The mol­ecules are also linked by C—H⋯O inter­actions, forming a tape structure along the a-axis direction. The crystal packing is characterized by a dimer-herringbone pattern.

1. Related literature

For synthesis of alk­oxy-substituted 9,10-anthra­quinones, see: Kitamura et al. (2004[Kitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385-1393.]). For background information on substitution effects of alk­oxy-substituted 9,10-anthra­quinones, see; Ohta et al. (2012[Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674-676.]). For related structures of 1,4-diprop­oxy-9,10-anthra­quinone polymorphs, see: Kitamura et al. (2015[Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015). Bull. Chem. Soc. Jpn, 88, 713-715.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H16O4

  • Mr = 296.31

  • Monoclinic, P 21 /c

  • a = 13.5514 (11) Å

  • b = 14.7204 (11) Å

  • c = 14.5905 (10) Å

  • β = 90.604 (3)°

  • V = 2910.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.56 × 0.40 × 0.36 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • 27699 measured reflections

  • 6645 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.045

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.273

  • S = 0.93

  • 6645 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8A⋯O3B 0.94 2.48 3.234 (3) 137
C8B—H8B⋯O3A 0.94 2.55 3.304 (4) 137
C11A—H11A⋯O4Bi 0.94 2.60 3.325 (3) 135
C11B—H11B⋯O4Aii 0.94 2.46 3.199 (4) 135
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

9,10-Anthraquinone is an important framework as a dye. Various kinds of hydroxy-substituted anthraquinone dyes have been manufactured. However, there were little reports on alkoxy-substituted anthraquinone. In recent years, we presented the effects of the alkoxy substitution on the optical properties of 2,6-dialkoxy and 2,3,6,7-tetraalkoxy derivatives in solution as well as in the solid state (Ohta et al., 2012). Very recently, we have reported crystal structures of two polymorphs of 1,4-dipropoxy-9,10-anthraquinone, which contained red and yellow solids (Kitamura et al., 2015). The red crystal exhibited an anti-parallel arrangement along the stacking direction. On the other hand, the yellow crystal showed a slipped-parallel arrangement. To search the effect of alkyl chain length on molecular packing, we prepared the title compound, 1,4-diethoxy-9,10-anthraquinone, (I). In this paper, we present the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. Two crystallographically independent molecules were found in the asymmetric unit, although the two molecules had almost the same molecular structure. There was a difference in planarity between the two molecules. Thus, the anthraquinone framework was slightly bent at the central quinone ring. For example, the dihedral angle between the two terminal benzene rings in the anthraquinone was 2.33 (8)° for one molecule and 13.31 (9)° for the other. The packing structure displays a dimer-herringbone pattern (Fig. 2), which is completely different from those of 1,4-dipropoxy-9,10-anthraquinone polymorphs (Kitamura et al., 2015). In the dimer part, the two molecules adopt slipped-parallel π-stack with an average interplanar distance of 3.45 Å, which would result in a yellow color in the solid state. The crystal structure is also stabilized by C—H···O interactions along the lateral direction of molecules (Fig. 3).

Related literature top

For synthesis of alkoxy-substituted 9,10-anthraquinones, see: Kitamura et al. (2004). For background information on substitution effects of alkoxy-substituted 9,10-anthraquinones, see; Ohta et al. (2012). For related structures of 1,4-dipropoxy-9,10-anthraquinone polymorphs, see: Kitamura et al. (2015).

Experimental top

The title compound was prepared according to our previously reported method (Kitamura et al., 2004). A mixture of 1,4-hydrooxy-9,10-anthraquinone (2.20 g, 9.16 mmol), K2CO3 (2.51 g, 18.1 mmol), ethyl p-toluenesulfonate (5.02 g, 25.1 mmol) in o-dichlorobenzene (15 ml) was heated at reflux for 3 h under N2 gas. After cooling to room temperature, water (65 ml) was added to the reaction mixture. Then, the resulting solid was filtered off and washed with hexane to give the title compound (2.37 g, 87% yield) as a yellow solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution (m.p. 172–175 °C). Elemental analysis for C18H16O4: C 72.96, H 5.44. Found: C 72.75, H 5.51. TOF-MS(EI): m/z Calcd C18H16O4: 296.1049. Found: 296.1074.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H bonds of 0.94 Å, 0.98 Å, and 0.97 Å for aromatic, methylene and methyl groups, respectively, and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis, showing a dimer-herringbone pattern. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. A packing diagram of the title compound, showing C—H···O interactions (blue lines).
1,4-Diethoxy-9,10-anthraquinone top
Crystal data top
C18H16O4F(000) = 1248
Mr = 296.31Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11158 reflections
a = 13.5514 (11) Åθ = 3–27.5°
b = 14.7204 (11) ŵ = 0.10 mm1
c = 14.5905 (10) ÅT = 223 K
β = 90.604 (3)°Prism, orange
V = 2910.4 (4) Å30.56 × 0.40 × 0.36 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3129 reflections with I > 2σ(I)
Radiation source: fine-focus sealed x-ray tubeRint = 0.045
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 10 pixels mm-1h = 1717
ω scansk = 1919
27699 measured reflectionsl = 1618
6645 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.273 w = 1/[σ2(Fo2) + (0.1824P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
6645 reflectionsΔρmax = 0.27 e Å3
397 parametersΔρmin = 0.48 e Å3
Crystal data top
C18H16O4V = 2910.4 (4) Å3
Mr = 296.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.5514 (11) ŵ = 0.10 mm1
b = 14.7204 (11) ÅT = 223 K
c = 14.5905 (10) Å0.56 × 0.40 × 0.36 mm
β = 90.604 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3129 reflections with I > 2σ(I)
27699 measured reflectionsRint = 0.045
6645 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.273H-atom parameters constrained
S = 0.93Δρmax = 0.27 e Å3
6645 reflectionsΔρmin = 0.48 e Å3
397 parameters
Special details top

Experimental. 1H-NMR: δ 1.56 (t, J = 7.0 Hz, 6H), 4.20 (q, J = 7.0 Hz, 4H), 7.32 (s, 2H), 7.69–7.72 (m, 2H), 8.17–8.19 (m, 2H); 13C-NMR: δ 14.9, 66.0, 122.1, 123.4, 126.4, 133.2, 134.2, 153.6, 183.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.3813 (2)0.68438 (17)0.35528 (16)0.0548 (6)
C2A0.3271 (2)0.71337 (18)0.27977 (17)0.0611 (7)
H2A0.36050.73270.22710.073*
C3A0.2261 (2)0.71464 (18)0.27990 (16)0.0596 (7)
H3A0.19180.73470.22740.072*
C4A0.1731 (2)0.68680 (17)0.35617 (16)0.0546 (6)
C5A0.22559 (19)0.65664 (16)0.43427 (16)0.0518 (6)
C6A0.1713 (2)0.63214 (19)0.51927 (18)0.0611 (7)
C7A0.22803 (19)0.59444 (17)0.59796 (15)0.0527 (6)
C8A0.1770 (2)0.56507 (18)0.67540 (17)0.0632 (7)
H8A0.10780.56780.67660.076*
C9A0.2293 (2)0.5320 (2)0.75003 (17)0.0707 (8)
H9A0.19520.51210.80210.085*
C10A0.3301 (2)0.5279 (2)0.74903 (18)0.0726 (8)
H10A0.36470.50570.80050.087*
C11A0.3814 (2)0.5564 (2)0.67253 (18)0.0681 (8)
H11A0.45070.5530.67170.082*
C12A0.3296 (2)0.59013 (18)0.59665 (17)0.0572 (6)
C13A0.3855 (2)0.6237 (2)0.5163 (2)0.0734 (9)
C14A0.32994 (19)0.65421 (16)0.43355 (16)0.0530 (6)
C15A0.5325 (2)0.7171 (2)0.2792 (2)0.0782 (9)
H15A0.51190.77930.2650.094*
H15B0.51740.67870.2260.094*
C16A0.6399 (2)0.7146 (2)0.2998 (2)0.0814 (9)
H16A0.6760.73650.24710.122*
H16B0.65420.75310.35230.122*
H16C0.65980.65270.31340.122*
C17A0.0200 (2)0.7234 (2)0.28108 (18)0.0672 (7)
H17A0.03630.68970.22530.081*
H17B0.03730.78740.27190.081*
C18A0.0867 (2)0.7146 (2)0.3010 (2)0.0787 (9)
H18A0.12510.73860.250.118*
H18B0.10290.6510.30990.118*
H18C0.10190.74830.35620.118*
O1A0.48108 (14)0.68464 (14)0.35759 (12)0.0673 (5)
O2A0.07320 (14)0.68735 (14)0.35765 (12)0.0670 (5)
O3A0.08375 (17)0.6462 (2)0.52801 (15)0.1020 (9)
O4A0.47401 (18)0.6270 (3)0.5216 (2)0.1549 (16)
C1B0.31908 (18)0.42295 (17)0.93060 (15)0.0515 (6)
C2B0.2634 (2)0.3807 (2)0.99876 (16)0.0600 (7)
H2B0.2960.35261.04780.072*
C3B0.1627 (2)0.37894 (19)0.99648 (16)0.0582 (7)
H3B0.12760.34861.04320.07*
C4B0.11091 (18)0.42118 (16)0.92621 (15)0.0507 (6)
C5B0.16423 (18)0.46877 (16)0.85830 (14)0.0477 (6)
C6B0.11215 (18)0.51742 (17)0.78342 (15)0.0517 (6)
C7B0.17014 (18)0.54479 (16)0.70136 (15)0.0495 (6)
C8B0.1216 (2)0.57178 (19)0.62221 (17)0.0636 (7)
H8B0.05230.57070.62030.076*
C9B0.1754 (2)0.6001 (2)0.54668 (17)0.0683 (8)
H9B0.14260.61690.49280.082*
C10B0.2760 (2)0.6040 (2)0.54962 (17)0.0680 (8)
H10B0.3120.62410.4980.082*
C11B0.3252 (2)0.57867 (18)0.62810 (17)0.0634 (7)
H11B0.39440.58230.630.076*
C12B0.27238 (18)0.54778 (16)0.70427 (15)0.0499 (6)
C13B0.32523 (18)0.52046 (17)0.78847 (15)0.0520 (6)
C14B0.26902 (17)0.47017 (16)0.86019 (14)0.0474 (5)
C15B0.4706 (2)0.3711 (2)0.99707 (18)0.0672 (8)
H15C0.4620.40131.05650.081*
H15D0.44440.30921.00220.081*
C16B0.5768 (2)0.3682 (2)0.97143 (19)0.0714 (8)
H16D0.61290.33511.01780.107*
H16E0.60220.42960.96690.107*
H16F0.58470.33780.91280.107*
C17B0.04137 (19)0.36059 (19)0.98395 (17)0.0605 (7)
H17C0.01590.29830.98160.073*
H17D0.03350.38391.04640.073*
C18B0.1478 (2)0.3621 (2)0.95790 (19)0.0681 (7)
H18D0.18550.32441.00010.102*
H18E0.15460.33880.89610.102*
H18F0.17220.4240.96060.102*
O1B0.41883 (13)0.42021 (13)0.92745 (11)0.0609 (5)
O2B0.01133 (12)0.41697 (12)0.91984 (11)0.0586 (5)
O3B0.02445 (14)0.53591 (16)0.78861 (12)0.0763 (6)
O4B0.41212 (14)0.54036 (16)0.79662 (13)0.0792 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0605 (17)0.0546 (14)0.0495 (13)0.0036 (11)0.0078 (11)0.0019 (11)
C2A0.0725 (19)0.0649 (16)0.0460 (13)0.0059 (13)0.0096 (12)0.0024 (11)
C3A0.0730 (19)0.0623 (15)0.0436 (13)0.0014 (13)0.0008 (12)0.0022 (11)
C4A0.0588 (17)0.0563 (14)0.0488 (13)0.0021 (11)0.0015 (11)0.0009 (11)
C5A0.0555 (15)0.0521 (13)0.0478 (13)0.0009 (10)0.0027 (11)0.0039 (10)
C6A0.0500 (16)0.0738 (18)0.0595 (15)0.0006 (12)0.0044 (12)0.0125 (13)
C7A0.0571 (16)0.0554 (14)0.0456 (13)0.0020 (11)0.0035 (11)0.0040 (10)
C8A0.0642 (18)0.0737 (17)0.0519 (14)0.0018 (13)0.0090 (12)0.0057 (12)
C9A0.085 (2)0.0814 (19)0.0452 (14)0.0047 (16)0.0060 (13)0.0117 (13)
C10A0.080 (2)0.087 (2)0.0507 (15)0.0024 (16)0.0112 (13)0.0135 (14)
C11A0.0623 (18)0.0812 (19)0.0605 (16)0.0011 (13)0.0049 (13)0.0164 (14)
C12A0.0600 (17)0.0620 (15)0.0497 (13)0.0015 (12)0.0007 (11)0.0084 (11)
C13A0.0499 (17)0.102 (2)0.0680 (17)0.0035 (15)0.0006 (13)0.0333 (16)
C14A0.0550 (15)0.0549 (14)0.0490 (13)0.0013 (11)0.0026 (11)0.0048 (10)
C15A0.072 (2)0.100 (2)0.0625 (17)0.0060 (17)0.0221 (15)0.0049 (16)
C16A0.068 (2)0.099 (2)0.078 (2)0.0059 (17)0.0214 (16)0.0005 (17)
C17A0.0692 (19)0.0800 (19)0.0522 (14)0.0096 (14)0.0100 (12)0.0001 (13)
C18A0.068 (2)0.102 (2)0.0660 (17)0.0023 (16)0.0154 (14)0.0043 (16)
O1A0.0570 (12)0.0860 (13)0.0593 (11)0.0029 (9)0.0144 (9)0.0075 (9)
O2A0.0574 (12)0.0872 (13)0.0563 (10)0.0004 (9)0.0067 (8)0.0116 (9)
O3A0.0555 (14)0.165 (3)0.0855 (15)0.0170 (14)0.0145 (11)0.0563 (15)
O4A0.0496 (16)0.289 (4)0.126 (2)0.0097 (19)0.0050 (14)0.127 (3)
C1B0.0491 (14)0.0616 (14)0.0440 (12)0.0026 (11)0.0030 (10)0.0047 (10)
C2B0.0609 (17)0.0720 (17)0.0473 (13)0.0048 (13)0.0066 (12)0.0168 (12)
C3B0.0557 (16)0.0688 (16)0.0500 (13)0.0000 (12)0.0007 (11)0.0154 (12)
C4B0.0514 (15)0.0590 (14)0.0416 (12)0.0001 (11)0.0002 (10)0.0020 (10)
C5B0.0534 (14)0.0556 (13)0.0342 (11)0.0005 (10)0.0029 (9)0.0021 (9)
C6B0.0455 (14)0.0653 (15)0.0442 (12)0.0025 (11)0.0026 (10)0.0057 (11)
C7B0.0543 (15)0.0537 (13)0.0407 (11)0.0022 (10)0.0020 (10)0.0059 (10)
C8B0.0624 (17)0.0802 (18)0.0483 (13)0.0060 (14)0.0066 (12)0.0134 (12)
C9B0.075 (2)0.085 (2)0.0451 (13)0.0091 (15)0.0059 (13)0.0173 (13)
C10B0.074 (2)0.0826 (19)0.0474 (14)0.0010 (15)0.0059 (13)0.0200 (13)
C11B0.0597 (17)0.0770 (18)0.0534 (14)0.0034 (13)0.0030 (12)0.0164 (13)
C12B0.0546 (15)0.0539 (13)0.0413 (12)0.0013 (10)0.0028 (10)0.0056 (10)
C13B0.0475 (14)0.0630 (15)0.0455 (12)0.0023 (11)0.0027 (10)0.0063 (11)
C14B0.0511 (14)0.0551 (13)0.0359 (11)0.0002 (10)0.0036 (9)0.0007 (9)
C15B0.0576 (18)0.0847 (19)0.0596 (16)0.0086 (14)0.0113 (13)0.0203 (14)
C16B0.0570 (18)0.095 (2)0.0620 (16)0.0103 (15)0.0097 (13)0.0086 (15)
C17B0.0567 (17)0.0672 (16)0.0572 (14)0.0002 (12)0.0105 (12)0.0086 (12)
C18B0.0550 (17)0.0804 (19)0.0688 (17)0.0069 (14)0.0070 (13)0.0045 (14)
O1B0.0471 (11)0.0822 (13)0.0535 (10)0.0018 (8)0.0076 (8)0.0159 (8)
O2B0.0478 (11)0.0773 (12)0.0508 (9)0.0029 (8)0.0036 (7)0.0139 (8)
O3B0.0512 (12)0.1171 (17)0.0605 (11)0.0142 (11)0.0020 (8)0.0288 (11)
O4B0.0525 (12)0.1193 (17)0.0659 (12)0.0183 (11)0.0086 (9)0.0321 (11)
Geometric parameters (Å, º) top
C1A—O1A1.352 (3)C1B—O1B1.353 (3)
C1A—C2A1.385 (4)C1B—C2B1.388 (3)
C1A—C14A1.415 (3)C1B—C14B1.419 (3)
C2A—C3A1.368 (4)C2B—C3B1.366 (3)
C2A—H2A0.94C2B—H2B0.94
C3A—C4A1.392 (3)C3B—C4B1.395 (3)
C3A—H3A0.94C3B—H3B0.94
C4A—O2A1.354 (3)C4B—O2B1.355 (3)
C4A—C5A1.409 (3)C4B—C5B1.407 (3)
C5A—C14A1.415 (3)C5B—C14B1.421 (3)
C5A—C6A1.493 (3)C5B—C6B1.490 (3)
C6A—O3A1.212 (3)C6B—O3B1.221 (3)
C6A—C7A1.483 (3)C6B—C7B1.481 (3)
C7A—C12A1.378 (4)C7B—C12B1.387 (3)
C7A—C8A1.399 (3)C7B—C8B1.393 (3)
C8A—C9A1.381 (4)C8B—C9B1.379 (4)
C8A—H8A0.94C8B—H8B0.94
C9A—C10A1.367 (4)C9B—C10B1.366 (4)
C9A—H9A0.94C9B—H9B0.94
C10A—C11A1.386 (4)C10B—C11B1.383 (4)
C10A—H10A0.94C10B—H10B0.94
C11A—C12A1.396 (4)C11B—C12B1.392 (3)
C11A—H11A0.94C11B—H11B0.94
C12A—C13A1.488 (4)C12B—C13B1.484 (3)
C13A—O4A1.202 (3)C13B—O4B1.220 (3)
C13A—C14A1.485 (4)C13B—C14B1.485 (3)
C15A—O1A1.428 (3)C15B—O1B1.436 (3)
C15A—C16A1.484 (4)C15B—C16B1.484 (4)
C15A—H15A0.98C15B—H15C0.98
C15A—H15B0.98C15B—H15D0.98
C16A—H16A0.97C16B—H16D0.97
C16A—H16B0.97C16B—H16E0.97
C16A—H16C0.97C16B—H16F0.97
C17A—O2A1.425 (3)C17B—O2B1.435 (3)
C17A—C18A1.485 (4)C17B—C18B1.495 (4)
C17A—H17A0.98C17B—H17C0.98
C17A—H17B0.98C17B—H17D0.98
C18A—H18A0.97C18B—H18D0.97
C18A—H18B0.97C18B—H18E0.97
C18A—H18C0.97C18B—H18F0.97
O1A—C1A—C2A122.8 (2)O1B—C1B—C2B123.1 (2)
O1A—C1A—C14A118.8 (2)O1B—C1B—C14B118.4 (2)
C2A—C1A—C14A118.5 (3)C2B—C1B—C14B118.5 (2)
C3A—C2A—C1A121.7 (2)C3B—C2B—C1B121.8 (2)
C3A—C2A—H2A119.2C3B—C2B—H2B119.1
C1A—C2A—H2A119.2C1B—C2B—H2B119.1
C2A—C3A—C4A121.4 (2)C2B—C3B—C4B121.4 (2)
C2A—C3A—H3A119.3C2B—C3B—H3B119.3
C4A—C3A—H3A119.3C4B—C3B—H3B119.3
O2A—C4A—C3A122.3 (2)O2B—C4B—C3B122.6 (2)
O2A—C4A—C5A119.0 (2)O2B—C4B—C5B118.6 (2)
C3A—C4A—C5A118.6 (3)C3B—C4B—C5B118.7 (2)
C4A—C5A—C14A119.9 (2)C4B—C5B—C14B120.0 (2)
C4A—C5A—C6A119.9 (2)C4B—C5B—C6B120.8 (2)
C14A—C5A—C6A120.1 (2)C14B—C5B—C6B119.24 (19)
O3A—C6A—C7A118.9 (2)O3B—C6B—C7B119.8 (2)
O3A—C6A—C5A122.5 (2)O3B—C6B—C5B122.0 (2)
C7A—C6A—C5A118.5 (2)C7B—C6B—C5B118.2 (2)
C12A—C7A—C8A119.9 (2)C12B—C7B—C8B119.8 (2)
C12A—C7A—C6A121.1 (2)C12B—C7B—C6B120.4 (2)
C8A—C7A—C6A119.0 (2)C8B—C7B—C6B119.8 (2)
C9A—C8A—C7A119.5 (3)C9B—C8B—C7B119.9 (3)
C9A—C8A—H8A120.3C9B—C8B—H8B120
C7A—C8A—H8A120.3C7B—C8B—H8B120
C10A—C9A—C8A120.7 (3)C10B—C9B—C8B120.4 (2)
C10A—C9A—H9A119.6C10B—C9B—H9B119.8
C8A—C9A—H9A119.6C8B—C9B—H9B119.8
C9A—C10A—C11A120.3 (3)C9B—C10B—C11B120.3 (2)
C9A—C10A—H10A119.8C9B—C10B—H10B119.8
C11A—C10A—H10A119.8C11B—C10B—H10B119.8
C10A—C11A—C12A119.6 (3)C10B—C11B—C12B120.0 (3)
C10A—C11A—H11A120.2C10B—C11B—H11B120
C12A—C11A—H11A120.2C12B—C11B—H11B120
C7A—C12A—C11A120.0 (2)C7B—C12B—C11B119.4 (2)
C7A—C12A—C13A120.8 (2)C7B—C12B—C13B120.5 (2)
C11A—C12A—C13A119.2 (3)C11B—C12B—C13B120.0 (2)
O4A—C13A—C14A122.5 (3)O4B—C13B—C12B119.3 (2)
O4A—C13A—C12A118.6 (3)O4B—C13B—C14B122.6 (2)
C14A—C13A—C12A118.9 (2)C12B—C13B—C14B118.0 (2)
C5A—C14A—C1A119.9 (2)C1B—C14B—C5B119.5 (2)
C5A—C14A—C13A120.0 (2)C1B—C14B—C13B120.6 (2)
C1A—C14A—C13A120.0 (2)C5B—C14B—C13B119.9 (2)
O1A—C15A—C16A108.4 (3)O1B—C15B—C16B108.4 (2)
O1A—C15A—H15A110O1B—C15B—H15C110
C16A—C15A—H15A110C16B—C15B—H15C110
O1A—C15A—H15B110O1B—C15B—H15D110
C16A—C15A—H15B110C16B—C15B—H15D110
H15A—C15A—H15B108.4H15C—C15B—H15D108.4
C15A—C16A—H16A109.5C15B—C16B—H16D109.5
C15A—C16A—H16B109.5C15B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C15A—C16A—H16C109.5C15B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
O2A—C17A—C18A107.4 (2)O2B—C17B—C18B107.5 (2)
O2A—C17A—H17A110.2O2B—C17B—H17C110.2
C18A—C17A—H17A110.2C18B—C17B—H17C110.2
O2A—C17A—H17B110.2O2B—C17B—H17D110.2
C18A—C17A—H17B110.2C18B—C17B—H17D110.2
H17A—C17A—H17B108.5H17C—C17B—H17D108.5
C17A—C18A—H18A109.5C17B—C18B—H18D109.5
C17A—C18A—H18B109.5C17B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C17A—C18A—H18C109.5C17B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C1A—O1A—C15A118.5 (2)C1B—O1B—C15B119.11 (19)
C4A—O2A—C17A119.1 (2)C4B—O2B—C17B118.09 (19)
O1A—C1A—C2A—C3A178.3 (2)O1B—C1B—C2B—C3B175.1 (2)
C14A—C1A—C2A—C3A1.0 (4)C14B—C1B—C2B—C3B4.0 (4)
C1A—C2A—C3A—C4A0.0 (4)C1B—C2B—C3B—C4B1.3 (4)
C2A—C3A—C4A—O2A179.9 (2)C2B—C3B—C4B—O2B176.9 (2)
C2A—C3A—C4A—C5A0.2 (4)C2B—C3B—C4B—C5B2.0 (4)
O2A—C4A—C5A—C14A179.0 (2)O2B—C4B—C5B—C14B176.5 (2)
C3A—C4A—C5A—C14A0.7 (4)C3B—C4B—C5B—C14B2.4 (3)
O2A—C4A—C5A—C6A4.3 (4)O2B—C4B—C5B—C6B3.0 (3)
C3A—C4A—C5A—C6A176.0 (2)C3B—C4B—C5B—C6B178.1 (2)
C4A—C5A—C6A—O3A8.2 (4)C4B—C5B—C6B—O3B17.1 (4)
C14A—C5A—C6A—O3A168.5 (3)C14B—C5B—C6B—O3B163.4 (2)
C4A—C5A—C6A—C7A175.7 (2)C4B—C5B—C6B—C7B163.8 (2)
C14A—C5A—C6A—C7A7.6 (4)C14B—C5B—C6B—C7B15.7 (3)
O3A—C6A—C7A—C12A170.0 (3)O3B—C6B—C7B—C12B161.9 (2)
C5A—C6A—C7A—C12A6.3 (4)C5B—C6B—C7B—C12B17.2 (3)
O3A—C6A—C7A—C8A8.4 (4)O3B—C6B—C7B—C8B15.1 (4)
C5A—C6A—C7A—C8A175.4 (2)C5B—C6B—C7B—C8B165.8 (2)
C12A—C7A—C8A—C9A0.1 (4)C12B—C7B—C8B—C9B0.9 (4)
C6A—C7A—C8A—C9A178.3 (2)C6B—C7B—C8B—C9B177.9 (2)
C7A—C8A—C9A—C10A0.1 (4)C7B—C8B—C9B—C10B1.6 (4)
C8A—C9A—C10A—C11A0.5 (5)C8B—C9B—C10B—C11B0.7 (5)
C9A—C10A—C11A—C12A0.6 (5)C9B—C10B—C11B—C12B0.9 (4)
C8A—C7A—C12A—C11A0.1 (4)C8B—C7B—C12B—C11B0.6 (4)
C6A—C7A—C12A—C11A178.4 (3)C6B—C7B—C12B—C11B176.3 (2)
C8A—C7A—C12A—C13A178.0 (3)C8B—C7B—C12B—C13B179.2 (2)
C6A—C7A—C12A—C13A0.3 (4)C6B—C7B—C12B—C13B2.2 (3)
C10A—C11A—C12A—C7A0.4 (4)C10B—C11B—C12B—C7B1.5 (4)
C10A—C11A—C12A—C13A177.7 (3)C10B—C11B—C12B—C13B179.9 (3)
C7A—C12A—C13A—O4A172.8 (4)C7B—C12B—C13B—O4B165.4 (2)
C11A—C12A—C13A—O4A5.4 (5)C11B—C12B—C13B—O4B13.1 (4)
C7A—C12A—C13A—C14A5.6 (4)C7B—C12B—C13B—C14B14.1 (3)
C11A—C12A—C13A—C14A176.2 (3)C11B—C12B—C13B—C14B167.4 (2)
C4A—C5A—C14A—C1A1.7 (4)O1B—C1B—C14B—C5B175.6 (2)
C6A—C5A—C14A—C1A175.0 (2)C2B—C1B—C14B—C5B3.5 (3)
C4A—C5A—C14A—C13A179.1 (3)O1B—C1B—C14B—C13B4.0 (3)
C6A—C5A—C14A—C13A2.4 (4)C2B—C1B—C14B—C13B176.8 (2)
O1A—C1A—C14A—C5A177.5 (2)C4B—C5B—C14B—C1B0.3 (3)
C2A—C1A—C14A—C5A1.8 (4)C6B—C5B—C14B—C1B179.2 (2)
O1A—C1A—C14A—C13A0.1 (4)C4B—C5B—C14B—C13B180.0 (2)
C2A—C1A—C14A—C13A179.2 (3)C6B—C5B—C14B—C13B0.5 (3)
O4A—C13A—C14A—C5A174.2 (4)O4B—C13B—C14B—C1B16.2 (4)
C12A—C13A—C14A—C5A4.1 (4)C12B—C13B—C14B—C1B164.3 (2)
O4A—C13A—C14A—C1A3.2 (5)O4B—C13B—C14B—C5B164.1 (2)
C12A—C13A—C14A—C1A178.4 (2)C12B—C13B—C14B—C5B15.4 (3)
C2A—C1A—O1A—C15A0.7 (4)C2B—C1B—O1B—C15B0.4 (4)
C14A—C1A—O1A—C15A178.6 (2)C14B—C1B—O1B—C15B178.7 (2)
C16A—C15A—O1A—C1A177.4 (2)C16B—C15B—O1B—C1B172.6 (2)
C3A—C4A—O2A—C17A4.4 (4)C3B—C4B—O2B—C17B5.2 (3)
C5A—C4A—O2A—C17A175.9 (2)C5B—C4B—O2B—C17B173.7 (2)
C18A—C17A—O2A—C4A179.5 (2)C18B—C17B—O2B—C4B175.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A···O3B0.942.483.234 (3)137
C8B—H8B···O3A0.942.553.304 (4)137
C11A—H11A···O4Bi0.942.603.325 (3)135
C11B—H11B···O4Aii0.942.463.199 (4)135
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A···O3B0.942.483.234 (3)137
C8B—H8B···O3A0.942.553.304 (4)137
C11A—H11A···O4Bi0.942.603.325 (3)135
C11B—H11B···O4Aii0.942.463.199 (4)135
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 15 K05482) from the JSPS.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015). Bull. Chem. Soc. Jpn, 88, 713–715.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOhta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674–676.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o504-o505
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds