organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1246-o1247

Crystal structure of (E)-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­­idene]meth­yl}-3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and fDepartment of Chemistry, College of Science, Kirkuk University, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 23 October 2014; accepted 31 October 2014; online 8 November 2014)

The title compound, C21H17N7O4, is in an `extended' conformation aided by an intra­molecular N—H⋯O hydrogen bond. The pyrazole ring makes dihedral angles of 29.17 (6), 65.47 (4) and 9.91 (7)°, respectively, with the phenyl, pyrrole and benzene rings. In the crystal, mol­ecules are connected by pairs of N—H⋯O and C—H⋯O hydrogen bonds, forming inversion dimers which associate into ribbons running along the b axis through complementary C—H⋯O inter­actions.

1. Related literature

For the use of pyrazole compounds as building blocks of various heterocyclic compounds, see: Abramov et al. (2001[Abramov, A. M., Ceulemans, E., Jackers, C., Van der Auweraer, M. & Dehaen, W. (2001). Tetrahedron, 57, 9123-9129.]); Quiroga et al. (2001[Quiroga, J., Cruz, S., Insuasty, B., Abonia, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2001). Heterocycl. Chem. 38, 53-60.]); Wu et al. (2006[Wu, Y.-C., Chen, Y.-J., Li, H.-J., Zou, X.-M., Hu, F.-Z. & Yang, H.-Z. (2006). J. Fluor. Chem. 127, 409-416.]); El-Emary (2006[El-Emary, T. I. (2006). J. Chin. Chem. Soc. 53, 391-401.]); Rangnekar & Dhamnaskar (1988[Rangnekar, D. W. & Dhamnaskar, S. V. (1988). J. Heterocycl. Chem. 25, 1663-1664.]). For the bioactivity of pyrazole-containing compounds, see: Mashevskaya et al. (2001[Mashevskaya, I. V., Kol'tsova, S. V., Voronina, E. V., Odegova, T. F. & Maslivets, A. N. (2001). Pharm. Chem. J. 35, 18-21.]); Janus et al. (1999[Janus, S. L., Magdif, A. Z., Erik, B. P. & Claus, N. (1999). Monatsh. Chem. 130, 1167-1174.]); Park et al. (2005[Park, H. J., Lee, K., Park, S., Ahn, B., Lee, J. C., Cho, H. Y., Yeong, & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]); Bouabdallah et al. (2006[Bouabdallah, I., Mbarek, L. A., Zyad, A., Ramdani, A., Zidane, I. & Melhaoui, A. (2006). Nat. Prod. Res. 20, 1024-1030.]); Yıldırım et al. (2005[Yıldırım, I., Özdemir, N., Akçamur, Y., Dinçer, M. & Andaç, O. (2005). Acta Cryst. E61, o256-o258.]); Bailey et al. (1985[Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. F. (1985). J. Med. Chem. 28, 256-260.]); Chu & Cutler (1986[Chu, C. K. & Cutler, J. (1986). J. Heterocycl. Chem. 23, 289-319.]). For industrial applications of azo­pyrazole derivatives, see: Karci & Demircah (2006[Karci, F. & Demircali, A. (2006). Dyes and Pigments, 71, 97-102.]); Vicentini et al. (1998[Vicentini, C., Manfredini, S., Manfrini, M., Bazzanini, R., Musiu, C., Putzolu, M., Perra, G. & Marongiu, M. E. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 269-272.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17N7O4

  • Mr = 431.42

  • Monoclinic, P 21 /n

  • a = 5.7955 (1) Å

  • b = 15.4472 (4) Å

  • c = 21.9289 (5) Å

  • β = 93.831 (1)°

  • V = 1958.78 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 150 K

  • 0.17 × 0.10 × 0.09 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.93

  • 30722 measured reflections

  • 3854 independent reflections

  • 3425 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.03

  • 3854 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O4 0.92 1.97 2.6208 (13) 126
N5—H5A⋯O4i 0.92 2.34 3.2065 (13) 158
C15—H15⋯O3i 0.95 2.59 3.4853 (15) 158
C18—H18⋯O1ii 0.95 2.40 3.1887 (16) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Functionalized pyrazoles have received much attention from chemists in recent decades due to their wide use as building blocks of various pyrazole-containing structures such as pyrazoloisoquinolines (Abramov et al., 2001), pyrazolopyrimidines (Quiroga et al., 2001), pyrazolopyridines (Wu et al., 2006), pyrazolopyrazines (El-Emary, 2006) and pyrazolotriazoles (Rangnekar & Dhamnaskar, 1988). In addition, pyrazole-containing compounds have shown outstanding biological activities such as anti-microbial (Mashevskaya et al., 2001), anti-viral (Janus et al., 1999), anti-tumor (Park et al., 2005; Bouabdallah et al., 2006), anti-histaminic (Yıldırım et al., 2005) and anti-depressant (Bailey et al., 1985) applications as well as in insecticides and fungicides (Chu & Cutler, 1986). Some azopyrazole derivatives have many applications in dyes (Karci & Demircah, 2006; Vicentini et al., 1998). In light of these factors, we report here the synthesis and crystal structure determination of the title compound.

The title molecule exists in an "extended" conformation aided by the intramolecular N5—H5A···O4 interaction which is half of the bifurcated hydrogen bonding involving H5a (Fig. 1 and Table 1). The rings C1–C6, N3/C11–C14 and C16–C21, respectively, make dihedral angles of 29.17 (6), 65.47 (4) and 9.91 (7)° with the central N1/N2/C7/C8/C9 ring. In the crystal, complementary N5—H5A···O4i and C15—H15···O3i (i: -x, 1 - y, 1 - z) interactions form dimers which are further associated into ribbons running parallel to the b axis through complementary C18—H18···O1ii (ii: -x, 2 - y, 1 - z) interactions (Table 1 and Figs. 2 and 3).

Related literature top

For the use of pyrazole compounds as building blocks of various heterocyclic compounds, see: Abramov et al. (2001); Quiroga et al. (2001); Wu et al. (2006); El-Emary (2006); Rangnekar & Dhamnaskar (1988). For the bioactivity of pyrazole-containing compounds, see: Mashevskaya et al. (2001); Janus et al. (1999); Park et al. (2005); Bouabdallah et al. (2006); Yıldırım et al. (2005); Bailey et al. (1985); Chu & Cutler (1986). For industrial applications of azopyrazole derivatives, see: Karci & Demircah (2006); Vicentini et al. (1998).

Experimental top

In 20 ml of ethanol, a mixture of 5.06 g m (0.02 mol) of 3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-4,5-dihydro-1H-pyrazole-4-carbaldehyde and 3.96 g m (0.02 mol) of (2,4-dinitrophenyl)hydrazine was heated under reflux for 8 h. The resulting solid product was filtered off, dried under vacuum and crystallized from dioxane to furnish red-orange crystals in a sufficient quality for X-ray diffraction. M.p 491–493 K, yield 71%.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) while that attached to nitrogen was placed in a location derived from a difference map and its parameters adjusted to give N—H = 0.92 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Numbering scheme for the title molecule. Ellipsoids are drawn at the 50% probability level.

Packing diagram looking down the c axis showing two chains formed by complementary N—H···O and C—H···O interactions and their association through additional C—H···O interactions.

Packing diagram viewed down the a axis showing an edge view of several ribbons.
(E)-4-{[2-(2,4-Dinitrophenyl)hydrazin-1-ylidene]methyl}-3-methyl-1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole top
Crystal data top
C21H17N7O4F(000) = 896
Mr = 431.42Dx = 1.463 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 5.7955 (1) ÅCell parameters from 9846 reflections
b = 15.4472 (4) Åθ = 6.3–72.1°
c = 21.9289 (5) ŵ = 0.88 mm1
β = 93.831 (1)°T = 150 K
V = 1958.78 (8) Å3Column, red-orange
Z = 40.17 × 0.10 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3854 independent reflections
Radiation source: INCOATEC IµS micro–focus source3425 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.4167 pixels mm-1θmax = 72.1°, θmin = 3.5°
ω scansh = 76
Absorption correction: numerical
(SADABS; Bruker, 2014)
k = 1919
Tmin = 0.89, Tmax = 0.93l = 2626
30722 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.089H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6128P]
where P = (Fo2 + 2Fc2)/3
3854 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H17N7O4V = 1958.78 (8) Å3
Mr = 431.42Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.7955 (1) ŵ = 0.88 mm1
b = 15.4472 (4) ÅT = 150 K
c = 21.9289 (5) Å0.17 × 0.10 × 0.09 mm
β = 93.831 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3854 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2014)
3425 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.93Rint = 0.034
30722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3854 reflectionsΔρmin = 0.27 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while that attached to nitrogen was placed in a location derived from a difference map and its parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33378 (17)0.99482 (6)0.45404 (5)0.0375 (2)
O20.58503 (18)0.90272 (7)0.41597 (5)0.0501 (3)
O30.49349 (16)0.60444 (6)0.45127 (4)0.0358 (2)
O40.18232 (15)0.54965 (6)0.49537 (4)0.0332 (2)
N10.97263 (17)0.60556 (6)0.70725 (5)0.0242 (2)
N20.94167 (18)0.69340 (6)0.70316 (5)0.0269 (2)
N30.80335 (16)0.47264 (6)0.66558 (4)0.0232 (2)
N40.33730 (17)0.67100 (7)0.58210 (5)0.0256 (2)
N50.14465 (17)0.64891 (6)0.54543 (5)0.0258 (2)
H5A0.11130.59250.53500.031*
N60.40360 (19)0.92045 (7)0.44522 (5)0.0327 (3)
N70.30076 (17)0.61280 (7)0.47743 (5)0.0260 (2)
C11.14907 (19)0.57328 (8)0.75003 (5)0.0241 (2)
C21.3424 (2)0.62502 (8)0.76363 (6)0.0276 (3)
H21.35690.67940.74400.033*
C31.5137 (2)0.59637 (8)0.80620 (6)0.0304 (3)
H31.64550.63150.81590.036*
C41.4935 (2)0.51679 (9)0.83452 (6)0.0312 (3)
H41.61190.49710.86320.037*
C51.3000 (2)0.46609 (9)0.82076 (6)0.0312 (3)
H51.28660.41150.84020.037*
C61.1250 (2)0.49398 (8)0.77893 (6)0.0276 (3)
H60.99120.45940.77020.033*
C70.81077 (19)0.56305 (8)0.67051 (5)0.0226 (2)
C80.6671 (2)0.62469 (7)0.64242 (5)0.0230 (2)
C90.7576 (2)0.70498 (8)0.66482 (5)0.0249 (2)
C100.6691 (2)0.79431 (8)0.65187 (6)0.0316 (3)
H10A0.77260.83650.67290.047*
H10B0.51360.80000.66640.047*
H10C0.66300.80500.60770.047*
C110.9756 (2)0.42083 (8)0.64524 (6)0.0304 (3)
H111.11190.44040.62770.036*
C120.9170 (3)0.33692 (9)0.65452 (6)0.0365 (3)
H121.00420.28740.64450.044*
C130.7022 (2)0.33657 (9)0.68190 (6)0.0348 (3)
H130.61940.28680.69360.042*
C140.6360 (2)0.42042 (8)0.68838 (6)0.0284 (3)
H140.49880.43960.70560.034*
C150.4654 (2)0.60777 (8)0.60170 (5)0.0236 (2)
H150.42790.55020.58950.028*
C160.0083 (2)0.71292 (8)0.52114 (5)0.0247 (2)
C170.0773 (2)0.80070 (8)0.52864 (6)0.0304 (3)
H170.21870.81360.55120.037*
C180.0544 (2)0.86720 (8)0.50421 (6)0.0320 (3)
H180.00380.92540.50960.038*
C190.2638 (2)0.84940 (8)0.47125 (6)0.0285 (3)
C200.3414 (2)0.76630 (8)0.46297 (5)0.0269 (3)
H200.48470.75510.44080.032*
C210.2072 (2)0.69842 (7)0.48756 (5)0.0241 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0399 (5)0.0267 (5)0.0456 (6)0.0029 (4)0.0011 (4)0.0057 (4)
O20.0423 (6)0.0412 (6)0.0629 (7)0.0049 (5)0.0245 (5)0.0074 (5)
O30.0296 (5)0.0349 (5)0.0410 (5)0.0028 (4)0.0129 (4)0.0048 (4)
O40.0302 (5)0.0241 (5)0.0442 (5)0.0018 (4)0.0058 (4)0.0011 (4)
N10.0234 (5)0.0212 (5)0.0272 (5)0.0005 (4)0.0034 (4)0.0015 (4)
N20.0285 (5)0.0212 (5)0.0305 (5)0.0007 (4)0.0028 (4)0.0014 (4)
N30.0242 (5)0.0210 (5)0.0240 (5)0.0003 (4)0.0023 (4)0.0007 (4)
N40.0224 (5)0.0259 (5)0.0276 (5)0.0003 (4)0.0039 (4)0.0006 (4)
N50.0237 (5)0.0232 (5)0.0297 (5)0.0004 (4)0.0052 (4)0.0014 (4)
N60.0317 (6)0.0313 (6)0.0343 (6)0.0039 (5)0.0024 (5)0.0050 (4)
N70.0252 (5)0.0278 (5)0.0248 (5)0.0003 (4)0.0012 (4)0.0024 (4)
C10.0217 (5)0.0265 (6)0.0237 (6)0.0024 (5)0.0016 (4)0.0029 (5)
C20.0267 (6)0.0250 (6)0.0306 (6)0.0015 (5)0.0011 (5)0.0014 (5)
C30.0241 (6)0.0318 (7)0.0343 (7)0.0025 (5)0.0050 (5)0.0052 (5)
C40.0273 (6)0.0343 (7)0.0308 (6)0.0015 (5)0.0075 (5)0.0015 (5)
C50.0320 (7)0.0303 (6)0.0304 (6)0.0020 (5)0.0041 (5)0.0044 (5)
C60.0241 (6)0.0300 (6)0.0282 (6)0.0042 (5)0.0024 (5)0.0011 (5)
C70.0219 (5)0.0229 (6)0.0228 (6)0.0005 (4)0.0006 (4)0.0016 (4)
C80.0232 (6)0.0229 (6)0.0229 (6)0.0006 (4)0.0008 (4)0.0002 (4)
C90.0251 (6)0.0240 (6)0.0255 (6)0.0004 (5)0.0003 (4)0.0010 (4)
C100.0351 (7)0.0226 (6)0.0359 (7)0.0012 (5)0.0053 (5)0.0012 (5)
C110.0312 (6)0.0287 (6)0.0317 (6)0.0048 (5)0.0047 (5)0.0013 (5)
C120.0490 (8)0.0243 (6)0.0362 (7)0.0084 (6)0.0033 (6)0.0006 (5)
C130.0465 (8)0.0247 (6)0.0329 (7)0.0059 (6)0.0009 (6)0.0029 (5)
C140.0271 (6)0.0295 (6)0.0281 (6)0.0031 (5)0.0009 (5)0.0007 (5)
C150.0244 (6)0.0215 (6)0.0246 (6)0.0010 (4)0.0001 (4)0.0004 (4)
C160.0232 (6)0.0257 (6)0.0251 (6)0.0015 (5)0.0002 (4)0.0011 (4)
C170.0264 (6)0.0268 (6)0.0371 (7)0.0019 (5)0.0059 (5)0.0011 (5)
C180.0306 (7)0.0250 (6)0.0396 (7)0.0020 (5)0.0033 (5)0.0027 (5)
C190.0273 (6)0.0280 (6)0.0299 (6)0.0040 (5)0.0014 (5)0.0045 (5)
C200.0243 (6)0.0310 (6)0.0251 (6)0.0019 (5)0.0018 (4)0.0001 (5)
C210.0241 (6)0.0244 (6)0.0235 (6)0.0011 (5)0.0002 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—N61.2291 (15)C5—H50.9500
O2—N61.2255 (15)C6—H60.9500
O3—N71.2279 (13)C7—C81.3822 (16)
O4—N71.2416 (13)C8—C91.4213 (16)
N1—C71.3636 (15)C8—C151.4469 (16)
N1—N21.3708 (14)C9—C101.4928 (16)
N1—C11.4305 (14)C10—H10A0.9800
N2—C91.3254 (15)C10—H10B0.9800
N3—C111.3769 (16)C10—H10C0.9800
N3—C141.3806 (16)C11—C121.3589 (19)
N3—C71.4012 (15)C11—H110.9500
N4—C151.2834 (16)C12—C131.418 (2)
N4—N51.3747 (14)C12—H120.9500
N5—C161.3527 (15)C13—C141.3609 (19)
N5—H5A0.9184C13—H130.9500
N6—C191.4579 (16)C14—H140.9500
N7—C211.4410 (15)C15—H150.9500
C1—C61.3906 (17)C16—C171.4201 (17)
C1—C21.3921 (17)C16—C211.4246 (16)
C2—C31.3891 (17)C17—C181.3677 (18)
C2—H20.9500C17—H170.9500
C3—C41.3858 (19)C18—C191.3973 (18)
C3—H30.9500C18—H180.9500
C4—C51.3847 (18)C19—C201.3683 (18)
C4—H40.9500C20—C211.3924 (17)
C5—C61.3898 (17)C20—H200.9500
C7—N1—N2110.87 (9)N2—C9—C10119.82 (11)
C7—N1—C1130.77 (10)C8—C9—C10128.81 (11)
N2—N1—C1118.20 (9)C9—C10—H10A109.5
C9—N2—N1105.75 (9)C9—C10—H10B109.5
C11—N3—C14108.66 (10)H10A—C10—H10B109.5
C11—N3—C7125.81 (10)C9—C10—H10C109.5
C14—N3—C7124.97 (10)H10A—C10—H10C109.5
C15—N4—N5115.85 (10)H10B—C10—H10C109.5
C16—N5—N4118.63 (10)C12—C11—N3108.17 (12)
C16—N5—H5A119.2C12—C11—H11125.9
N4—N5—H5A122.1N3—C11—H11125.9
O2—N6—O1123.59 (11)C11—C12—C13107.61 (12)
O2—N6—C19118.15 (11)C11—C12—H12126.2
O1—N6—C19118.26 (11)C13—C12—H12126.2
O3—N7—O4122.13 (10)C14—C13—C12107.58 (12)
O3—N7—C21119.32 (10)C14—C13—H13126.2
O4—N7—C21118.55 (9)C12—C13—H13126.2
C6—C1—C2120.80 (11)C13—C14—N3107.98 (11)
C6—C1—N1121.12 (11)C13—C14—H14126.0
C2—C1—N1118.04 (11)N3—C14—H14126.0
C3—C2—C1119.34 (12)N4—C15—C8119.65 (11)
C3—C2—H2120.3N4—C15—H15120.2
C1—C2—H2120.3C8—C15—H15120.2
C4—C3—C2120.38 (12)N5—C16—C17119.99 (11)
C4—C3—H3119.8N5—C16—C21123.88 (11)
C2—C3—H3119.8C17—C16—C21116.13 (11)
C5—C4—C3119.70 (12)C18—C17—C16121.76 (12)
C5—C4—H4120.1C18—C17—H17119.1
C3—C4—H4120.1C16—C17—H17119.1
C4—C5—C6120.88 (12)C17—C18—C19119.82 (12)
C4—C5—H5119.6C17—C18—H18120.1
C6—C5—H5119.6C19—C18—H18120.1
C5—C6—C1118.87 (11)C20—C19—C18121.32 (11)
C5—C6—H6120.6C20—C19—N6119.01 (11)
C1—C6—H6120.6C18—C19—N6119.67 (11)
N1—C7—C8107.55 (10)C19—C20—C21118.99 (11)
N1—C7—N3122.82 (10)C19—C20—H20120.5
C8—C7—N3129.63 (10)C21—C20—H20120.5
C7—C8—C9104.47 (10)C20—C21—C16121.97 (11)
C7—C8—C15126.04 (11)C20—C21—N7115.90 (10)
C9—C8—C15129.44 (11)C16—C21—N7122.13 (10)
N2—C9—C8111.35 (10)
C7—N1—N2—C91.25 (13)C14—N3—C11—C120.56 (14)
C1—N1—N2—C9174.68 (10)C7—N3—C11—C12172.24 (11)
C15—N4—N5—C16177.12 (11)N3—C11—C12—C130.41 (15)
C7—N1—C1—C626.82 (18)C11—C12—C13—C140.11 (16)
N2—N1—C1—C6148.16 (11)C12—C13—C14—N30.22 (15)
C7—N1—C1—C2155.46 (12)C11—N3—C14—C130.48 (14)
N2—N1—C1—C229.57 (15)C7—N3—C14—C13172.26 (11)
C6—C1—C2—C30.61 (18)N5—N4—C15—C8177.73 (10)
N1—C1—C2—C3178.34 (11)C7—C8—C15—N4175.05 (11)
C1—C2—C3—C40.50 (19)C9—C8—C15—N41.91 (19)
C2—C3—C4—C50.8 (2)N4—N5—C16—C176.28 (17)
C3—C4—C5—C60.1 (2)N4—N5—C16—C21173.53 (11)
C4—C5—C6—C11.2 (2)N5—C16—C17—C18179.26 (12)
C2—C1—C6—C51.45 (19)C21—C16—C17—C180.92 (19)
N1—C1—C6—C5179.11 (11)C16—C17—C18—C190.5 (2)
N2—N1—C7—C81.12 (13)C17—C18—C19—C200.3 (2)
C1—N1—C7—C8174.14 (11)C17—C18—C19—N6179.94 (12)
N2—N1—C7—N3179.54 (10)O2—N6—C19—C201.03 (18)
C1—N1—C7—N35.19 (19)O1—N6—C19—C20178.62 (12)
C11—N3—C7—N160.95 (16)O2—N6—C19—C18179.19 (13)
C14—N3—C7—N1109.43 (13)O1—N6—C19—C181.16 (18)
C11—N3—C7—C8119.87 (14)C18—C19—C20—C210.56 (19)
C14—N3—C7—C869.75 (17)N6—C19—C20—C21179.67 (11)
N1—C7—C8—C90.52 (12)C19—C20—C21—C160.08 (18)
N3—C7—C8—C9179.80 (11)C19—C20—C21—N7179.52 (11)
N1—C7—C8—C15177.05 (11)N5—C16—C21—C20179.55 (11)
N3—C7—C8—C152.2 (2)C17—C16—C21—C200.64 (17)
N1—N2—C9—C80.90 (13)N5—C16—C21—N71.04 (18)
N1—N2—C9—C10177.49 (11)C17—C16—C21—N7178.78 (11)
C7—C8—C9—N20.25 (13)O3—N7—C21—C203.71 (16)
C15—C8—C9—N2177.71 (11)O4—N7—C21—C20176.00 (11)
C7—C8—C9—C10177.97 (12)O3—N7—C21—C16175.74 (11)
C15—C8—C9—C100.5 (2)O4—N7—C21—C164.56 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.921.972.6208 (13)126
N5—H5A···O4i0.922.343.2065 (13)158
C15—H15···O3i0.952.593.4853 (15)158
C18—H18···O1ii0.952.403.1887 (16)140
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O40.921.972.6208 (13)126
N5—H5A···O4i0.922.343.2065 (13)158
C15—H15···O3i0.952.593.4853 (15)158
C18—H18···O1ii0.952.403.1887 (16)140
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged. SKM and HSME would also like to thank Prof T. I. El-Emary for his contribution in this study.

References

First citationAbramov, A. M., Ceulemans, E., Jackers, C., Van der Auweraer, M. & Dehaen, W. (2001). Tetrahedron, 57, 9123–9129.  Web of Science CrossRef CAS Google Scholar
First citationBailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F. & Feigenson, M. F. (1985). J. Med. Chem. 28, 256–260.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBouabdallah, I., Mbarek, L. A., Zyad, A., Ramdani, A., Zidane, I. & Melhaoui, A. (2006). Nat. Prod. Res. 20, 1024–1030.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, C. K. & Cutler, J. (1986). J. Heterocycl. Chem. 23, 289–319.  CrossRef CAS Google Scholar
First citationEl-Emary, T. I. (2006). J. Chin. Chem. Soc. 53, 391–401.  CAS Google Scholar
First citationJanus, S. L., Magdif, A. Z., Erik, B. P. & Claus, N. (1999). Monatsh. Chem. 130, 1167–1174.  Google Scholar
First citationKarci, F. & Demircali, A. (2006). Dyes and Pigments, 71, 97–102.  Web of Science CrossRef CAS Google Scholar
First citationMashevskaya, I. V., Kol'tsova, S. V., Voronina, E. V., Odegova, T. F. & Maslivets, A. N. (2001). Pharm. Chem. J. 35, 18–21.  CrossRef CAS Google Scholar
First citationPark, H. J., Lee, K., Park, S., Ahn, B., Lee, J. C., Cho, H. Y., Yeong, & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Google Scholar
First citationQuiroga, J., Cruz, S., Insuasty, B., Abonia, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2001). Heterocycl. Chem. 38, 53–60.  CrossRef CAS Google Scholar
First citationRangnekar, D. W. & Dhamnaskar, S. V. (1988). J. Heterocycl. Chem. 25, 1663–1664.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C., Manfredini, S., Manfrini, M., Bazzanini, R., Musiu, C., Putzolu, M., Perra, G. & Marongiu, M. E. (1998). Arch. Pharm. Pharm. Med. Chem. 331, 269–272.  CrossRef CAS Google Scholar
First citationWu, Y.-C., Chen, Y.-J., Li, H.-J., Zou, X.-M., Hu, F.-Z. & Yang, H.-Z. (2006). J. Fluor. Chem. 127, 409–416.  Web of Science CrossRef CAS Google Scholar
First citationYıldırım, I., Özdemir, N., Akçamur, Y., Dinçer, M. & Andaç, O. (2005). Acta Cryst. E61, o256–o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1246-o1247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds