organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Methyl-3a,4,7,7a-tetra­hydro-5H-4,7-methano­isoxazolo[4,5-d][1,2]oxazin-5-yl)(phen­yl)methanone

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 19 March 2014; accepted 7 April 2014; online 12 April 2014)

The title compound, C14H14N2O3, is the exo isomer with a syn arrangement of two O atoms in the isoxazole and oxazine rings. The dihedral angle between the isoxazole and phenyl rings is 60.38 (4)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network. The isoxazole O atom is an acceptor for three of these hydrogen bonds.

Related literature

For 1,3-dipolar cyclo­addition reactions of symmetrical and unsymmetrical bicyclic alkenes, see: Yip et al. (2001[Yip, C., Handerson, S., Tranmer, G. K. & Tam, W. (2001). J. Org. Chem. 66, 276-286.]); Mayo et al. (2001[Mayo, P., Hecnar, T. & Tam, W. (2001). Tetrahedron, 57, 5931-5941.]). For a related structure, see: Lough et al. (2014[Lough, A. J., Nagireddy, J. R. & Tam, W. (2014). Acta Cryst. E70, o544.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O3

  • Mr = 258.27

  • Orthorhombic, P b c a

  • a = 9.5030 (18) Å

  • b = 10.2912 (16) Å

  • c = 25.347 (5) Å

  • V = 2478.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 147 K

  • 0.38 × 0.16 × 0.10 mm

Data collection
  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.746

  • 12134 measured reflections

  • 2854 independent reflections

  • 2145 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.03

  • 2854 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 1.00 2.50 3.2793 (18) 135
C5—H5A⋯O2ii 1.00 2.59 3.4017 (18) 138
C7—H7B⋯O2ii 0.98 2.56 3.3900 (19) 142
C7—H7C⋯O2iii 0.98 2.60 3.568 (2) 170
C11—H11A⋯O3iv 0.95 2.58 3.470 (2) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

We have previously investigated the 1,3-dipolar cycloaddition reactions of symmetrical and unsymmetrical bicyclic alkenes (Yip et al., 2001; Mayo et al., 2001). When expanding this study on N-acyl-2-oxa-3-azanorborn-5-enes, the bicyclic alkene (III) reacts (see Fig. 1) with acetonitrile oxide (II) (generated in situ) in toluene, to give the cycloadducts (IV) and (V) as regioisomers in the ratio of 70:30 respectively (ratio was determined by isolated yields). The stereochemistry and regiochemistry of the major product (IV) was determined by this single-crystal X-ray analysis. Although different stereoisomers (exo and endo) could be formed, only the exo stereoisomer was formed with a mixture of the corresponding regioisomers. The major product obtained was found to be the syn isomer (two O atoms in the rings are on the same side of the molecule).

The molecular structure of the title compound is shown in Fig. 2. The dihedral angle between the isoxazole ring [C4/C5/C6/O2/N2 with r.m.s. deviation 0.0013 Å] and the phenyl ring (C9–C14) is 60.38 (4)°. In the crystal, weak C—H···O hydrogen bonds link molecules forming a three-dimensional network (Fig. 3). The isoxazole O atom is an acceptor for three of these hydrogen bonds. We have prepared by a similar method and carried out the structure determination of a related cycloadduct (Lough et al., 2014)

Related literature top

For 1,3-dipolar cycloaddition reactions of symmetrical and unsymmetrical bicyclic alkenes, see: Yip et al. (2001); Mayo et al. (2001). For a related structure, see: Lough et al. (2014).

Experimental top

A solution of nitroethane (I) (126 mg, 0.579 mmol) in toluene (2 ml) was added to a flame-dried flask containing bicyclic alkene (III) (140 mg, 0.642 mmol), (BOC)2O (233.7 mg, 1.07 mmol), DMAP (9.4 mg, 0.077 mmol) and toluene (2 ml) via a cannula over 10 minutes. The reaction mixture was stirred at room temperature for 18 h. The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (EtOAc:hexanes = 1:9 to 9:1) to obtain regiosomers (IV) and (V) in 61% and 26% respectively. A solution of isomer (IV) in EtOAc:hexanes = 1:3 gave single crystals suitable for X-ray analysis.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H distances of 0.95–1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of the title compound showing 30% probability ellipsoids.
[Figure 3] Fig. 3. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
(3-Methyl-3a,4,7,7a-tetrahydro-5H-4,7-methanoisoxazolo[4,5-d][1,2]oxazin-5-yl)(phenyl)methanone top
Crystal data top
C14H14N2O3Dx = 1.384 Mg m3
Mr = 258.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2381 reflections
a = 9.5030 (18) Åθ = 2.7–26.8°
b = 10.2912 (16) ŵ = 0.10 mm1
c = 25.347 (5) ÅT = 147 K
V = 2478.9 (8) Å3Needle, colourless
Z = 80.38 × 0.16 × 0.10 mm
F(000) = 1088
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2145 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 129
Tmin = 0.671, Tmax = 0.746k = 1113
12134 measured reflectionsl = 2432
2854 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.7731P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2854 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.20 e Å3
Crystal data top
C14H14N2O3V = 2478.9 (8) Å3
Mr = 258.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5030 (18) ŵ = 0.10 mm1
b = 10.2912 (16) ÅT = 147 K
c = 25.347 (5) Å0.38 × 0.16 × 0.10 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2145 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.746Rint = 0.044
12134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
2854 reflectionsΔρmin = 0.20 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42779 (11)0.16029 (10)0.34310 (4)0.0239 (3)
O20.28195 (12)0.06699 (10)0.47211 (4)0.0274 (3)
O30.44907 (11)0.49825 (10)0.35864 (4)0.0261 (3)
N10.48705 (13)0.28419 (11)0.35988 (5)0.0206 (3)
N20.32314 (13)0.14237 (12)0.51709 (5)0.0240 (3)
C10.51026 (15)0.27468 (14)0.41673 (6)0.0196 (3)
H1A0.57840.33900.43160.023*
C20.55574 (16)0.13321 (14)0.42059 (6)0.0247 (3)
H2A0.64410.11460.40130.030*
H2B0.56180.10130.45740.030*
C30.42502 (16)0.08599 (14)0.39177 (6)0.0229 (3)
H3A0.42070.01030.38670.027*
C40.30441 (16)0.14184 (14)0.42428 (6)0.0218 (3)
H4A0.21620.15200.40310.026*
C50.36368 (14)0.27359 (13)0.44313 (6)0.0183 (3)
H5A0.30380.34900.43240.022*
C60.36722 (14)0.25337 (14)0.50174 (6)0.0193 (3)
C70.41835 (16)0.35181 (15)0.54006 (6)0.0242 (3)
H7A0.41350.31600.57580.036*
H7B0.35930.42970.53790.036*
H7C0.51600.37470.53180.036*
C80.44268 (15)0.39406 (14)0.33502 (6)0.0198 (3)
C90.40242 (15)0.38382 (14)0.27853 (6)0.0201 (3)
C100.46180 (16)0.29115 (14)0.24524 (6)0.0243 (3)
H10A0.52600.22890.25890.029*
C110.42718 (18)0.28984 (15)0.19209 (6)0.0271 (4)
H11A0.46850.22740.16930.033*
C120.33260 (17)0.37935 (15)0.17233 (6)0.0283 (4)
H12A0.30770.37720.13610.034*
C130.27394 (16)0.47228 (16)0.20515 (7)0.0281 (4)
H13A0.20940.53400.19130.034*
C140.30932 (15)0.47535 (14)0.25820 (6)0.0241 (3)
H14A0.27010.53980.28060.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (6)0.0167 (5)0.0205 (6)0.0054 (4)0.0012 (5)0.0033 (4)
O20.0370 (6)0.0217 (5)0.0236 (6)0.0101 (5)0.0037 (5)0.0003 (4)
O30.0372 (6)0.0194 (6)0.0218 (6)0.0014 (5)0.0026 (5)0.0042 (4)
N10.0278 (6)0.0165 (6)0.0177 (6)0.0063 (5)0.0007 (5)0.0024 (5)
N20.0275 (6)0.0226 (7)0.0220 (7)0.0017 (5)0.0025 (5)0.0002 (5)
C10.0212 (7)0.0208 (7)0.0167 (7)0.0028 (6)0.0001 (6)0.0003 (6)
C20.0244 (7)0.0249 (8)0.0248 (8)0.0046 (6)0.0015 (6)0.0010 (6)
C30.0315 (8)0.0157 (7)0.0213 (8)0.0002 (6)0.0004 (6)0.0008 (6)
C40.0234 (7)0.0195 (8)0.0224 (8)0.0036 (6)0.0005 (6)0.0005 (6)
C50.0199 (7)0.0167 (7)0.0182 (7)0.0003 (5)0.0011 (6)0.0002 (6)
C60.0188 (6)0.0202 (7)0.0187 (8)0.0025 (5)0.0015 (6)0.0013 (5)
C70.0292 (8)0.0254 (8)0.0179 (8)0.0026 (6)0.0018 (6)0.0007 (6)
C80.0208 (7)0.0195 (8)0.0193 (8)0.0013 (6)0.0044 (6)0.0019 (6)
C90.0233 (7)0.0189 (7)0.0181 (8)0.0033 (6)0.0021 (6)0.0003 (6)
C100.0315 (8)0.0219 (8)0.0194 (8)0.0016 (6)0.0027 (6)0.0006 (6)
C110.0385 (9)0.0226 (8)0.0203 (8)0.0030 (7)0.0042 (7)0.0029 (6)
C120.0353 (8)0.0288 (9)0.0206 (8)0.0115 (7)0.0043 (7)0.0034 (6)
C130.0266 (8)0.0279 (9)0.0299 (9)0.0018 (6)0.0051 (7)0.0072 (7)
C140.0245 (7)0.0212 (8)0.0265 (9)0.0003 (6)0.0028 (6)0.0006 (6)
Geometric parameters (Å, º) top
O1—C31.4515 (18)C5—C61.501 (2)
O1—N11.4572 (15)C5—H5A1.0000
O2—N21.4333 (16)C6—C71.485 (2)
O2—C41.4524 (18)C7—H7A0.9800
O3—C81.2296 (17)C7—H7B0.9800
N1—C81.3613 (19)C7—H7C0.9800
N1—C11.4611 (18)C8—C91.486 (2)
N2—C61.2773 (19)C9—C141.391 (2)
C1—C21.522 (2)C9—C101.393 (2)
C1—C51.545 (2)C10—C111.387 (2)
C1—H1A1.0000C10—H10A0.9500
C2—C31.521 (2)C11—C121.381 (2)
C2—H2A0.9900C11—H11A0.9500
C2—H2B0.9900C12—C131.385 (2)
C3—C41.524 (2)C12—H12A0.9500
C3—H3A1.0000C13—C141.386 (2)
C4—C51.544 (2)C13—H13A0.9500
C4—H4A1.0000C14—H14A0.9500
C3—O1—N1102.71 (10)C6—C5—H5A112.9
N2—O2—C4109.68 (10)C4—C5—H5A112.9
C8—N1—O1118.17 (11)C1—C5—H5A112.9
C8—N1—C1123.97 (12)N2—C6—C7121.22 (14)
O1—N1—C1106.71 (10)N2—C6—C5114.71 (13)
C6—N2—O2109.36 (12)C7—C6—C5124.07 (13)
N1—C1—C299.81 (12)C6—C7—H7A109.5
N1—C1—C5106.95 (11)C6—C7—H7B109.5
C2—C1—C5102.78 (11)H7A—C7—H7B109.5
N1—C1—H1A115.2C6—C7—H7C109.5
C2—C1—H1A115.2H7A—C7—H7C109.5
C5—C1—H1A115.2H7B—C7—H7C109.5
C3—C2—C192.46 (11)O3—C8—N1118.93 (13)
C3—C2—H2A113.2O3—C8—C9122.94 (13)
C1—C2—H2A113.2N1—C8—C9117.83 (12)
C3—C2—H2B113.2C14—C9—C10119.79 (14)
C1—C2—H2B113.2C14—C9—C8118.21 (13)
H2A—C2—H2B110.6C10—C9—C8121.87 (13)
O1—C3—C2103.00 (12)C11—C10—C9119.94 (14)
O1—C3—C4105.92 (11)C11—C10—H10A120.0
C2—C3—C4103.54 (12)C9—C10—H10A120.0
O1—C3—H3A114.4C12—C11—C10120.01 (15)
C2—C3—H3A114.4C12—C11—H11A120.0
C4—C3—H3A114.4C10—C11—H11A120.0
O2—C4—C3111.21 (12)C11—C12—C13120.32 (15)
O2—C4—C5105.13 (12)C11—C12—H12A119.8
C3—C4—C5102.95 (11)C13—C12—H12A119.8
O2—C4—H4A112.3C12—C13—C14120.05 (15)
C3—C4—H4A112.3C12—C13—H13A120.0
C5—C4—H4A112.3C14—C13—H13A120.0
C6—C5—C4101.12 (11)C13—C14—C9119.87 (14)
C6—C5—C1114.18 (11)C13—C14—H14A120.1
C4—C5—C1101.61 (11)C9—C14—H14A120.1
C3—O1—N1—C8147.02 (12)N1—C1—C5—C467.40 (13)
C3—O1—N1—C11.68 (13)C2—C1—C5—C437.18 (14)
C4—O2—N2—C60.13 (15)O2—N2—C6—C7179.40 (12)
C8—N1—C1—C2179.42 (13)O2—N2—C6—C50.08 (16)
O1—N1—C1—C236.62 (13)C4—C5—C6—N20.24 (15)
C8—N1—C1—C572.72 (16)C1—C5—C6—N2108.48 (14)
O1—N1—C1—C570.08 (13)C4—C5—C6—C7179.23 (13)
N1—C1—C2—C353.69 (12)C1—C5—C6—C770.99 (17)
C5—C1—C2—C356.34 (13)O1—N1—C8—O3154.39 (12)
N1—O1—C3—C234.33 (13)C1—N1—C8—O315.5 (2)
N1—O1—C3—C474.07 (12)O1—N1—C8—C931.74 (18)
C1—C2—C3—O154.66 (12)C1—N1—C8—C9170.68 (12)
C1—C2—C3—C455.54 (13)O3—C8—C9—C1430.7 (2)
N2—O2—C4—C3110.46 (13)N1—C8—C9—C14155.66 (13)
N2—O2—C4—C50.27 (14)O3—C8—C9—C10145.16 (15)
O1—C3—C4—O2174.48 (10)N1—C8—C9—C1028.4 (2)
C2—C3—C4—O277.50 (14)C14—C9—C10—C110.5 (2)
O1—C3—C4—C573.40 (13)C8—C9—C10—C11176.30 (14)
C2—C3—C4—C534.62 (14)C9—C10—C11—C120.8 (2)
O2—C4—C5—C60.29 (13)C10—C11—C12—C131.2 (2)
C3—C4—C5—C6116.25 (12)C11—C12—C13—C140.4 (2)
O2—C4—C5—C1118.09 (12)C12—C13—C14—C90.9 (2)
C3—C4—C5—C11.56 (14)C10—C9—C14—C131.3 (2)
N1—C1—C5—C6175.33 (11)C8—C9—C14—C13177.27 (13)
C2—C1—C5—C670.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i1.002.503.2793 (18)135
C5—H5A···O2ii1.002.593.4017 (18)138
C7—H7B···O2ii0.982.563.3900 (19)142
C7—H7C···O2iii0.982.603.568 (2)170
C11—H11A···O3iv0.952.583.470 (2)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i1.002.503.2793 (18)135
C5—H5A···O2ii1.002.593.4017 (18)138
C7—H7B···O2ii0.982.563.3900 (19)142
C7—H7C···O2iii0.982.603.568 (2)170
C11—H11A···O3iv0.952.583.470 (2)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLough, A. J., Nagireddy, J. R. & Tam, W. (2014). Acta Cryst. E70, o544.  CSD CrossRef IUCr Journals Google Scholar
First citationMayo, P., Hecnar, T. & Tam, W. (2001). Tetrahedron, 57, 5931–5941.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYip, C., Handerson, S., Tranmer, G. K. & Tam, W. (2001). J. Org. Chem. 66, 276–286.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds