organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Acetyl-5-(4-fluoro­phen­yl)-2-sulfanyl­ideneimidazolidin-4-one

aDivision of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
*Correspondence e-mail: kunimoto@se.kanazawa-u.ac.jp

(Received 15 October 2013; accepted 17 October 2013; online 23 October 2013)

In the title compound, C11H9FN2O2S, the 2-sulfanylideneimidazolidin-4-one moiety is essentially planar, with a maximum deviation of 0.0183 (14) Å. The mean plane of this moiety is approximately coplanar with the attached acetyl group and perpendicular to the benzene ring, making dihedral angles of 9.70 (14) and 86.70 (6)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds between the amide NH and acetyl C=O groups, forming a C(6) chain along the a-axis direction.

Related literature

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993[Marton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148-152.]). For the crystal structures of related compounds, see: Casas et al. (1998[Casas, J. S., Castiñeiras, A., Couce, D., Playá, N., Sordo, J. & Varela, J. M. (1998). Acta Cryst. C54, 427-428.]); Sulbaran et al. (2007[Sulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543-o545.]); Taniguchi et al. (2009[Taniguchi, K., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K., Maeda, S. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 93-94.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For the synthetic procedure, see: Schlack & Kumpf (1926[Schlack, P. & Kumpf, W. (1926). Z. Physiol. Chem. 154, 125-170.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9FN2O2S

  • Mr = 252.27

  • Monoclinic, P 21 /n

  • a = 7.1327 (9) Å

  • b = 23.852 (3) Å

  • c = 7.3437 (10) Å

  • β = 113.541 (3)°

  • V = 1145.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 123 K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.829, Tmax = 0.977

  • 12234 measured reflections

  • 2612 independent reflections

  • 2418 reflections with F2 > 2σ(F2)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.06

  • 2612 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.84 (2) 1.96 (2) 2.7836 (16) 167 (2)
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2006[Rigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

2-Sulfanylideneimidazolidin-4-one (2-thiohydantoin) derivatives are useful synthetic intermediates in a wide range of applications, such as therapeutics, fungicides and herbicides (Marton et al., 1993). We have been studying crystal structures and hydrogen-bonding patterns of the polymorphic forms of 2-thiohydantoin derivatives. The Cambridge Structural Database survey (Ver. 5.34; Allen, 2002) indicates that 1-acetyl-2-thiohydantoins with an unsubstituted N atom show three types of N—H···O hydrogen-bonding patterns: (i) the amide NH and the acetyl CO groups form a chain with a C(6) graph-set motif (Etter et al., 1990) [triclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT01) (Taniguchi et al., 2009) and two other derivatives (KABRIQ and KOMGUO)]; (ii) the amide NH and the amide C O groups form a chain with C(4) [monoclinic polymorph of 1-acetyl-2-thiohydantoin (NIFHIT) (Casas et al., 1998) and one other derivative (DOKXUX)]; (iii) the amide NH and the amide CO groups form a ring with R22(8) [1-acetyl-5-methyl-2-thiohydantoin (DIKWAW) (Sulbaran et al., 2007)]. As an extension of our research, we report on the crystal structure of the title compound, C11H9FN2O2S.

In the title molecule (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported 1-acetyl-2-thiohydantoins with an unsubstituted N atom. The 2-thiohydantoin moiety (N1/C1/S1/N2/C2/O1/C3) is essentially planar, with maximum deviations of 0.0183 (14) Å for C3 atom and -0.0138 (13) Å for N1 atom. The acetyl group (C4/O2/C5) is almost coplanar with the 2-thiohydantoin moiety, and the dihedral angle between the acetyl group and the 2-thiohydantoin moiety is 9.70 (14)°.

In the crystal structure (Fig. 2), the molecules are linked by an N—H···O hydrogen bond between the amide NH and acetyl CO groups, forming a infinite one-dimensional chain along the a axis, with a C(6) graph-set motif (Table 1).

Related literature top

For applications and the biological activity of 2-sulfanylideneimidazolidin-4-ones, see: Marton et al. (1993). For the crystal structures of related compounds, see: Casas et al. (1998); Sulbaran et al. (2007); Taniguchi et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Etter (1990). For the synthetic procedure, see: Schlack & Kumpf (1926).

Experimental top

The title compound was synthesized using a slight modification of a reported method (Schlack & Kumpf, 1926). 4-Fluorophenylglycine (0.507 g, 3.00 mmol) was allowed to react with a mixture of ammonium thiocyanate (0.234 g, 3.07 mmol), acetic anhydride (10 ml), and acetic acid (2 ml) at 100 °C for 1 h. A white precipitate was obtained by adding 25 ml distilled water and subsequent cooling the solution in a refrigerator. The crude product was purified by recrystallization from an ethanol solution (yield: 47%). Single crystals suitable for X-ray diffraction were obtained from the ethanol solution.

Refinement top

The N-bound H atom was located in a difference map and refined freely [N2—H2 = 0.84 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95, 0.98 or 1.00 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: CrystalClear (Rigaku, 2006); cell refinement: CrystalClear (Rigaku, 2006); data reduction: CrystalClear (Rigaku, 2006); program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the c axis. Hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).
1-Acetyl-5-(4-fluorophenyl)-2-sulfanylideneimidazolidin-4-one top
Crystal data top
C11H9FN2O2SF(000) = 520
Mr = 252.27Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4829 reflections
a = 7.1327 (9) Åθ = 3.0–27.5°
b = 23.852 (3) ŵ = 0.29 mm1
c = 7.3437 (10) ÅT = 123 K
β = 113.541 (3)°Prism, colorless
V = 1145.4 (3) Å30.30 × 0.10 × 0.08 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2418 reflections with F2 > 2σ(F2)
Detector resolution: 7.314 pixels mm-1Rint = 0.024
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.829, Tmax = 0.977k = 3030
12234 measured reflectionsl = 98
2612 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.4044P]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H9FN2O2SV = 1145.4 (3) Å3
Mr = 252.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1327 (9) ŵ = 0.29 mm1
b = 23.852 (3) ÅT = 123 K
c = 7.3437 (10) Å0.30 × 0.10 × 0.08 mm
β = 113.541 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2612 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2418 reflections with F2 > 2σ(F2)
Tmin = 0.829, Tmax = 0.977Rint = 0.024
12234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2612 reflectionsΔρmin = 0.23 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92257 (4)0.464054 (12)0.18414 (4)0.02040 (10)
F10.66717 (16)0.18005 (4)0.78913 (15)0.0472 (3)
O11.28538 (13)0.37499 (4)0.83947 (13)0.0254 (2)
O20.53419 (13)0.42791 (4)0.53528 (13)0.0240 (2)
N10.81733 (14)0.42098 (4)0.47872 (14)0.0166 (2)
N21.14408 (15)0.41667 (4)0.53118 (15)0.0180 (2)
C10.95711 (17)0.43386 (4)0.39663 (17)0.0164 (3)
C21.14023 (17)0.39352 (5)0.70131 (17)0.0186 (3)
C30.91869 (16)0.39534 (5)0.67800 (16)0.0166 (3)
C40.61024 (17)0.43576 (5)0.41600 (18)0.0187 (3)
C50.49412 (19)0.45857 (6)0.21277 (19)0.0265 (3)
C60.84028 (17)0.33792 (5)0.69937 (17)0.0184 (3)
C70.7772 (2)0.32809 (5)0.8518 (2)0.0264 (3)
C80.7187 (3)0.27457 (6)0.8832 (2)0.0338 (4)
C90.7236 (3)0.23252 (6)0.7578 (3)0.0314 (3)
C100.7823 (3)0.24057 (6)0.6034 (2)0.0304 (3)
C110.8411 (2)0.29430 (5)0.57419 (19)0.0249 (3)
H21.252 (3)0.4205 (7)0.513 (3)0.027 (4)*
H30.90630.42110.78000.0199*
H5A0.34910.46170.18850.0318*
H5B0.50950.43330.11430.0318*
H5C0.54740.49570.20190.0318*
H70.77380.35810.93560.0317*
H80.67650.26730.98840.0406*
H100.78280.21040.51890.0364*
H110.88220.30120.46810.0299*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02194 (17)0.02105 (16)0.02123 (17)0.00019 (10)0.01181 (13)0.00233 (10)
F10.0632 (7)0.0242 (5)0.0522 (6)0.0180 (4)0.0208 (5)0.0062 (4)
O10.0181 (5)0.0278 (5)0.0267 (5)0.0001 (4)0.0052 (4)0.0056 (4)
O20.0175 (4)0.0300 (5)0.0283 (5)0.0008 (4)0.0131 (4)0.0028 (4)
N10.0148 (5)0.0173 (5)0.0188 (5)0.0003 (4)0.0078 (4)0.0014 (4)
N20.0141 (5)0.0196 (5)0.0223 (5)0.0004 (4)0.0095 (4)0.0004 (4)
C10.0170 (5)0.0122 (5)0.0220 (6)0.0019 (4)0.0099 (5)0.0034 (4)
C20.0183 (6)0.0156 (5)0.0231 (6)0.0024 (4)0.0094 (5)0.0016 (4)
C30.0162 (6)0.0163 (6)0.0179 (6)0.0008 (4)0.0075 (5)0.0006 (4)
C40.0153 (6)0.0183 (6)0.0235 (6)0.0011 (5)0.0087 (5)0.0018 (5)
C50.0174 (6)0.0386 (8)0.0229 (6)0.0029 (5)0.0072 (5)0.0036 (5)
C60.0151 (5)0.0180 (6)0.0218 (6)0.0016 (4)0.0072 (5)0.0006 (5)
C70.0316 (7)0.0243 (7)0.0279 (7)0.0064 (5)0.0168 (6)0.0020 (5)
C80.0424 (8)0.0321 (8)0.0323 (7)0.0116 (6)0.0205 (7)0.0034 (6)
C90.0326 (7)0.0207 (6)0.0370 (8)0.0097 (6)0.0098 (6)0.0061 (6)
C100.0363 (8)0.0187 (6)0.0353 (8)0.0058 (6)0.0135 (6)0.0051 (5)
C110.0284 (7)0.0219 (6)0.0278 (7)0.0035 (5)0.0146 (6)0.0022 (5)
Geometric parameters (Å, º) top
S1—C11.6454 (13)C7—C81.391 (2)
F1—C91.3621 (19)C8—C91.372 (3)
O1—C21.2073 (13)C9—C101.370 (3)
O2—C41.2150 (19)C10—C111.392 (2)
N1—C11.3899 (19)N2—H20.84 (2)
N1—C31.4810 (14)C3—H31.000
N1—C41.4053 (16)C5—H5A0.980
N2—C11.3676 (14)C5—H5B0.980
N2—C21.3762 (18)C5—H5C0.980
C2—C31.5206 (18)C7—H70.950
C3—C61.5111 (18)C8—H80.950
C4—C51.4906 (17)C10—H100.950
C6—C71.383 (3)C11—H110.950
C6—C111.3900 (19)
C1—N1—C3111.61 (9)C8—C9—C10123.48 (15)
C1—N1—C4130.13 (10)C9—C10—C11117.85 (14)
C3—N1—C4117.51 (11)C6—C11—C10120.41 (15)
C1—N2—C2114.14 (12)C1—N2—H2123.1 (10)
S1—C1—N1130.27 (8)C2—N2—H2122.7 (10)
S1—C1—N2123.36 (11)N1—C3—H3109.392
N1—C1—N2106.37 (11)C2—C3—H3109.399
O1—C2—N2126.05 (13)C6—C3—H3109.408
O1—C2—C3127.51 (13)C4—C5—H5A109.473
N2—C2—C3106.44 (9)C4—C5—H5B109.477
N1—C3—C2101.43 (11)C4—C5—H5C109.470
N1—C3—C6114.97 (9)H5A—C5—H5B109.474
C2—C3—C6111.93 (10)H5A—C5—H5C109.461
O2—C4—N1116.01 (10)H5B—C5—H5C109.473
O2—C4—C5123.27 (12)C6—C7—H7119.804
N1—C4—C5120.71 (13)C8—C7—H7119.807
C3—C6—C7119.42 (11)C7—C8—H8120.984
C3—C6—C11120.67 (13)C9—C8—H8120.972
C7—C6—C11119.82 (12)C9—C10—H10121.071
C6—C7—C8120.39 (14)C11—C10—H10121.082
C7—C8—C9118.04 (17)C6—C11—H11119.797
F1—C9—C8118.03 (16)C10—C11—H11119.789
F1—C9—C10118.50 (14)
C1—N1—C3—C21.25 (11)O1—C2—C3—C655.41 (16)
C1—N1—C3—C6122.21 (10)N2—C2—C3—N10.71 (11)
C3—N1—C1—S1178.11 (9)N2—C2—C3—C6123.78 (9)
C3—N1—C1—N21.32 (11)N1—C3—C6—C7126.90 (11)
C1—N1—C4—O2166.54 (10)N1—C3—C6—C1156.50 (14)
C1—N1—C4—C514.60 (17)C2—C3—C6—C7118.06 (11)
C4—N1—C1—S18.49 (18)C2—C3—C6—C1158.54 (12)
C4—N1—C1—N2170.93 (10)C3—C6—C7—C8175.27 (9)
C3—N1—C4—O22.57 (15)C3—C6—C11—C10175.46 (9)
C3—N1—C4—C5176.29 (9)C7—C6—C11—C101.12 (16)
C4—N1—C3—C2172.31 (9)C11—C6—C7—C81.35 (17)
C4—N1—C3—C666.73 (13)C6—C7—C8—C90.67 (18)
C1—N2—C2—O1179.24 (10)C7—C8—C9—F1179.71 (11)
C1—N2—C2—C30.04 (12)C7—C8—C9—C100.3 (2)
C2—N2—C1—S1178.64 (9)F1—C9—C10—C11179.49 (10)
C2—N2—C1—N10.83 (12)C8—C9—C10—C110.5 (2)
O1—C2—C3—N1178.48 (12)C9—C10—C11—C60.21 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.84 (2)1.96 (2)2.7836 (16)167 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.84 (2)1.96 (2)2.7836 (16)167 (2)
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasas, J. S., Castiñeiras, A., Couce, D., Playá, N., Sordo, J. & Varela, J. M. (1998). Acta Cryst. C54, 427–428.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarton, J., Enisz, J., Hosztafi, S. & Timar, T. (1993). J. Agric. Food Chem. 41, 148–152.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchlack, P. & Kumpf, W. (1926). Z. Physiol. Chem. 154, 125–170.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSulbaran, M. E., Delgado, G. E., Mora, A. J., Bahsas, A., Novoa de Armas, H. & Blaton, N. (2007). Acta Cryst. C63, o543–o545.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, K., Okumura, H., Honda, M., Suda, M., Fujinami, S., Kuwae, A., Hanai, K., Maeda, S. & Kunimoto, K.-K. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 93–94.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds