organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-4-thio­biuret

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 16 July 2013; accepted 19 July 2013; online 27 July 2013)

In the title compound (systematic name: {[(phenyl­formamido)­carbon­yl]amino}­methane­thio­amide), C9H9N3O2S, both benzoyl and terminal thio­urea fragments adopt transoid conformations with respect to the central carbonyl O atom. The benzoyl and thio­biuret groups are almost coplanar, making a dihedral angle of 4.40 (8)°. The mol­ecular structure is stabilized by two intra­molecular N—H⋯O hydrogen bonds. In the crystal, N—H⋯O and N—H⋯S hydrogen bonds link the mol­ecules into a tape running along [101].

Related literature

For the structure and reactivity of thia­diazole derivatives, see: Cho, Ra et al. (1996[Cho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201-1206.]); Cho, Cho et al. (1996[Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170-1174.]). For the structure of a thio­biuret isomer, see: Kang et al. (2012[Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o395.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O2S

  • Mr = 223.25

  • Triclinic, [P \overline 1]

  • a = 5.6616 (1) Å

  • b = 7.8407 (2) Å

  • c = 11.7631 (3) Å

  • α = 97.169 (2)°

  • β = 94.992 (3)°

  • γ = 101.390 (2)°

  • V = 504.53 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.2 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.97

  • 17356 measured reflections

  • 2516 independent reflections

  • 1485 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 0.87

  • 2516 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O11i 0.843 (18) 2.172 (18) 2.9891 (18) 163.3 (16)
N12—H12⋯O8 0.882 (19) 1.919 (19) 2.6171 (17) 135.0 (17)
N15—H15A⋯O11 0.91 (2) 1.99 (2) 2.684 (2) 132.0 (17)
N15—H15B⋯S14ii 0.85 (2) 2.58 (2) 3.4295 (17) 171.3 (17)
Symmetry codes: (i) -x-1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

5-Amino-2H-1,2,4-thiadiazol-3-one is the analog of cytosine. As an analog of cytosine, the tautomeric structure and reactivity of this compound have been examined (Cho, Ra et al., 1996). Within the framework of our interest in the synthesis of novel potential anti-metabolites of nucleic acid components which would possess cytostatic activity, we have synthesized derivatives of 5-amino-3H-1,3,4-thiadiazol-2-one (Cho, Cho et al., 1996). The title compound, 1-benzoyl-4-thiobiuret, is an isomer of 1-benzoyl-2-thiobiuret (Kang et al., 2012). This compound is an intermediate for the formation of the thiobiuret which is a good starting material to make 5-amino-2H-1,2,4-thiadizolin-3-one via oxidative ring-closure reaction.

The dihedral angle between the benzoyl unit (C1–C7/O8) and thiobiuret group (N9/C10/O11/N12/C13/S14/N15) is 4.40 (8)°. Both carbonyl O8 and S14 atoms are positioned anti conformations with respect to the O11 atom (Fig. 1). The intramolecular O8···H12—N12 and O11···H15—N15 hydrogen bonds stabilize the molecule (Fig. 1 and Table 1). The intermolecular N—H···O and N—H···S hydrogen bonds link the molecules into a tape along the [101] direction (Fig. 2 and Table 1).

Related literature top

For the structure and reactivity of thiadiazole derivatives, see: Cho, Ra et al. (1996); Cho, Cho et al. (1996). For the structure of a thiobiuret isomer, see: Kang et al. (2012).

Experimental top

Benzoyl chloride (48 ml, 58.1 g, 0.41 mol) was added to warm solution of potassium thiocyanate (48.0 g, 0.49 mol) in acetone (400 ml). The solution became milky white and yellow when the addition had been completed. The mixture was stirred for 3.5 h at 50°C and left to cool to room temperature. The filtrate was heated to 55°C for 5 h with urea (24.0 g, 0.40 mol). And the resulting solution was cooled to room temperature and then placed in an ice bath for several hours. The cold mixture was filtered to give 1-benzoyl-4-thiobiuret as a bright yellow solid. Recrystallization from methyl alcohol afforded the yellow crystals suitable for X-ray diffraction.

Refinement top

H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined N—H distances = 0.84 (2)–0.91 (2) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Two intramolecular N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the packing diagram of the title compound, showing a molecular tape formed by intermolecular N—H···O and N—H···S hydrogen bonds (dashed lines).
{[(Phenylformamido)carbonyl]amino}methanethioamide top
Crystal data top
C9H9N3O2SZ = 2
Mr = 223.25F(000) = 232
Triclinic, P1Dx = 1.47 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6616 (1) ÅCell parameters from 3132 reflections
b = 7.8407 (2) Åθ = 2.7–22.3°
c = 11.7631 (3) ŵ = 0.30 mm1
α = 97.169 (2)°T = 296 K
β = 94.992 (3)°Block, yellow
γ = 101.390 (2)°0.2 × 0.15 × 0.07 mm
V = 504.53 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
1485 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.94, Tmax = 0.97k = 1010
17356 measured reflectionsl = 1515
2516 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2516 reflectionsΔρmax = 0.16 e Å3
152 parametersΔρmin = 0.20 e Å3
Crystal data top
C9H9N3O2Sγ = 101.390 (2)°
Mr = 223.25V = 504.53 (2) Å3
Triclinic, P1Z = 2
a = 5.6616 (1) ÅMo Kα radiation
b = 7.8407 (2) ŵ = 0.30 mm1
c = 11.7631 (3) ÅT = 296 K
α = 97.169 (2)°0.2 × 0.15 × 0.07 mm
β = 94.992 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2516 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1485 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.97Rint = 0.055
17356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.16 e Å3
2516 reflectionsΔρmin = 0.20 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0374 (3)0.8224 (2)0.12506 (14)0.0447 (4)
C20.2488 (3)0.9206 (2)0.15393 (16)0.0597 (5)
H20.38810.94770.10140.072*
C30.2552 (4)0.9785 (3)0.25952 (19)0.0729 (6)
H30.3981.04530.27780.087*
C40.0539 (4)0.9383 (3)0.33677 (18)0.0723 (6)
H40.060.97630.40850.087*
C50.1598 (4)0.8419 (3)0.31035 (18)0.0753 (6)
H50.29790.81540.36360.09*
C60.1672 (3)0.7846 (3)0.20373 (16)0.0615 (5)
H60.31140.72030.18510.074*
C70.0480 (3)0.7661 (2)0.00927 (14)0.0442 (4)
O80.2338 (2)0.80629 (17)0.05733 (11)0.0633 (4)
N90.1594 (2)0.66558 (19)0.02071 (12)0.0467 (4)
H90.284 (3)0.634 (2)0.0281 (16)0.054 (5)*
C100.1998 (3)0.6059 (2)0.12532 (14)0.0446 (4)
O110.3996 (2)0.52249 (17)0.13780 (10)0.0603 (4)
N120.0057 (2)0.64570 (19)0.20766 (11)0.0467 (4)
H120.131 (4)0.707 (2)0.1906 (17)0.067 (6)*
C130.0039 (3)0.6057 (2)0.31929 (13)0.0447 (4)
S140.27039 (8)0.66392 (7)0.40142 (4)0.05930 (19)
N150.1971 (3)0.5267 (3)0.35341 (15)0.0646 (5)
H15A0.336 (4)0.507 (2)0.3052 (18)0.075 (6)*
H15B0.199 (3)0.486 (2)0.4173 (18)0.066 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0468 (9)0.0459 (10)0.0402 (9)0.0048 (8)0.0046 (7)0.0100 (8)
C20.0539 (10)0.0726 (13)0.0505 (11)0.0013 (9)0.0049 (8)0.0214 (10)
C30.0714 (13)0.0858 (16)0.0630 (14)0.0016 (12)0.0175 (11)0.0337 (12)
C40.0944 (16)0.0782 (15)0.0503 (12)0.0174 (13)0.0138 (12)0.0294 (11)
C50.0810 (15)0.0890 (16)0.0523 (12)0.0069 (13)0.0107 (11)0.0263 (11)
C60.0564 (11)0.0714 (13)0.0518 (12)0.0029 (9)0.0038 (9)0.0230 (10)
C70.0403 (9)0.0483 (10)0.0410 (9)0.0009 (7)0.0013 (7)0.0102 (8)
O80.0426 (6)0.0882 (10)0.0501 (7)0.0140 (6)0.0047 (6)0.0269 (7)
N90.0392 (7)0.0609 (10)0.0353 (8)0.0021 (7)0.0023 (6)0.0141 (7)
C100.0411 (9)0.0546 (11)0.0349 (9)0.0016 (8)0.0012 (7)0.0099 (8)
O110.0397 (6)0.0898 (10)0.0432 (7)0.0107 (6)0.0017 (5)0.0213 (6)
N120.0370 (7)0.0637 (10)0.0359 (8)0.0022 (7)0.0008 (6)0.0165 (7)
C130.0401 (8)0.0588 (11)0.0355 (9)0.0069 (8)0.0047 (7)0.0129 (8)
S140.0402 (2)0.0911 (4)0.0424 (3)0.0002 (2)0.00342 (18)0.0213 (2)
N150.0403 (8)0.1120 (15)0.0414 (9)0.0026 (9)0.0021 (7)0.0336 (10)
Geometric parameters (Å, º) top
C1—C61.377 (2)C7—O81.2181 (18)
C1—C21.383 (2)C7—N91.378 (2)
C1—C71.483 (2)N9—C101.391 (2)
C2—C31.376 (3)N9—H90.843 (18)
C2—H20.93C10—O111.2205 (18)
C3—C41.353 (3)C10—N121.3591 (19)
C3—H30.93N12—C131.387 (2)
C4—C51.377 (3)N12—H120.882 (19)
C4—H40.93C13—N151.305 (2)
C5—C61.385 (3)C13—S141.6679 (16)
C5—H50.93N15—H15A0.91 (2)
C6—H60.93N15—H15B0.85 (2)
C6—C1—C2118.74 (16)O8—C7—N9120.79 (15)
C6—C1—C7124.45 (15)O8—C7—C1121.33 (14)
C2—C1—C7116.81 (15)N9—C7—C1117.87 (14)
C3—C2—C1120.69 (18)C7—N9—C10128.80 (14)
C3—C2—H2119.7C7—N9—H9119.4 (12)
C1—C2—H2119.7C10—N9—H9111.8 (12)
C4—C3—C2120.02 (18)O11—C10—N12124.46 (15)
C4—C3—H3120O11—C10—N9119.83 (14)
C2—C3—H3120N12—C10—N9115.71 (14)
C3—C4—C5120.70 (19)C10—N12—C13127.81 (14)
C3—C4—H4119.7C10—N12—H12117.8 (13)
C5—C4—H4119.7C13—N12—H12114.4 (13)
C4—C5—C6119.38 (19)N15—C13—N12117.68 (14)
C4—C5—H5120.3N15—C13—S14124.41 (13)
C6—C5—H5120.3N12—C13—S14117.91 (12)
C1—C6—C5120.46 (18)C13—N15—H15A118.8 (13)
C1—C6—H6119.8C13—N15—H15B121.9 (13)
C5—C6—H6119.8H15A—N15—H15B119.1 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.843 (18)2.172 (18)2.9891 (18)163.3 (16)
N12—H12···O80.882 (19)1.919 (19)2.6171 (17)135.0 (17)
N15—H15A···O110.91 (2)1.99 (2)2.684 (2)132.0 (17)
N15—H15B···S14ii0.85 (2)2.58 (2)3.4295 (17)171.3 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.843 (18)2.172 (18)2.9891 (18)163.3 (16)
N12—H12···O80.882 (19)1.919 (19)2.6171 (17)135.0 (17)
N15—H15A···O110.91 (2)1.99 (2)2.684 (2)132.0 (17)
N15—H15B···S14ii0.85 (2)2.58 (2)3.4295 (17)171.3 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174.  CAS Google Scholar
First citationCho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201–1206.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2013). University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds