metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris­(μ4-azepane-1-carbodi­thio­ato)bis­­(μ3-azepane-1-carbodi­thio­ato)-μ9-bromido-tetra-μ2-bromido-octa­copper(I)­copper(II)

aDepartment of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan, and bPRESTO, Japan Science and Technology Agency (JST), Japan
*Correspondence e-mail: okubo_t@chem.kindai.ac.jp

(Received 3 April 2013; accepted 10 April 2013; online 20 April 2013)

The reaction of Cu(Hm-dtc)2 (H2m-dtc is azepane-1-carbodi­thioic acid), CuBr2 and methyl iso­thio­cyanate yielded the title mixed-valence nona­nuclear CuI/CuII compound, [Cu9Br5(C7H12NS2)5] or [CuI8CuIIBr5(Hm-dtc)5], encapsulating a bromide anion in the center of the Cu9Br4S10 cluster cage. The cage consists of a mononuclear CuII unit [Cu(Hm-dtc)2], three μ4-bridging Hm-dtc ligands, eight CuI ions with distorted tetra­hedral or trigonal pyramidal coordination geometries and four μ2-bridging bromide anions. The incorporated central bromide anion inter­acts with nine Cu ions with shorter Cu—Br separations than the sum of the van der Waals radii for Cu and Br.

Related literature

For copper clusters with di­thio­carbamate ligands, see: Cardell et al. (2006[Cardell, D., Hogarth, G. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321-1324.]); Okubo, Kuwamoto et al. (2011[Okubo, T., Kuwamoto, H., Kim, K. H., Hayami, S., Yamano, A., Shiro, M., Maekawa, M. & Kuroda-Sowa, T. (2011). Inorg. Chem. 50, 2708-2710.]); Liao et al. (2012[Liao, P. K., Fang, C. S., Edwards, A. J., Kahlal, S., Saillard, J. Y. & Liu, C. W. (2012). Inorg. Chem. 51, 6577-6591.]). For coordination polymers with di­thio­carbamate ligands, see: Golding et al. (1974[Golding, R. M., Rae, A. D. & Sulligoi, L. (1974). Inorg. Chem. 13, 2499-2504.]); Hendrickson et al. (1975[Hendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Okubo et al. (2010[Okubo, T., Tanaka, N., Kim, K. H., Yone, H., Maekawa, M. & Kuroda-Sowa, T. (2010). Inorg. Chem. 49, 3700-3702.]); Okubo, Tanaka et al. (2011[Okubo, T., Tanaka, N., Kim, K. H., Anma, H., Seki, S., Saeki, A., Maekawa, M. & Kuroda-Sowa, T. (2011). Dalton Trans. 40, 2218-2224.]). For pmononuclear copper complexes with di­thio­carbamate ligands, see: Jian et al. (1999[Jian, F., Wang, Z., Bai, Z., You, X., Fun, H.-K., Chinnakali, K. & Razak, I. R. (1999). Polyhedron, 18, 3401-3406.]); Ngo et al. (2003[Ngo, S. C., Banger, K. K., DelaRosa, M. J., Toscano, P. J. & Welch, J. T. (2003). Polyhedron, 22, 1575-1583.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu9Br5(C7H12NS2)5]

  • Mr = 1842.93

  • Monoclinic, P 21 /c

  • a = 12.5728 (6) Å

  • b = 19.5997 (7) Å

  • c = 22.9708 (8) Å

  • β = 107.0411 (12)°

  • V = 5412.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.59 mm−1

  • T = 296 K

  • 0.90 × 0.60 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.241, Tmax = 0.468

  • 50620 measured reflections

  • 12284 independent reflections

  • 10468 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.03

  • 12284 reflections

  • 577 parameters

  • H-atom parameters constrained

  • Δρmax = 2.35 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Selected bond lengths (Å)

Br1—Cu3 2.6912 (8)
Br2—Cu2 2.3748 (7)
Br2—Cu6 2.4201 (6)
Br3—Cu3 2.4149 (6)
Br3—Cu7 2.3993 (7)
Br4—Cu5 2.3748 (7)
Br4—Cu9 2.4414 (7)
Br5—Cu4 2.3705 (7)
Br5—Cu8 2.3962 (6)
Cu1—S1 2.3087 (10)
Cu1—S2 2.3208 (13)
Cu1—S3 2.3122 (10)
Cu1—S4 2.3322 (13)
Cu2—S1 2.2805 (12)
Cu2—S5 2.2623 (14)
Cu3—S2 2.3216 (11)
Cu3—S7 2.2711 (10)
Cu4—S3 2.2645 (11)
Cu4—S7 2.2619 (14)
Cu5—S4 2.3110 (12)
Cu5—S5 2.2447 (10)
Cu6—S6 2.2805 (15)
Cu6—S9 2.2537 (12)
Cu7—S8 2.2480 (11)
Cu7—S9 2.2788 (13)
Cu8—S8 2.3043 (15)
Cu8—S10 2.2647 (13)
Cu9—S6 2.2771 (11)
Cu9—S10 2.2705 (12)

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Dithiocarbamate (dtc) derivatives are good candidates for ligands in polynuclear metal complexes. This is because ligands that contain dithiocarboxyl groups have the ability not only to bridge metal ions by sulfur atoms, which have large atomic orbitals, in the ligands but also to stabilize Cu complexes in a wide range of oxidation states such as Cu(I), Cu(II), and Cu(III). To date, several metal clusters (Cardell et al., 2006; Okubo, Kuwamoto et al., 2011; Liao et al., 2012) and coordination polymers (Golding et al., 1974; Hendrickson et al., 1975; Okubo et al., 2010; Okubo, Tanaka et al., 2011) have been synthesized from dithiocarbamate derivatives.

Single-crystal X-ray analysis reveals the formation of a new mixed -valence Cu(I)/Cu(II) cluster of formula [CuI8CuIIBr5(Hm-dtc)5]. This complex has a cage structure consisting of a mononuclear Cu(Hm-dtc)2 unit, eight Cu ions, four Br anions and bridging µ-Hm-dtc- ligands, and the Br1 is incorporated in the center of the cage through bonding to the Cu3 ion. The Cu1 ion of the mononuclear units has distorted square-planar coordination geometries in which the Hm-dtc- ligands coordinate with the Cu1 ion in four-membered chelate rings. The Cu3 ion forms a tetrahedral S2Br2 coordination geometry. The other Cu ions, Cu2, Cu4, Cu5, Cu6, Cu7 and Cu8, have trigonal pyramidal S2Br1 coordination geometries, where the Br1 ion is located close to the Cu ions, thereby forming a pseudo tetrahedral geometry for the Cu ions; the Cu2—Br1, Cu4—Br1, Cu5—Br1, Cu6—Br1, Cu7—Br1, Cu8—Br1 and Cu9—Br1 separations are 2.9054 (6), 2.8672 (6), 2.7825 (8), 2.9319 (6), 2.9262 (8), 2.9563 (7) and 2.9013 (7) Å, respectively; these separations are slightly larger than the Cu3—Br1 distance [2.6912 (8) Å] and smaller than that of the sum of the van der Waals radii for Cu and Br (3.25 Å). In addition, the incorporated Br1 ion is also located close to the Cu1 ion of the mononuclear Cu(Hm-dtc)2 unit with the separation of 2.9650 (6) Å. Usually, the oxidation states of Cu complexes with dithiocarbamate ligands can be determined by the Cu—S distances. In the mononuclear Cu(Hm-dtc)2 unit, the average Cu—S distance is 2.3185 (13) Å, which is similar to the typical Cu(II)—S distances for Cu(II) -dithiocarbamate complexes such as CuII(Et2dtc)2 [av. 2.312 (1) Å], CuII(i-Pr2dtc)2 [av. 2.2884 (7) Å] and CuII(n-Bu2dtc)2 [av. 2.308 (1) Å] (Jian et al., 1999; Ngo et al., 2003). Based on its charge neutrality, it is concluded that this complex is in the mixed-valence state with formula [CuI8CuIIBr5(Hm-dtc)5], in which the square-planar Cu1 is divalent and the other Cu ions of Cu2—Cu9 with distorted tetrahedral or trigonal pyramidal coordination geometries are monovalent.

Related literature top

For copper clusters with dithiocarbamate ligands, see; Cardell et al. (2006); Okubo, Kuwamoto et al. (2011); Liao et al. (2012). For coordination polymers with dithiocarbamate ligands, see; Golding et al. (1974); Hendrickson et al. (1975); Okubo et al. (2010); Okubo, Tanaka et al. (2011). For mononulcear copper complexes with dithiocarbamate ligands, see; Jian et al. (1999); Ngo et al. (2003).

Experimental top

A CHCl3 solution (20 ml) of Cu(Hm-dtc)2 (0.1 mmol) was placed in a 50 ml glass vessel with a screw type cap, and a mixed-solvent (10 ml) of CHCl3 and MeOH was slowly added on the solution. Then, a MeOH solution (20 ml) of CuBr2 (0.2 mmol) and methylisothiocyanate (1.0 mmol) was slowly added on the solution making the layers of the solutions. By the slow diffusion of the solutions, black plate-shaped single crystals were obtained after a few days standing at room temperature.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Dithiocarbamate (dtc) derivatives are good candidates for ligands in polynuclear metal complexes. This is because ligands that contain dithiocarboxyl groups have the ability not only to bridge metal ions by sulfur atoms, which have large atomic orbitals, in the ligands but also to stabilize Cu complexes in a wide range of oxidation states such as Cu(I), Cu(II), and Cu(III). To date, several metal clusters (Cardell et al., 2006; Okubo, Kuwamoto et al., 2011; Liao et al., 2012) and coordination polymers (Golding et al., 1974; Hendrickson et al., 1975; Okubo et al., 2010; Okubo, Tanaka et al., 2011) have been synthesized from dithiocarbamate derivatives.

Single-crystal X-ray analysis reveals the formation of a new mixed -valence Cu(I)/Cu(II) cluster of formula [CuI8CuIIBr5(Hm-dtc)5]. This complex has a cage structure consisting of a mononuclear Cu(Hm-dtc)2 unit, eight Cu ions, four Br anions and bridging µ-Hm-dtc- ligands, and the Br1 is incorporated in the center of the cage through bonding to the Cu3 ion. The Cu1 ion of the mononuclear units has distorted square-planar coordination geometries in which the Hm-dtc- ligands coordinate with the Cu1 ion in four-membered chelate rings. The Cu3 ion forms a tetrahedral S2Br2 coordination geometry. The other Cu ions, Cu2, Cu4, Cu5, Cu6, Cu7 and Cu8, have trigonal pyramidal S2Br1 coordination geometries, where the Br1 ion is located close to the Cu ions, thereby forming a pseudo tetrahedral geometry for the Cu ions; the Cu2—Br1, Cu4—Br1, Cu5—Br1, Cu6—Br1, Cu7—Br1, Cu8—Br1 and Cu9—Br1 separations are 2.9054 (6), 2.8672 (6), 2.7825 (8), 2.9319 (6), 2.9262 (8), 2.9563 (7) and 2.9013 (7) Å, respectively; these separations are slightly larger than the Cu3—Br1 distance [2.6912 (8) Å] and smaller than that of the sum of the van der Waals radii for Cu and Br (3.25 Å). In addition, the incorporated Br1 ion is also located close to the Cu1 ion of the mononuclear Cu(Hm-dtc)2 unit with the separation of 2.9650 (6) Å. Usually, the oxidation states of Cu complexes with dithiocarbamate ligands can be determined by the Cu—S distances. In the mononuclear Cu(Hm-dtc)2 unit, the average Cu—S distance is 2.3185 (13) Å, which is similar to the typical Cu(II)—S distances for Cu(II) -dithiocarbamate complexes such as CuII(Et2dtc)2 [av. 2.312 (1) Å], CuII(i-Pr2dtc)2 [av. 2.2884 (7) Å] and CuII(n-Bu2dtc)2 [av. 2.308 (1) Å] (Jian et al., 1999; Ngo et al., 2003). Based on its charge neutrality, it is concluded that this complex is in the mixed-valence state with formula [CuI8CuIIBr5(Hm-dtc)5], in which the square-planar Cu1 is divalent and the other Cu ions of Cu2—Cu9 with distorted tetrahedral or trigonal pyramidal coordination geometries are monovalent.

For copper clusters with dithiocarbamate ligands, see; Cardell et al. (2006); Okubo, Kuwamoto et al. (2011); Liao et al. (2012). For coordination polymers with dithiocarbamate ligands, see; Golding et al. (1974); Hendrickson et al. (1975); Okubo et al. (2010); Okubo, Tanaka et al. (2011). For mononulcear copper complexes with dithiocarbamate ligands, see; Jian et al. (1999); Ngo et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of nonanuclear CuI/CuII cluster with 50% probability level ellipsoids: Cu, red-brown; Br, orange; S, yellow; C, white; and N, blue. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Structure of nonanuclear copper cluster; Cu, red; Br, orange; C, white; S, yellow; N, blue. Hydrogen atoms are omitted for clearly, and incorporated Br1 ion is represented with a space-filling sphere.
[Figure 3] Fig. 3. Packing diagram of nonanuclear copper cluster viewed along the a axis. Hydrogen atoms are omitted for clarity.
Tris(µ4-azepane-1-carbodithioato)bis(µ3-azepane-1-carbodithioato)-µ9-bromido-tetra-µ2-bromido-octacopper(I)copper(II) top
Crystal data top
[Cu9Br5(C7H12NS2)5]F(000) = 3604.00
Mr = 1842.93Dx = 2.262 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 39225 reflections
a = 12.5728 (6) Åθ = 3.0–27.5°
b = 19.5997 (7) ŵ = 7.59 mm1
c = 22.9708 (8) ÅT = 296 K
β = 107.0411 (12)°Platelet, black
V = 5412.0 (4) Å30.90 × 0.60 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10468 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.078
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1616
Tmin = 0.241, Tmax = 0.468k = 2425
50620 measured reflectionsl = 2929
12284 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
12284 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 2.35 e Å3
0 restraintsΔρmin = 1.54 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu9Br5(C7H12NS2)5]V = 5412.0 (4) Å3
Mr = 1842.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5728 (6) ŵ = 7.59 mm1
b = 19.5997 (7) ÅT = 296 K
c = 22.9708 (8) Å0.90 × 0.60 × 0.10 mm
β = 107.0411 (12)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
12284 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
10468 reflections with F2 > 2.0σ(F2)
Tmin = 0.241, Tmax = 0.468Rint = 0.078
50620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 2.35 e Å3
12284 reflectionsΔρmin = 1.54 e Å3
577 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83480 (3)0.752744 (17)0.342115 (17)0.01264 (10)
Br21.05003 (4)0.73843 (2)0.510018 (18)0.01870 (11)
Br30.71501 (4)0.70024 (2)0.480276 (17)0.01870 (11)
Br40.97088 (4)0.73887 (2)0.205891 (19)0.02023 (11)
Br50.64700 (4)0.69961 (2)0.176201 (17)0.01830 (11)
Cu10.78873 (4)0.90125 (2)0.33960 (2)0.01269 (11)
Cu21.01895 (5)0.81987 (3)0.43023 (2)0.01939 (13)
Cu30.66494 (5)0.77014 (2)0.38973 (2)0.01642 (12)
Cu40.62624 (5)0.77669 (2)0.25165 (2)0.01925 (13)
Cu50.97677 (5)0.81648 (3)0.28617 (2)0.01810 (12)
Cu61.01363 (5)0.66851 (2)0.41946 (2)0.01943 (13)
Cu70.74807 (5)0.63882 (3)0.39690 (2)0.01997 (13)
Cu80.72960 (5)0.63493 (3)0.26670 (2)0.02182 (13)
Cu90.98315 (5)0.66960 (2)0.29596 (2)0.01854 (12)
S10.92264 (9)0.91814 (5)0.43167 (4)0.01244 (19)
S20.68894 (9)0.88625 (5)0.40913 (4)0.0141 (2)
S30.65022 (9)0.89096 (5)0.24809 (4)0.0129 (2)
S40.88384 (9)0.91962 (5)0.26776 (4)0.01251 (19)
S51.12696 (9)0.82925 (4)0.36730 (4)0.0144 (2)
S61.14812 (9)0.67241 (5)0.37109 (5)0.0157 (2)
S70.51331 (9)0.75009 (4)0.30896 (4)0.0137 (2)
S80.60532 (9)0.60369 (5)0.31834 (5)0.0171 (2)
S90.90727 (9)0.57583 (5)0.41897 (4)0.0140 (2)
S100.88493 (9)0.57066 (5)0.28136 (4)0.0132 (2)
N10.8337 (3)0.88817 (16)0.52277 (14)0.0139 (7)
N20.7410 (3)0.89371 (16)0.15547 (14)0.0135 (7)
N31.3153 (3)0.76012 (15)0.39905 (15)0.0134 (7)
N40.3988 (3)0.64004 (16)0.25959 (15)0.0171 (8)
N50.8811 (3)0.46334 (16)0.35098 (14)0.0139 (7)
C10.8178 (4)0.89505 (18)0.46438 (17)0.0125 (8)
C20.9448 (4)0.8977 (2)0.56747 (18)0.0186 (9)
C30.9389 (4)0.9327 (2)0.62605 (17)0.0183 (9)
C40.8612 (4)0.9946 (2)0.61714 (19)0.0193 (9)
C50.7404 (4)0.9761 (2)0.61338 (18)0.0194 (9)
C60.6780 (4)0.9350 (2)0.55694 (18)0.0194 (9)
C70.7390 (4)0.8710 (2)0.54670 (18)0.0172 (9)
C80.7573 (4)0.89973 (17)0.21465 (17)0.0120 (8)
C90.6298 (4)0.88212 (19)0.11373 (18)0.0154 (8)
C100.5613 (4)0.9483 (2)0.09793 (18)0.0180 (9)
C110.6279 (4)1.0095 (2)0.0873 (2)0.0235 (10)
C120.7159 (4)0.9948 (3)0.0551 (2)0.0235 (10)
C130.8288 (4)0.9721 (2)0.09796 (19)0.0223 (10)
C140.8315 (4)0.9021 (2)0.12698 (17)0.0160 (9)
C151.2051 (4)0.75410 (18)0.38024 (17)0.0130 (8)
C161.3719 (4)0.82783 (19)0.40894 (18)0.0153 (8)
C171.3890 (4)0.8540 (2)0.47292 (19)0.0198 (9)
C181.4519 (4)0.8041 (3)0.52339 (18)0.0203 (9)
C191.3852 (4)0.7392 (2)0.52702 (19)0.0211 (10)
C201.3974 (4)0.6808 (2)0.48579 (19)0.0203 (9)
C211.3894 (4)0.70183 (19)0.42054 (18)0.0156 (9)
C220.4969 (4)0.66228 (19)0.29298 (17)0.0149 (8)
C230.3016 (4)0.6857 (2)0.2356 (2)0.0216 (9)
C240.2269 (4)0.6666 (3)0.1720 (2)0.0255 (10)
C250.2884 (5)0.6504 (3)0.1262 (2)0.0271 (11)
C260.3245 (5)0.5751 (3)0.1259 (2)0.0278 (11)
C270.4119 (4)0.5524 (2)0.18354 (19)0.0216 (10)
C280.3801 (4)0.5675 (2)0.24224 (18)0.0200 (9)
C290.8906 (4)0.53089 (18)0.35076 (17)0.0126 (8)
C300.8775 (4)0.4242 (2)0.40606 (19)0.0208 (10)
C310.7587 (5)0.4085 (3)0.4052 (2)0.0251 (10)
C320.6872 (4)0.3695 (2)0.3490 (2)0.0251 (10)
C330.6583 (4)0.4116 (3)0.2902 (2)0.0255 (10)
C340.7465 (4)0.4142 (3)0.2566 (2)0.0235 (10)
C350.8653 (4)0.42096 (19)0.29607 (18)0.0173 (9)
H2A0.99060.92490.54900.0223*
H2B0.98010.85350.57760.0223*
H3A1.01330.94730.64870.0219*
H3B0.91500.89940.65080.0219*
H4A0.86171.01790.58000.0232*
H4B0.88981.02590.65080.0232*
H5A0.74080.95000.64930.0233*
H5B0.69971.01790.61410.0233*
H6A0.60600.92190.56080.0233*
H6B0.66510.96410.52140.0233*
H7A0.76660.84650.58480.0207*
H7B0.68740.84140.51800.0207*
H9A0.59050.85000.13210.0184*
H9B0.63670.86180.07650.0184*
H10A0.49970.94060.06160.0216*
H10B0.53020.95890.13090.0216*
H11A0.66451.03010.12650.0282*
H11B0.57631.04290.06350.0282*
H12A0.72691.03560.03370.0282*
H12B0.68820.95940.02490.0282*
H13A0.88280.97250.07530.0268*
H13B0.85251.00560.13030.0268*
H14A0.82450.86720.09610.0192*
H14B0.90250.89580.15760.0192*
H16A1.32750.86040.38010.0184*
H16B1.44350.82390.40130.0184*
H17A1.31690.86380.47840.0238*
H17B1.43010.89650.47770.0238*
H18A1.52130.79110.51600.0244*
H18B1.47000.82750.56230.0244*
H19A1.40810.72300.56880.0253*
H19B1.30710.75130.51700.0253*
H20A1.34000.64720.48450.0243*
H20B1.46870.65890.50360.0243*
H21A1.46320.71330.41830.0187*
H21B1.36270.66340.39370.0187*
H23A0.32840.73190.23430.0260*
H23B0.25710.68520.26370.0260*
H24A0.18250.62720.17570.0306*
H24B0.17620.70410.15650.0306*
H25A0.35410.67910.13460.0325*
H25B0.24100.66210.08580.0325*
H26A0.25930.54630.11990.0333*
H26B0.35330.56800.09160.0333*
H27A0.48140.57530.18580.0259*
H27B0.42390.50370.18110.0259*
H28A0.30240.55630.23590.0239*
H28B0.42430.53920.27510.0239*
H30A0.91380.45040.44220.0250*
H30B0.91810.38180.40790.0250*
H31A0.72170.45130.40810.0301*
H31B0.76100.38210.44130.0301*
H32A0.72690.32880.34330.0301*
H32B0.61870.35500.35660.0301*
H33A0.59050.39330.26260.0306*
H33B0.64270.45800.29990.0306*
H34A0.74040.37300.23250.0282*
H34B0.72980.45250.22860.0282*
H35A0.89430.37570.30860.0207*
H35B0.90920.44030.27170.0207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0174 (3)0.00951 (18)0.01128 (19)0.00006 (13)0.00471 (15)0.00048 (14)
Br20.0293 (3)0.01343 (19)0.01172 (19)0.00048 (15)0.00343 (17)0.00034 (15)
Br30.0282 (3)0.0187 (2)0.01104 (19)0.00405 (16)0.00865 (17)0.00271 (16)
Br40.0350 (3)0.01384 (19)0.0145 (2)0.00169 (16)0.01144 (18)0.00015 (16)
Br50.0282 (3)0.0159 (2)0.00980 (19)0.00432 (16)0.00411 (17)0.00000 (15)
Cu10.0197 (3)0.0114 (3)0.0073 (3)0.00001 (18)0.00432 (19)0.00032 (18)
Cu20.0265 (4)0.0157 (3)0.0181 (3)0.0045 (2)0.0097 (3)0.0026 (2)
Cu30.0230 (3)0.0123 (3)0.0128 (3)0.00221 (19)0.0036 (2)0.0005 (2)
Cu40.0317 (4)0.0116 (3)0.0184 (3)0.0037 (2)0.0134 (3)0.0013 (2)
Cu50.0231 (4)0.0148 (3)0.0150 (3)0.00341 (19)0.0032 (2)0.0006 (2)
Cu60.0284 (4)0.0151 (3)0.0152 (3)0.0063 (2)0.0071 (3)0.0027 (2)
Cu70.0246 (4)0.0201 (3)0.0144 (3)0.0040 (2)0.0045 (3)0.0023 (2)
Cu80.0275 (4)0.0225 (3)0.0154 (3)0.0082 (3)0.0061 (3)0.0050 (3)
Cu90.0263 (4)0.0143 (3)0.0142 (3)0.0048 (2)0.0046 (3)0.0009 (2)
S10.0184 (6)0.0112 (4)0.0087 (4)0.0014 (4)0.0054 (4)0.0004 (4)
S20.0217 (6)0.0119 (5)0.0091 (5)0.0024 (4)0.0053 (4)0.0025 (4)
S30.0179 (6)0.0106 (5)0.0107 (5)0.0002 (4)0.0049 (4)0.0003 (4)
S40.0168 (6)0.0119 (5)0.0082 (4)0.0002 (4)0.0027 (4)0.0006 (4)
S50.0184 (6)0.0092 (4)0.0148 (5)0.0013 (4)0.0039 (4)0.0010 (4)
S60.0195 (6)0.0083 (4)0.0187 (5)0.0003 (4)0.0046 (4)0.0000 (4)
S70.0191 (6)0.0107 (5)0.0118 (5)0.0022 (4)0.0053 (4)0.0016 (4)
S80.0222 (6)0.0112 (5)0.0164 (5)0.0003 (4)0.0033 (4)0.0002 (4)
S90.0218 (6)0.0100 (5)0.0098 (5)0.0004 (4)0.0040 (4)0.0007 (4)
S100.0214 (6)0.0094 (4)0.0088 (4)0.0008 (4)0.0045 (4)0.0006 (4)
N10.019 (2)0.0132 (16)0.0097 (15)0.0025 (13)0.0047 (14)0.0031 (14)
N20.020 (2)0.0120 (15)0.0074 (15)0.0017 (13)0.0027 (13)0.0004 (13)
N30.019 (2)0.0095 (15)0.0112 (16)0.0008 (13)0.0035 (14)0.0007 (13)
N40.021 (2)0.0126 (16)0.0169 (17)0.0010 (14)0.0039 (15)0.0018 (14)
N50.023 (2)0.0096 (15)0.0112 (16)0.0014 (13)0.0076 (14)0.0015 (13)
C10.018 (3)0.0065 (16)0.0125 (18)0.0024 (14)0.0045 (16)0.0000 (15)
C20.022 (3)0.018 (2)0.0137 (19)0.0001 (16)0.0022 (17)0.0035 (17)
C30.026 (3)0.0157 (19)0.0099 (18)0.0033 (17)0.0000 (17)0.0032 (17)
C40.027 (3)0.0121 (18)0.017 (2)0.0009 (16)0.0033 (18)0.0022 (17)
C50.033 (3)0.0133 (19)0.0126 (19)0.0028 (17)0.0086 (18)0.0007 (17)
C60.024 (3)0.021 (2)0.0142 (19)0.0019 (17)0.0076 (18)0.0027 (18)
C70.024 (3)0.019 (2)0.0106 (18)0.0104 (17)0.0080 (17)0.0049 (17)
C80.019 (3)0.0054 (16)0.0132 (18)0.0021 (14)0.0064 (16)0.0031 (15)
C90.022 (3)0.0118 (18)0.0116 (18)0.0032 (15)0.0031 (16)0.0021 (16)
C100.024 (3)0.0154 (19)0.0126 (19)0.0032 (16)0.0018 (17)0.0017 (17)
C110.035 (3)0.015 (2)0.019 (2)0.0040 (18)0.0064 (19)0.0022 (18)
C120.032 (3)0.018 (2)0.020 (2)0.0007 (18)0.007 (2)0.0111 (19)
C130.029 (3)0.022 (3)0.018 (2)0.0056 (18)0.0105 (19)0.0029 (19)
C140.019 (3)0.019 (2)0.0111 (18)0.0005 (16)0.0063 (16)0.0013 (17)
C150.020 (3)0.0127 (18)0.0073 (17)0.0001 (15)0.0059 (16)0.0012 (15)
C160.017 (3)0.0118 (18)0.0164 (19)0.0028 (15)0.0036 (16)0.0018 (16)
C170.019 (3)0.017 (2)0.022 (3)0.0053 (16)0.0039 (18)0.0028 (18)
C180.025 (3)0.025 (3)0.0105 (18)0.0027 (18)0.0035 (17)0.0032 (18)
C190.028 (3)0.022 (2)0.013 (2)0.0021 (18)0.0049 (18)0.0077 (18)
C200.023 (3)0.018 (2)0.020 (2)0.0014 (17)0.0077 (18)0.0070 (18)
C210.019 (3)0.0129 (18)0.0137 (19)0.0032 (15)0.0026 (16)0.0030 (16)
C220.025 (3)0.0121 (18)0.0085 (17)0.0014 (16)0.0067 (16)0.0002 (16)
C230.018 (3)0.020 (2)0.023 (3)0.0019 (17)0.0006 (18)0.0031 (19)
C240.022 (3)0.022 (3)0.030 (3)0.0026 (18)0.004 (2)0.001 (2)
C250.041 (4)0.021 (3)0.020 (3)0.006 (2)0.010 (2)0.008 (2)
C260.041 (4)0.024 (3)0.018 (3)0.002 (2)0.008 (2)0.0019 (19)
C270.032 (3)0.0128 (19)0.021 (2)0.0058 (17)0.0090 (19)0.0019 (18)
C280.029 (3)0.014 (2)0.0150 (19)0.0082 (17)0.0045 (18)0.0005 (17)
C290.016 (3)0.0099 (17)0.0108 (18)0.0029 (14)0.0017 (15)0.0038 (15)
C300.033 (3)0.0113 (19)0.018 (2)0.0003 (17)0.0071 (19)0.0049 (17)
C310.041 (4)0.019 (2)0.022 (3)0.0034 (19)0.019 (2)0.0047 (19)
C320.032 (3)0.0117 (19)0.036 (3)0.0049 (18)0.017 (3)0.003 (2)
C330.024 (3)0.023 (3)0.031 (3)0.0039 (19)0.011 (2)0.006 (2)
C340.028 (3)0.022 (3)0.021 (2)0.0044 (18)0.009 (2)0.0034 (19)
C350.026 (3)0.0103 (18)0.020 (2)0.0008 (16)0.0124 (18)0.0024 (17)
Geometric parameters (Å, º) top
Br1—Cu32.6912 (8)C24—C251.511 (8)
Br2—Cu22.3748 (7)C25—C261.546 (7)
Br2—Cu62.4201 (6)C26—C271.518 (6)
Br3—Cu32.4149 (6)C27—C281.543 (7)
Br3—Cu72.3993 (7)C30—C311.520 (8)
Br4—Cu52.3748 (7)C31—C321.544 (6)
Br4—Cu92.4414 (7)C32—C331.534 (7)
Br5—Cu42.3705 (7)C33—C341.525 (8)
Br5—Cu82.3962 (6)C34—C351.510 (6)
Cu1—S12.3087 (10)C2—H2A0.970
Cu1—S22.3208 (13)C2—H2B0.970
Cu1—S32.3122 (10)C3—H3A0.970
Cu1—S42.3322 (13)C3—H3B0.970
Cu2—S12.2805 (12)C4—H4A0.970
Cu2—S52.2623 (14)C4—H4B0.970
Cu3—S22.3216 (11)C5—H5A0.970
Cu3—S72.2711 (10)C5—H5B0.970
Cu4—S32.2645 (11)C6—H6A0.970
Cu4—S72.2619 (14)C6—H6B0.970
Cu5—S42.3110 (12)C7—H7A0.970
Cu5—S52.2447 (10)C7—H7B0.970
Cu6—S62.2805 (15)C9—H9A0.970
Cu6—S92.2537 (12)C9—H9B0.970
Cu7—S82.2480 (11)C10—H10A0.970
Cu7—S92.2788 (13)C10—H10B0.970
Cu8—S82.3043 (15)C11—H11A0.970
Cu8—S102.2647 (13)C11—H11B0.970
Cu9—S62.2771 (11)C12—H12A0.970
Cu9—S102.2705 (12)C12—H12B0.970
S1—C11.757 (5)C13—H13A0.970
S2—C11.749 (4)C13—H13B0.970
S3—C81.744 (5)C14—H14A0.970
S4—C81.741 (4)C14—H14B0.970
S5—C151.747 (4)C16—H16A0.970
S6—C151.741 (4)C16—H16B0.970
S7—C221.759 (4)C17—H17A0.970
S8—C221.747 (4)C17—H17B0.970
S9—C291.756 (4)C18—H18A0.970
S10—C291.757 (4)C18—H18B0.970
N1—C11.304 (5)C19—H19A0.970
N1—C21.483 (5)C19—H19B0.970
N1—C71.489 (7)C20—H20A0.970
N2—C81.319 (5)C20—H20B0.970
N2—C91.462 (5)C21—H21A0.970
N2—C141.478 (7)C21—H21B0.970
N3—C151.330 (6)C23—H23A0.970
N3—C161.491 (5)C23—H23B0.970
N3—C211.465 (5)C24—H24A0.970
N4—C221.321 (5)C24—H24B0.970
N4—C231.484 (6)C25—H25A0.970
N4—C281.476 (5)C25—H25B0.970
N5—C291.330 (5)C26—H26A0.970
N5—C301.492 (6)C26—H26B0.970
N5—C351.474 (6)C27—H27A0.970
C2—C31.531 (6)C27—H27B0.970
C3—C41.532 (6)C28—H28A0.970
C4—C51.539 (7)C28—H28B0.970
C5—C61.532 (6)C30—H30A0.970
C6—C71.524 (7)C30—H30B0.970
C9—C101.541 (6)C31—H31A0.970
C10—C111.521 (7)C31—H31B0.970
C11—C121.530 (8)C32—H32A0.970
C12—C131.537 (6)C32—H32B0.970
C13—C141.521 (6)C33—H33A0.970
C16—C171.511 (6)C33—H33B0.970
C17—C181.545 (6)C34—H34A0.970
C18—C191.540 (7)C34—H34B0.970
C19—C201.522 (7)C35—H35A0.970
C20—C211.529 (7)C35—H35B0.970
C23—C241.533 (6)
Br1···Cu12.9650 (6)Br1···Cu62.9319 (6)
Br1···Cu22.9054 (6)Br1···Cu72.9262 (8)
Br1···Cu42.8672 (6)Br1···Cu82.9563 (7)
Br1···Cu52.7825 (8)Br1···Cu92.9013 (7)
Cu2—Br2—Cu676.72 (2)C5—C4—H4A108.819
Cu3—Br3—Cu770.10 (2)C5—C4—H4B108.819
Cu5—Br4—Cu973.64 (2)H4A—C4—H4B107.701
Cu4—Br5—Cu879.37 (2)C4—C5—H5A108.513
S1—Cu1—S277.52 (4)C4—C5—H5B108.501
S1—Cu1—S3176.43 (5)C6—C5—H5A108.516
S1—Cu1—S4103.80 (5)C6—C5—H5B108.508
S2—Cu1—S3101.51 (5)H5A—C5—H5B107.511
S2—Cu1—S4177.71 (4)C5—C6—H6A108.758
S3—Cu1—S477.05 (4)C5—C6—H6B108.755
Br2—Cu2—S1121.63 (4)C7—C6—H6A108.737
Br2—Cu2—S5123.64 (4)C7—C6—H6B108.758
S1—Cu2—S5111.18 (5)H6A—C6—H6B107.645
Br1—Cu3—Br3103.92 (3)N1—C7—H7A109.362
Br1—Cu3—S297.37 (4)N1—C7—H7B109.360
Br1—Cu3—S7102.84 (4)C6—C7—H7A109.374
Br3—Cu3—S2113.85 (3)C6—C7—H7B109.362
Br3—Cu3—S7123.37 (4)H7A—C7—H7B108.003
S2—Cu3—S7110.93 (4)N2—C9—H9A109.069
Br5—Cu4—S3124.02 (4)N2—C9—H9B109.070
Br5—Cu4—S7120.07 (3)C10—C9—H9A109.074
S3—Cu4—S7111.22 (5)C10—C9—H9B109.065
Br4—Cu5—S4121.27 (3)H9A—C9—H9B107.827
Br4—Cu5—S5122.91 (4)C9—C10—H10A108.785
S4—Cu5—S5108.15 (4)C9—C10—H10B108.778
Br2—Cu6—S6114.79 (4)C11—C10—H10A108.791
Br2—Cu6—S9115.04 (4)C11—C10—H10B108.785
S6—Cu6—S9123.24 (5)H10A—C10—H10B107.654
Br3—Cu7—S8120.67 (5)C10—C11—H11A108.265
Br3—Cu7—S9116.14 (3)C10—C11—H11B108.266
S8—Cu7—S9117.08 (5)C12—C11—H11A108.266
Br5—Cu8—S8113.60 (4)C12—C11—H11B108.267
Br5—Cu8—S10123.98 (4)H11A—C11—H11B107.374
S8—Cu8—S10117.45 (5)C11—C12—H12A108.747
Br4—Cu9—S6116.49 (4)C11—C12—H12B108.749
Br4—Cu9—S10116.95 (3)C13—C12—H12A108.747
S6—Cu9—S10117.89 (4)C13—C12—H12B108.751
Cu1—S1—Cu296.51 (4)H12A—C12—H12B107.652
Cu1—S1—C185.28 (12)C12—C13—H13A108.268
Cu2—S1—C1104.88 (13)C12—C13—H13B108.264
Cu1—S2—Cu393.33 (5)C14—C13—H13A108.277
Cu1—S2—C185.09 (16)C14—C13—H13B108.266
Cu3—S2—C1106.06 (13)H13A—C13—H13B107.380
Cu1—S3—Cu497.25 (4)N2—C14—H14A109.231
Cu1—S3—C885.34 (12)N2—C14—H14B109.225
Cu4—S3—C8103.98 (13)C13—C14—H14A109.230
Cu1—S4—Cu594.13 (4)C13—C14—H14B109.240
Cu1—S4—C884.77 (16)H14A—C14—H14B107.919
Cu5—S4—C8103.96 (13)N3—C16—H16A109.193
Cu2—S5—Cu590.29 (5)N3—C16—H16B109.197
Cu2—S5—C15103.63 (16)C17—C16—H16A109.191
Cu5—S5—C15109.97 (13)C17—C16—H16B109.193
Cu6—S6—Cu974.20 (4)H16A—C16—H16B107.907
Cu6—S6—C15108.03 (17)C16—C17—H17A108.709
Cu9—S6—C15111.40 (13)C16—C17—H17B108.701
Cu3—S7—Cu485.17 (5)C18—C17—H17A108.695
Cu3—S7—C22111.02 (13)C18—C17—H17B108.693
Cu4—S7—C2299.16 (17)H17A—C17—H17B107.617
Cu7—S8—Cu880.19 (4)C17—C18—H18A108.907
Cu7—S8—C22115.33 (13)C17—C18—H18B108.907
Cu8—S8—C22103.55 (16)C19—C18—H18A108.898
Cu6—S9—Cu792.62 (5)C19—C18—H18B108.903
Cu6—S9—C29108.91 (15)H18A—C18—H18B107.720
Cu7—S9—C29101.90 (13)C18—C19—H19A108.367
Cu8—S10—Cu987.41 (4)C18—C19—H19B108.359
Cu8—S10—C29100.71 (15)C20—C19—H19A108.367
Cu9—S10—C29111.66 (13)C20—C19—H19B108.377
C1—N1—C2121.9 (4)H19A—C19—H19B107.437
C1—N1—C7120.4 (4)C19—C20—H20A108.597
C2—N1—C7117.8 (4)C19—C20—H20B108.600
C8—N2—C9121.3 (4)C21—C20—H20A108.602
C8—N2—C14122.6 (4)C21—C20—H20B108.596
C9—N2—C14116.0 (4)H20A—C20—H20B107.574
C15—N3—C16122.2 (4)N3—C21—H21A108.939
C15—N3—C21122.6 (4)N3—C21—H21B108.946
C16—N3—C21114.5 (4)C20—C21—H21A108.952
C22—N4—C23122.9 (4)C20—C21—H21B108.944
C22—N4—C28121.5 (4)H21A—C21—H21B107.761
C23—N4—C28115.6 (3)N4—C23—H23A108.639
C29—N5—C30122.7 (4)N4—C23—H23B108.631
C29—N5—C35123.2 (4)C24—C23—H23A108.634
C30—N5—C35113.9 (3)C24—C23—H23B108.638
S1—C1—S2111.5 (3)H23A—C23—H23B107.575
S1—C1—N1124.0 (3)C23—C24—H24A108.572
S2—C1—N1124.5 (4)C23—C24—H24B108.572
N1—C2—C3112.8 (4)C25—C24—H24A108.571
C2—C3—C4115.5 (4)C25—C24—H24B108.586
C3—C4—C5113.7 (4)H24A—C24—H24B107.546
C4—C5—C6115.0 (4)C24—C25—H25A108.648
C5—C6—C7114.0 (4)C24—C25—H25B108.654
N1—C7—C6111.3 (4)C26—C25—H25A108.645
S3—C8—S4112.2 (3)C26—C25—H25B108.651
S3—C8—N2122.5 (3)H25A—C25—H25B107.601
S4—C8—N2125.2 (4)C25—C26—H26A108.637
N2—C9—C10112.6 (3)C25—C26—H26B108.637
C9—C10—C11113.9 (4)C27—C26—H26A108.636
C10—C11—C12116.1 (4)C27—C26—H26B108.641
C11—C12—C13114.0 (4)H26A—C26—H26B107.586
C12—C13—C14116.1 (4)C26—C27—H27A108.864
N2—C14—C13111.9 (4)C26—C27—H27B108.865
S5—C15—S6124.3 (3)C28—C27—H27A108.874
S5—C15—N3117.4 (3)C28—C27—H27B108.863
S6—C15—N3118.2 (3)H27A—C27—H27B107.713
N3—C16—C17112.1 (4)N4—C28—H28A109.421
C16—C17—C18114.2 (4)N4—C28—H28B109.410
C17—C18—C19113.4 (4)C27—C28—H28A109.439
C18—C19—C20115.7 (5)C27—C28—H28B109.430
C19—C20—C21114.7 (4)H28A—C28—H28B108.022
N3—C21—C20113.2 (4)N5—C30—H30A109.320
S7—C22—S8122.8 (3)N5—C30—H30B109.321
S7—C22—N4118.4 (3)C31—C30—H30A109.322
S8—C22—N4118.8 (3)C31—C30—H30B109.321
N4—C23—C24114.5 (4)H30A—C30—H30B107.964
C23—C24—C25114.8 (4)C30—C31—H31A108.259
C24—C25—C26114.4 (4)C30—C31—H31B108.272
C25—C26—C27114.5 (4)C32—C31—H31A108.268
C26—C27—C28113.5 (4)C32—C31—H31B108.263
N4—C28—C27111.1 (4)H31A—C31—H31B107.388
S9—C29—S10123.3 (2)C31—C32—H32A108.853
S9—C29—N5118.9 (3)C31—C32—H32B108.856
S10—C29—N5117.7 (3)C33—C32—H32A108.868
N5—C30—C31111.5 (4)C33—C32—H32B108.857
C30—C31—C32116.1 (5)H32A—C32—H32B107.714
C31—C32—C33113.5 (4)C32—C33—H33A108.188
C32—C33—C34116.4 (4)C32—C33—H33B108.191
C33—C34—C35115.9 (4)C34—C33—H33A108.201
N5—C35—C34115.1 (4)C34—C33—H33B108.204
N1—C2—H2A109.037H33A—C33—H33B107.360
N1—C2—H2B109.040C33—C34—H34A108.309
C3—C2—H2A109.036C33—C34—H34B108.295
C3—C2—H2B109.026C35—C34—H34A108.294
H2A—C2—H2B107.815C35—C34—H34B108.291
C2—C3—H3A108.402H34A—C34—H34B107.397
C2—C3—H3B108.411N5—C35—H35A108.497
C4—C3—H3A108.405N5—C35—H35B108.489
C4—C3—H3B108.417C34—C35—H35A108.499
H3A—C3—H3B107.470C34—C35—H35B108.512
C3—C4—H4A108.830H35A—C35—H35B107.511
C3—C4—H4B108.820
Cu2—Br2—Cu6—S668.46 (3)Cu2—S1—C1—S2102.52 (18)
Cu2—Br2—Cu6—S9139.63 (3)Cu2—S1—C1—N180.1 (3)
Cu6—Br2—Cu2—S1140.97 (4)Cu1—S2—C1—S16.99 (17)
Cu6—Br2—Cu2—S562.17 (3)Cu1—S2—C1—N1175.7 (3)
Cu3—Br3—Cu7—S869.04 (3)Cu3—S2—C1—S199.05 (18)
Cu3—Br3—Cu7—S9139.23 (4)Cu3—S2—C1—N183.6 (3)
Cu7—Br3—Cu3—Br144.60 (2)Cu1—S3—C8—S47.11 (16)
Cu7—Br3—Cu3—S2149.31 (4)Cu1—S3—C8—N2174.8 (3)
Cu7—Br3—Cu3—S771.33 (3)Cu4—S3—C8—S4103.43 (17)
Cu5—Br4—Cu9—S670.08 (3)Cu4—S3—C8—N278.5 (3)
Cu5—Br4—Cu9—S10142.80 (4)Cu1—S4—C8—S37.05 (16)
Cu9—Br4—Cu5—S4147.38 (4)Cu1—S4—C8—N2174.9 (3)
Cu9—Br4—Cu5—S566.80 (4)Cu5—S4—C8—S3100.02 (17)
Cu4—Br5—Cu8—S865.76 (3)Cu5—S4—C8—N282.0 (3)
Cu4—Br5—Cu8—S10139.95 (4)Cu2—S5—C15—S657.3 (3)
Cu8—Br5—Cu4—S3140.59 (4)Cu2—S5—C15—N3121.8 (3)
Cu8—Br5—Cu4—S765.85 (3)Cu5—S5—C15—S638.0 (4)
S1—Cu1—S2—Cu3110.91 (4)Cu5—S5—C15—N3142.9 (3)
S1—Cu1—S2—C15.06 (4)Cu6—S6—C15—S548.2 (3)
S2—Cu1—S1—Cu2109.51 (5)Cu6—S6—C15—N3130.9 (3)
S2—Cu1—S1—C15.04 (4)Cu9—S6—C15—S531.4 (4)
S1—Cu1—S4—Cu574.84 (4)Cu9—S6—C15—N3149.4 (3)
S1—Cu1—S4—C8178.51 (4)Cu3—S7—C22—S819.7 (4)
S4—Cu1—S1—Cu272.42 (5)Cu3—S7—C22—N4161.4 (3)
S4—Cu1—S1—C1176.89 (4)Cu4—S7—C22—S868.7 (3)
S2—Cu1—S3—Cu473.27 (5)Cu4—S7—C22—N4110.3 (3)
S2—Cu1—S3—C8176.80 (4)Cu7—S8—C22—S719.6 (4)
S3—Cu1—S2—Cu372.60 (4)Cu7—S8—C22—N4161.5 (3)
S3—Cu1—S2—C1178.45 (4)Cu8—S8—C22—S765.8 (3)
S3—Cu1—S4—Cu5108.71 (4)Cu8—S8—C22—N4113.1 (3)
S3—Cu1—S4—C85.04 (4)Cu6—S9—C29—S1032.7 (3)
S4—Cu1—S3—Cu4108.57 (5)Cu6—S9—C29—N5147.7 (3)
S4—Cu1—S3—C85.03 (4)Cu7—S9—C29—S1064.2 (3)
Br2—Cu2—S1—Cu1123.10 (4)Cu7—S9—C29—N5115.3 (3)
Br2—Cu2—S1—C136.28 (6)Cu8—S10—C29—S962.7 (3)
Br2—Cu2—S5—Cu5124.46 (4)Cu8—S10—C29—N5116.9 (3)
Br2—Cu2—S5—C1513.81 (6)Cu9—S10—C29—S928.8 (4)
S1—Cu2—S5—Cu576.56 (4)Cu9—S10—C29—N5151.7 (3)
S1—Cu2—S5—C15172.78 (4)C1—N1—C2—C3142.5 (4)
S5—Cu2—S1—Cu177.44 (5)C2—N1—C1—S11.7 (6)
S5—Cu2—S1—C1164.26 (4)C2—N1—C1—S2178.7 (3)
Br1—Cu3—S2—Cu120.96 (3)C1—N1—C7—C687.0 (4)
Br1—Cu3—S2—C164.88 (5)C7—N1—C1—S1177.7 (3)
Br1—Cu3—S7—Cu422.61 (3)C7—N1—C1—S20.6 (5)
Br1—Cu3—S7—C2275.36 (6)C2—N1—C7—C692.4 (4)
Br3—Cu3—S2—Cu1129.77 (4)C7—N1—C2—C336.9 (5)
Br3—Cu3—S2—C143.92 (7)C8—N2—C9—C1080.9 (5)
Br3—Cu3—S7—Cu4139.06 (4)C9—N2—C8—S32.7 (5)
Br3—Cu3—S7—C2241.09 (8)C9—N2—C8—S4175.1 (3)
S2—Cu3—S7—Cu480.56 (5)C8—N2—C14—C13100.8 (4)
S2—Cu3—S7—C22178.54 (6)C14—N2—C8—S3179.1 (3)
S7—Cu3—S2—Cu185.86 (5)C14—N2—C8—S41.3 (5)
S7—Cu3—S2—C1171.70 (5)C9—N2—C14—C1375.8 (4)
Br5—Cu4—S3—Cu1121.92 (4)C14—N2—C9—C1095.8 (4)
Br5—Cu4—S3—C834.94 (6)C15—N3—C16—C1788.8 (4)
Br5—Cu4—S7—Cu3125.75 (3)C16—N3—C15—S50.1 (6)
Br5—Cu4—S7—C2215.20 (5)C16—N3—C15—S6179.3 (3)
S3—Cu4—S7—Cu377.57 (4)C15—N3—C21—C2078.5 (5)
S3—Cu4—S7—C22171.88 (4)C21—N3—C15—S5170.2 (3)
S7—Cu4—S3—Cu182.50 (5)C21—N3—C15—S69.0 (6)
S7—Cu4—S3—C8169.47 (4)C16—N3—C21—C2092.5 (4)
Br4—Cu5—S4—Cu1126.53 (4)C21—N3—C16—C1782.2 (5)
Br4—Cu5—S4—C840.90 (7)C22—N4—C23—C24143.7 (4)
Br4—Cu5—S5—Cu2131.24 (4)C23—N4—C22—S70.7 (6)
Br4—Cu5—S5—C1526.61 (8)C23—N4—C22—S8179.7 (4)
S4—Cu5—S5—Cu279.11 (5)C22—N4—C28—C2786.1 (5)
S4—Cu5—S5—C15176.26 (6)C28—N4—C22—S7177.5 (4)
S5—Cu5—S4—Cu183.23 (5)C28—N4—C22—S81.5 (6)
S5—Cu5—S4—C8168.86 (5)C23—N4—C28—C2792.2 (5)
Br2—Cu6—S6—Cu9141.13 (3)C28—N4—C23—C2434.6 (6)
Br2—Cu6—S6—C1533.28 (6)C29—N5—C30—C3196.8 (4)
Br2—Cu6—S9—Cu777.08 (4)C30—N5—C29—S93.5 (6)
Br2—Cu6—S9—C29179.40 (4)C30—N5—C29—S10176.1 (4)
S6—Cu6—S9—Cu7133.66 (5)C29—N5—C35—C3484.5 (5)
S6—Cu6—S9—C2930.14 (7)C35—N5—C29—S9179.2 (4)
S9—Cu6—S6—Cu969.54 (5)C35—N5—C29—S100.4 (6)
S9—Cu6—S6—C15177.39 (4)C30—N5—C35—C3491.5 (4)
Br3—Cu7—S8—Cu8141.88 (4)C35—N5—C30—C3179.3 (4)
Br3—Cu7—S8—C2241.45 (8)N1—C2—C3—C444.5 (5)
Br3—Cu7—S9—Cu677.95 (5)C2—C3—C4—C588.1 (5)
Br3—Cu7—S9—C29172.10 (4)C3—C4—C5—C667.0 (4)
S8—Cu7—S9—Cu6129.28 (5)C4—C5—C6—C752.6 (5)
S8—Cu7—S9—C2919.33 (7)C5—C6—C7—N175.0 (5)
S9—Cu7—S8—Cu866.64 (5)N2—C9—C10—C1140.9 (5)
S9—Cu7—S8—C22167.08 (6)C9—C10—C11—C1236.9 (5)
Br5—Cu8—S8—Cu7135.47 (3)C10—C11—C12—C1385.7 (4)
Br5—Cu8—S8—C2221.58 (6)C11—C12—C13—C1468.9 (5)
Br5—Cu8—S10—Cu974.61 (4)C12—C13—C14—N250.2 (5)
Br5—Cu8—S10—C29173.83 (4)N3—C16—C17—C1854.9 (5)
S8—Cu8—S10—Cu9132.00 (4)C16—C17—C18—C1967.9 (5)
S8—Cu8—S10—C2920.44 (6)C17—C18—C19—C2087.2 (5)
S10—Cu8—S8—Cu768.45 (5)C18—C19—C20—C2145.3 (5)
S10—Cu8—S8—C22177.67 (4)C19—C20—C21—N331.7 (5)
Br4—Cu9—S6—Cu6142.29 (3)N4—C23—C24—C2545.9 (5)
Br4—Cu9—S6—C1538.72 (8)C23—C24—C25—C2687.6 (5)
Br4—Cu9—S10—Cu873.53 (5)C24—C25—C26—C2766.5 (6)
Br4—Cu9—S10—C29174.03 (5)C25—C26—C27—C2852.9 (6)
S6—Cu9—S10—Cu8139.82 (5)C26—C27—C28—N478.4 (5)
S6—Cu9—S10—C2939.32 (8)N5—C30—C31—C3256.5 (5)
S10—Cu9—S6—Cu670.91 (5)C30—C31—C32—C3369.0 (5)
S10—Cu9—S6—C15174.48 (6)C31—C32—C33—C3482.9 (5)
Cu1—S1—C1—S27.02 (17)C32—C33—C34—C3540.4 (5)
Cu1—S1—C1—N1175.6 (3)C33—C34—C35—N535.4 (5)

Experimental details

Crystal data
Chemical formula[Cu9Br5(C7H12NS2)5]
Mr1842.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5728 (6), 19.5997 (7), 22.9708 (8)
β (°) 107.0411 (12)
V3)5412.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.59
Crystal size (mm)0.90 × 0.60 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.241, 0.468
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
50620, 12284, 10468
Rint0.078
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.03
No. of reflections12284
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.35, 1.54

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected bond lengths (Å) top
Br1—Cu32.6912 (8)Cu3—S22.3216 (11)
Br2—Cu22.3748 (7)Cu3—S72.2711 (10)
Br2—Cu62.4201 (6)Cu4—S32.2645 (11)
Br3—Cu32.4149 (6)Cu4—S72.2619 (14)
Br3—Cu72.3993 (7)Cu5—S42.3110 (12)
Br4—Cu52.3748 (7)Cu5—S52.2447 (10)
Br4—Cu92.4414 (7)Cu6—S62.2805 (15)
Br5—Cu42.3705 (7)Cu6—S92.2537 (12)
Br5—Cu82.3962 (6)Cu7—S82.2480 (11)
Cu1—S12.3087 (10)Cu7—S92.2788 (13)
Cu1—S22.3208 (13)Cu8—S82.3043 (15)
Cu1—S32.3122 (10)Cu8—S102.2647 (13)
Cu1—S42.3322 (13)Cu9—S62.2771 (11)
Cu2—S12.2805 (12)Cu9—S102.2705 (12)
Cu2—S52.2623 (14)
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationCardell, D., Hogarth, G. & Faulkner, S. (2006). Inorg. Chim. Acta, 359, 1321–1324.  Web of Science CSD CrossRef CAS Google Scholar
First citationGolding, R. M., Rae, A. D. & Sulligoi, L. (1974). Inorg. Chem. 13, 2499–2504.  CSD CrossRef CAS Web of Science Google Scholar
First citationHendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationJian, F., Wang, Z., Bai, Z., You, X., Fun, H.-K., Chinnakali, K. & Razak, I. R. (1999). Polyhedron, 18, 3401–3406.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, P. K., Fang, C. S., Edwards, A. J., Kahlal, S., Saillard, J. Y. & Liu, C. W. (2012). Inorg. Chem. 51, 6577–6591.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNgo, S. C., Banger, K. K., DelaRosa, M. J., Toscano, P. J. & Welch, J. T. (2003). Polyhedron, 22, 1575–1583.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkubo, T., Kuwamoto, H., Kim, K. H., Hayami, S., Yamano, A., Shiro, M., Maekawa, M. & Kuroda-Sowa, T. (2011). Inorg. Chem. 50, 2708–2710.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOkubo, T., Tanaka, N., Kim, K. H., Anma, H., Seki, S., Saeki, A., Maekawa, M. & Kuroda-Sowa, T. (2011). Dalton Trans. 40, 2218–2224.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOkubo, T., Tanaka, N., Kim, K. H., Yone, H., Maekawa, M. & Kuroda-Sowa, T. (2010). Inorg. Chem. 49, 3700–3702.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds