organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 2-hy­dr­oxy-5-chloro­benzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
*Correspondence e-mail: arazaki@usm.my

(Received 12 December 2012; accepted 17 December 2012; online 22 December 2012)

In the 5-chloro­salicylate anion of the title salt, C6H9N2+·C7H4ClO3, an intra­molecular O—H⋯O hydrogen bond with an S(6) graph-set motif is observed and the dihedral angle between the benzene ring and the –CO2 group is 1.6 (6)°. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The crystal structure also features N—H⋯O and weak C—H⋯O inter­actions, resulting in a layer parallel to (10-1).

Related literature

For details of non-covalent inter­actions, see: Desiraju (2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]); Aakeroy & Seddon (1993[Aakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Raza et al. (2010[Raza, A. R., Nisar, B., Tahir, M. N. & Raza, A. (2010). Acta Cryst. E66, o2921.]); Thanigaimani et al. (2012a[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o3196-o3197.],b[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o3319-o3320.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4ClO3

  • Mr = 280.70

  • Monoclinic, P 21

  • a = 9.004 (7) Å

  • b = 5.767 (5) Å

  • c = 12.617 (10) Å

  • β = 90.415 (16)°

  • V = 655.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.46 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEXII Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 0.979

  • 4785 measured reflections

  • 2204 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.201

  • S = 1.01

  • 2204 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 941 Friedel pairs

  • Flack parameter: 0.09 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.92 (6) 1.73 (7) 2.512 (6) 141 (6)
N1—H1N1⋯O2i 0.94 (6) 1.76 (6) 2.683 (7) 166 (5)
N2—H1N2⋯O1i 0.85 (5) 1.96 (5) 2.793 (8) 165 (4)
N2—H2N2⋯O1ii 0.85 (6) 2.04 (7) 2.811 (6) 152 (7)
C8—H8A⋯O3iii 0.95 2.58 3.425 (7) 148
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeroy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). The are often involved in hydrogen-bond interactions. In order to study potential hydrogen bonding interactions, as part of our ongoing studies on pyridine derivatives (Thanigaimani et al., 2012a,b), the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 5-chlorosalicylate anion. The proton transfers from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 121.0 (5)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum diviation of 0.007 (6) Å for atom C3. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2i and N2—H1N2···O1i hydrogen bonds (symmetry codes in Table 1), forming a ring motif of R22(8) (Bernstein et al., 1995). There is also an intramolecular O3—H1O3···O2 hydrogen bond in the 5-chlorosalicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structure of 5-chloro-2-hydroxybenzoic acid (Raza et al., 2010). The crystal structure is further stabilized by N2—H2N2···O1ii and C8—H8A···O3iii intermolecular interactions. These interactions have resulted in a molecular layer parallel to the (101) plane.

Related literature top

For details of non-covalent interactions, see: Desiraju (2007); Aakeroy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Nahringbauer & Kvick (1977); Raza et al. (2010); Thanigaimani et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino5-methylpyridine (54 mg, Aldrich) and 5-chlorosalicylic acid (43 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier maps. Atoms H1O3, H1N1 and H2N2 were refined freely, while atom H1N2 was refined with a bond length restraint N—H = 0.85 (1) Å [refined distance: O3—H1O3 = 0.92 (7) Å, N1—H1N1 = 0.94 (6) Å, N2—H1N2 = 0.853 (10) Å and N2—H2N2 = 0.85 (7) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group.

Structure description top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeroy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). The are often involved in hydrogen-bond interactions. In order to study potential hydrogen bonding interactions, as part of our ongoing studies on pyridine derivatives (Thanigaimani et al., 2012a,b), the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 5-chlorosalicylate anion. The proton transfers from the one of the carboxyl group oxygen atom (O2) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 121.0 (5)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum diviation of 0.007 (6) Å for atom C3. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2i and N2—H1N2···O1i hydrogen bonds (symmetry codes in Table 1), forming a ring motif of R22(8) (Bernstein et al., 1995). There is also an intramolecular O3—H1O3···O2 hydrogen bond in the 5-chlorosalicylate anion, which generates an S(6) ring motif. This motif is also observed in the crystal structure of 5-chloro-2-hydroxybenzoic acid (Raza et al., 2010). The crystal structure is further stabilized by N2—H2N2···O1ii and C8—H8A···O3iii intermolecular interactions. These interactions have resulted in a molecular layer parallel to the (101) plane.

For details of non-covalent interactions, see: Desiraju (2007); Aakeroy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Nahringbauer & Kvick (1977); Raza et al. (2010); Thanigaimani et al. (2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-5-methylpyridinium 2-hydroxy-5-chlorobenzoate top
Crystal data top
C6H9N2+·C7H4ClO3F(000) = 292
Mr = 280.70Dx = 1.423 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1722 reflections
a = 9.004 (7) Åθ = 2.8–29.7°
b = 5.767 (5) ŵ = 0.30 mm1
c = 12.617 (10) ÅT = 100 K
β = 90.415 (16)°Block, colourless
V = 655.2 (9) Å30.46 × 0.18 × 0.07 mm
Z = 2
Data collection top
Bruker SMART APEXII Duo CCD area-detector
diffractometer
2204 independent reflections
Radiation source: fine-focus sealed tube1539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.877, Tmax = 0.979k = 66
4785 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.1249P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2204 reflectionsΔρmax = 0.47 e Å3
189 parametersΔρmin = 0.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 941 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (16)
Crystal data top
C6H9N2+·C7H4ClO3V = 655.2 (9) Å3
Mr = 280.70Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.004 (7) ŵ = 0.30 mm1
b = 5.767 (5) ÅT = 100 K
c = 12.617 (10) Å0.46 × 0.18 × 0.07 mm
β = 90.415 (16)°
Data collection top
Bruker SMART APEXII Duo CCD area-detector
diffractometer
2204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1539 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.979Rint = 0.061
4785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.201Δρmax = 0.47 e Å3
S = 1.01Δρmin = 0.44 e Å3
2204 reflectionsAbsolute structure: Flack (1983), 941 Friedel pairs
189 parametersAbsolute structure parameter: 0.09 (16)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49320 (17)0.7884 (3)0.59756 (12)0.0882 (6)
O10.1352 (4)0.0724 (8)0.6317 (2)0.0718 (11)
O20.1487 (4)0.0555 (7)0.7972 (2)0.0665 (10)
O30.3088 (5)0.1483 (9)0.9319 (3)0.0809 (13)
N10.9568 (5)0.6055 (9)0.7468 (3)0.0581 (11)
N20.9360 (7)0.7221 (10)0.5745 (4)0.0730 (15)
C10.8976 (5)0.5709 (10)0.6496 (3)0.0555 (13)
C20.8031 (5)0.3909 (10)0.6344 (4)0.0613 (15)
H2A0.75930.36460.56670.074*
C30.7716 (6)0.2485 (12)0.7170 (4)0.0724 (17)
H3A0.70490.12320.70560.087*
C40.8336 (6)0.2786 (13)0.8183 (4)0.0683 (14)
C50.9247 (6)0.4608 (11)0.8286 (4)0.0622 (14)
H5A0.96880.49020.89590.075*
C60.8003 (8)0.1215 (15)0.9103 (5)0.093 (2)
H6A0.84510.18540.97500.139*
H6B0.84160.03280.89660.139*
H6C0.69250.10960.91910.139*
C70.3500 (5)0.2962 (12)0.8536 (3)0.0604 (13)
C80.4479 (6)0.4684 (11)0.8751 (4)0.0681 (16)
H8A0.48650.48340.94500.082*
C90.4933 (6)0.6238 (11)0.7977 (4)0.0666 (15)
H9A0.56150.74460.81380.080*
C100.4360 (5)0.5971 (11)0.6960 (4)0.0620 (13)
C110.3378 (6)0.4262 (11)0.6724 (4)0.0581 (13)
H11A0.30050.41160.60210.070*
C120.2916 (5)0.2732 (11)0.7495 (3)0.0507 (11)
C130.1848 (5)0.0861 (11)0.7244 (3)0.0579 (13)
H1N11.019 (6)0.735 (11)0.754 (4)0.070 (17)*
H1N20.985 (6)0.846 (7)0.587 (5)0.09 (3)*
H2N20.888 (7)0.705 (14)0.517 (5)0.09 (2)*
H1O30.225 (7)0.071 (13)0.909 (5)0.083 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0888 (9)0.0908 (11)0.0850 (10)0.0173 (9)0.0112 (7)0.0067 (10)
O10.076 (2)0.099 (3)0.0404 (16)0.016 (2)0.0140 (14)0.001 (2)
O20.076 (2)0.080 (3)0.0430 (16)0.011 (2)0.0066 (14)0.0066 (19)
O30.103 (3)0.103 (4)0.0371 (17)0.013 (3)0.0145 (17)0.0037 (19)
N10.066 (2)0.068 (3)0.0402 (19)0.005 (2)0.0016 (16)0.002 (2)
N20.095 (3)0.082 (4)0.042 (2)0.012 (3)0.009 (2)0.009 (2)
C10.058 (3)0.070 (4)0.038 (2)0.004 (3)0.0016 (19)0.005 (3)
C20.067 (3)0.073 (4)0.044 (2)0.004 (3)0.003 (2)0.010 (3)
C30.070 (3)0.077 (5)0.070 (3)0.010 (3)0.004 (2)0.014 (3)
C40.067 (3)0.079 (4)0.059 (3)0.004 (3)0.007 (2)0.002 (3)
C50.076 (3)0.072 (4)0.038 (2)0.003 (3)0.001 (2)0.002 (2)
C60.108 (5)0.098 (5)0.072 (3)0.003 (4)0.014 (3)0.017 (4)
C70.058 (3)0.083 (4)0.040 (2)0.003 (3)0.0017 (18)0.006 (3)
C80.070 (3)0.087 (5)0.047 (2)0.002 (3)0.007 (2)0.016 (3)
C90.063 (3)0.068 (4)0.069 (3)0.000 (3)0.003 (2)0.018 (3)
C100.053 (2)0.075 (4)0.058 (3)0.005 (3)0.005 (2)0.004 (3)
C110.064 (3)0.069 (3)0.042 (2)0.003 (3)0.0054 (19)0.008 (2)
C120.048 (2)0.068 (3)0.036 (2)0.010 (3)0.0010 (15)0.009 (3)
C130.060 (3)0.069 (4)0.044 (2)0.000 (3)0.0012 (19)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C101.742 (6)C4—C51.339 (9)
O1—C131.251 (5)C4—C61.504 (9)
O2—C131.273 (6)C5—H5A0.9500
O3—C71.359 (7)C6—H6A0.9800
O3—H1O30.92 (7)C6—H6B0.9800
N1—C11.349 (6)C6—H6C0.9800
N1—C51.359 (7)C7—C81.354 (9)
N1—H1N10.94 (6)C7—C121.417 (6)
N2—C11.335 (7)C8—C91.389 (8)
N2—H1N20.853 (10)C8—H8A0.9500
N2—H2N20.85 (7)C9—C101.388 (7)
C1—C21.355 (8)C9—H9A0.9500
C2—C31.358 (8)C10—C111.356 (8)
C2—H2A0.9500C11—C121.380 (8)
C3—C41.403 (8)C11—H11A0.9500
C3—H3A0.9500C12—C131.478 (8)
C7—O3—H1O3107 (4)C4—C6—H6C109.5
C1—N1—C5120.9 (5)H6A—C6—H6C109.5
C1—N1—H1N1116 (3)H6B—C6—H6C109.5
C5—N1—H1N1123 (3)C8—C7—O3119.7 (4)
C1—N2—H1N2124 (4)C8—C7—C12119.4 (5)
C1—N2—H2N2114 (5)O3—C7—C12120.9 (5)
H1N2—N2—H2N2121 (7)C7—C8—C9121.8 (4)
N2—C1—N1116.5 (5)C7—C8—H8A119.1
N2—C1—C2124.5 (4)C9—C8—H8A119.1
N1—C1—C2119.0 (5)C10—C9—C8118.0 (5)
C1—C2—C3119.3 (5)C10—C9—H9A121.0
C1—C2—H2A120.4C8—C9—H9A121.0
C3—C2—H2A120.4C11—C10—C9121.4 (5)
C2—C3—C4122.7 (6)C11—C10—Cl1120.0 (4)
C2—C3—H3A118.6C9—C10—Cl1118.6 (5)
C4—C3—H3A118.6C10—C11—C12120.6 (4)
C5—C4—C3115.1 (5)C10—C11—H11A119.7
C5—C4—C6121.6 (5)C12—C11—H11A119.7
C3—C4—C6123.3 (6)C11—C12—C7118.8 (5)
C4—C5—N1122.9 (5)C11—C12—C13121.0 (4)
C4—C5—H5A118.6C7—C12—C13120.2 (5)
N1—C5—H5A118.6O1—C13—O2122.9 (5)
C4—C6—H6A109.5O1—C13—C12118.3 (4)
C4—C6—H6B109.5O2—C13—C12118.8 (4)
H6A—C6—H6B109.5
C5—N1—C1—N2179.9 (5)C8—C9—C10—Cl1179.3 (4)
C5—N1—C1—C21.0 (7)C9—C10—C11—C120.2 (8)
N2—C1—C2—C3179.7 (5)Cl1—C10—C11—C12179.9 (4)
N1—C1—C2—C30.7 (8)C10—C11—C12—C70.8 (7)
C1—C2—C3—C40.3 (9)C10—C11—C12—C13179.9 (5)
C2—C3—C4—C51.0 (9)C8—C7—C12—C110.8 (7)
C2—C3—C4—C6179.7 (6)O3—C7—C12—C11179.4 (5)
C3—C4—C5—N10.7 (8)C8—C7—C12—C13179.9 (5)
C6—C4—C5—N1180.0 (5)O3—C7—C12—C130.3 (7)
C1—N1—C5—C40.3 (8)C11—C12—C13—O11.3 (7)
O3—C7—C8—C9180.0 (5)C7—C12—C13—O1179.6 (5)
C12—C7—C8—C90.2 (8)C11—C12—C13—O2177.8 (4)
C7—C8—C9—C100.4 (8)C7—C12—C13—O21.2 (7)
C8—C9—C10—C110.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.92 (6)1.73 (7)2.512 (6)141 (6)
N1—H1N1···O2i0.94 (6)1.76 (6)2.683 (7)166 (5)
N2—H1N2···O1i0.85 (5)1.96 (5)2.793 (8)165 (4)
N2—H2N2···O1ii0.85 (6)2.04 (7)2.811 (6)152 (7)
C8—H8A···O3iii0.952.583.425 (7)148
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4ClO3
Mr280.70
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.004 (7), 5.767 (5), 12.617 (10)
β (°) 90.415 (16)
V3)655.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.46 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART APEXII Duo CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.877, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4785, 2204, 1539
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.201, 1.01
No. of reflections2204
No. of parameters189
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.44
Absolute structureFlack (1983), 941 Friedel pairs
Absolute structure parameter0.09 (16)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.92 (6)1.73 (7)2.512 (6)141 (6)
N1—H1N1···O2i0.94 (6)1.76 (6)2.683 (7)166 (5)
N2—H1N2···O1i0.85 (5)1.96 (5)2.793 (8)165 (4)
N2—H2N2···O1ii0.85 (6)2.04 (7)2.811 (6)152 (7)
C8—H8A···O3iii0.952.583.425 (7)148
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x+1, y+1/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAakeroy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationRaza, A. R., Nisar, B., Tahir, M. N. & Raza, A. (2010). Acta Cryst. E66, o2921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o3196–o3197.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o3319–o3320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds