organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3415-o3416

4,6-Dimeth­­oxy-2-(methyl­sulfan­yl)pyrimidine–4-hy­dr­oxy­benzoic acid (1/1)

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran, and cDepartment of Chemistry, Government Arts College, Thonthonimalai, Karur, Tamil Nadu, India
*Correspondence e-mail: arazaki@usm.my

(Received 5 November 2012; accepted 9 November 2012; online 24 November 2012)

The base mol­ecule of the title co-crystal, C7H10N2O2S·C7H6O3, is essentially planar, with a maximum deviation of 0.0806 (14) Å for all non-H atoms. The acid mol­ecule is also nearly planar, with a dihedral angle of 8.12 (14)° between the benzene ring and the carb­oxy group. In the crystal, the acid mol­ecules form an inversion dimer through a pair of O—H⋯O hydrogen bonds with an R22(8) ring motif. The pyrimidine mol­ecules are linked on both sides of the dimer into a heterotetra­mer via O—H⋯N and C—H⋯O hydrogen bonds with R22(8) ring motifs. The heterotetra­mers are further linked by weak C—H⋯O hydrogen bonds, forming a tape structure along [1-10].

Related literature

For general background to substituted pyrimidines, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]); Holy et al. (1974[Holy, A., Votruba, I. & Jost, K. (1974). Collect. Czech. Chem. Commun. 39, 634-646.]). For 4-hy­droxy­benzoic acid, see: Vishweshwar et al. (2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164-168.]). For related structures, see: Balasubramani & Fun (2009[Balasubramani, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1895.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o294.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2O2S·C7H6O3

  • Mr = 324.35

  • Triclinic, [P \overline 1]

  • a = 6.9923 (5) Å

  • b = 10.2887 (8) Å

  • c = 10.7578 (8) Å

  • α = 77.419 (2)°

  • β = 83.381 (2)°

  • γ = 89.209 (2)°

  • V = 750.27 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.44 × 0.37 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.947

  • 13682 measured reflections

  • 3393 independent reflections

  • 3105 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.10

  • 3393 reflections

  • 210 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O3i 0.86 (2) 1.76 (2) 2.6189 (14) 172 (3)
O5—H1O5⋯N1ii 0.80 (3) 1.99 (3) 2.7562 (14) 162 (3)
C9—H9A⋯O1ii 0.95 2.44 3.3437 (16) 160
C12—H12A⋯O2iii 0.95 2.59 3.3340 (16) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker & Santi, 1965). 2-Thiopyrimidine shows a strong bacteriostatic activity in vitro on E. coli (Holy et al., 1974). 4-Hydroxybenzoic acid is a good hydrogen-bond donor and can form co-crystals with other organic molecules (Vishweshwar et al., 2003). We have recently reported the crystal structures of 4,6-dimethoxy-2-(methylsulfanyl)pyrimidine (Balasubramani & Fun, 2009) and 4,6-dimethoxy-2-(methylsulfanyl)pyrimidinium chloride (Hemamalini & Fun, 2010). In order to study some potential hydrogen bonding interactions the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1), contains one 4,6-dimethoxy-2-(methylsulfanyl)pyrimidine molecule and one 4-hydroxybenzoic acid molecule. The 4,6-dimethoxy-2-(methylsulfanyl)pyrimidine molecule is planar, with a maximum deviation of 0.0806 (14) Å of atom C5 from a mean plane of all non-H atoms. The carboxy group of the 4-hydroxybenzoic acid molecule is slightly twisted from the attached ring by 8.12 (14)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the 4-hydroxybenzoic acid molecules are centrosymmetrically paired through a pair of O4—H1O4···O3i hydrogen bonds (symmetry code in Table 1) to form an R22(8) (Bernstein et al., 1995) ring motif. In addition, the 4,6-dimethoxy-2-methylthiopyrimidine molecule and 4-hydroxybenzoic acid molecule are linked via intermolecular O5—H1O5···N1ii and C9—H9A···O1ii hydrogen bonds (symmetry code in Table 1), generating R22(8) ring motifs. The crystal structure is further stabilized by weak C12—H12A···O2iii hydrogen bonds (symmetry code in Table 1), forming a supramolecular tape.

Related literature top

For general background to substituted pyrimidines, see: Hunt et al. (1980); Baker & Santi (1965); Holy et al. (1974). For 4-hydroxybenzoic acid, see: Vishweshwar et al. (2003). For related structures, see: Balasubramani & Fun (2009); Hemamalini & Fun (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 4,6-Dimethoxy-2-methylthiopyrimidine (46 mg, Aldrich) and 4-hydroxybenzoic acid (39 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and single crystals of the title compound (I) appeared after a few days.

Refinement top

O-bound H atoms were located in a difference Fourier maps. Atom H1O5 was refined freely, while atom H1O4 was refined with a bond length restraint O—H = 0.85 (1) Å [refined distances: O5—H1O5 = 0.79 (3) Å and O4—H1O4 = 0.862 (10) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. In the final refinement, five outliers were omitted (-2 -6 2, -3 6 3, 4 -5 1, -3 5 1 and 3 6 0).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4,6-Dimethoxy-2-(methylsulfanyl)pyrimidine–4-hydroxybenzoic acid (1/1) top
Crystal data top
C7H10N2O2S·C7H6O3Z = 2
Mr = 324.35F(000) = 340
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9923 (5) ÅCell parameters from 9952 reflections
b = 10.2887 (8) Åθ = 2.5–32.6°
c = 10.7578 (8) ŵ = 0.24 mm1
α = 77.419 (2)°T = 100 K
β = 83.381 (2)°Block, colourless
γ = 89.209 (2)°0.44 × 0.37 × 0.23 mm
V = 750.27 (10) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3393 independent reflections
Radiation source: fine-focus sealed tube3105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.901, Tmax = 0.947k = 1313
13682 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.2589P]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.46 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C7H10N2O2S·C7H6O3γ = 89.209 (2)°
Mr = 324.35V = 750.27 (10) Å3
Triclinic, P1Z = 2
a = 6.9923 (5) ÅMo Kα radiation
b = 10.2887 (8) ŵ = 0.24 mm1
c = 10.7578 (8) ÅT = 100 K
α = 77.419 (2)°0.44 × 0.37 × 0.23 mm
β = 83.381 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3105 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.947Rint = 0.024
13682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.46 e Å3
3393 reflectionsΔρmin = 0.27 e Å3
210 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22119 (4)0.45956 (3)0.93029 (3)0.02129 (10)
O10.78663 (12)0.67424 (9)0.67045 (9)0.0237 (2)
O20.81296 (13)0.20863 (9)0.83750 (9)0.0261 (2)
O30.31596 (13)0.39971 (9)0.58570 (9)0.0251 (2)
O40.61173 (13)0.34673 (10)0.50895 (9)0.0272 (2)
O50.28845 (14)0.22653 (9)0.78692 (9)0.0260 (2)
N10.53552 (14)0.56189 (10)0.79118 (10)0.0195 (2)
N20.54001 (14)0.32727 (10)0.87876 (10)0.0199 (2)
C10.71747 (17)0.55457 (12)0.73576 (11)0.0197 (2)
C20.81861 (17)0.43673 (13)0.74714 (12)0.0214 (2)
H2A0.94600.43240.70670.026*
C30.71973 (17)0.32502 (13)0.82225 (11)0.0207 (2)
C40.45790 (16)0.44686 (12)0.85972 (11)0.0185 (2)
C50.7153 (2)0.09621 (13)0.92394 (13)0.0300 (3)
H5A0.80140.01960.93440.045*
H5B0.59980.07410.88880.045*
H5C0.67840.11851.00740.045*
C60.16623 (18)0.28891 (13)1.00996 (13)0.0261 (3)
H6A0.03520.28281.05460.039*
H6B0.25790.25811.07210.039*
H6C0.17560.23310.94640.039*
C70.98129 (18)0.67934 (14)0.60767 (13)0.0271 (3)
H7A1.01680.77180.56650.041*
H7B0.98970.62530.54270.041*
H7C1.06940.64440.67120.041*
C80.55397 (17)0.07913 (13)0.62423 (12)0.0219 (2)
H8A0.67980.10820.58620.026*
C90.51922 (17)0.05487 (13)0.67699 (12)0.0220 (2)
H9A0.62100.11700.67620.026*
C100.33342 (18)0.09825 (12)0.73148 (11)0.0213 (2)
C110.18445 (18)0.00551 (13)0.73189 (13)0.0266 (3)
H11A0.05760.03480.76740.032*
C120.22154 (18)0.12821 (13)0.68095 (12)0.0248 (3)
H12A0.12050.19060.68330.030*
C130.40666 (17)0.17230 (12)0.62604 (11)0.0199 (2)
C140.44409 (17)0.31494 (12)0.57134 (11)0.0201 (2)
H1O40.625 (4)0.4317 (11)0.482 (3)0.095 (10)*
H1O50.377 (3)0.275 (3)0.781 (2)0.063 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01540 (15)0.01880 (17)0.02680 (17)0.00153 (11)0.00292 (11)0.00160 (12)
O10.0193 (4)0.0201 (4)0.0286 (4)0.0013 (3)0.0057 (3)0.0024 (4)
O20.0238 (4)0.0198 (5)0.0323 (5)0.0059 (4)0.0029 (4)0.0040 (4)
O30.0258 (4)0.0179 (4)0.0298 (5)0.0025 (3)0.0014 (4)0.0040 (4)
O40.0218 (4)0.0204 (5)0.0345 (5)0.0021 (4)0.0034 (4)0.0010 (4)
O50.0235 (5)0.0152 (4)0.0350 (5)0.0010 (4)0.0047 (4)0.0008 (4)
N10.0164 (4)0.0196 (5)0.0216 (5)0.0012 (4)0.0002 (4)0.0037 (4)
N20.0174 (5)0.0196 (5)0.0223 (5)0.0013 (4)0.0004 (4)0.0049 (4)
C10.0178 (5)0.0205 (6)0.0203 (5)0.0006 (4)0.0001 (4)0.0045 (4)
C20.0169 (5)0.0228 (6)0.0240 (6)0.0019 (4)0.0014 (4)0.0061 (5)
C30.0188 (5)0.0209 (6)0.0228 (5)0.0039 (4)0.0019 (4)0.0065 (5)
C40.0166 (5)0.0198 (6)0.0193 (5)0.0004 (4)0.0015 (4)0.0050 (4)
C50.0351 (7)0.0196 (6)0.0313 (7)0.0053 (5)0.0039 (5)0.0011 (5)
C60.0207 (6)0.0216 (6)0.0325 (6)0.0009 (5)0.0041 (5)0.0019 (5)
C70.0185 (6)0.0287 (7)0.0308 (7)0.0037 (5)0.0054 (5)0.0032 (5)
C80.0193 (5)0.0202 (6)0.0247 (6)0.0005 (5)0.0009 (4)0.0037 (5)
C90.0199 (6)0.0195 (6)0.0254 (6)0.0031 (4)0.0002 (4)0.0037 (5)
C100.0237 (6)0.0173 (6)0.0212 (5)0.0002 (5)0.0009 (4)0.0023 (4)
C110.0211 (6)0.0210 (6)0.0331 (7)0.0007 (5)0.0070 (5)0.0012 (5)
C120.0228 (6)0.0198 (6)0.0288 (6)0.0037 (5)0.0043 (5)0.0027 (5)
C130.0221 (6)0.0169 (6)0.0197 (5)0.0006 (4)0.0007 (4)0.0034 (4)
C140.0217 (6)0.0185 (6)0.0195 (5)0.0004 (4)0.0012 (4)0.0037 (4)
Geometric parameters (Å, º) top
S1—C41.7552 (12)C5—H5B0.9800
S1—C61.8034 (14)C5—H5C0.9800
O1—C11.3434 (15)C6—H6A0.9800
O1—C71.4444 (14)C6—H6B0.9800
O2—C31.3429 (15)C6—H6C0.9800
O2—C51.4406 (16)C7—H7A0.9800
O3—C141.2619 (15)C7—H7B0.9800
O4—C141.2904 (15)C7—H7C0.9800
O4—H1O40.862 (10)C8—C91.3851 (17)
O5—C101.3497 (15)C8—C131.3987 (17)
O5—H1O50.79 (3)C8—H8A0.9500
N1—C41.3358 (16)C9—C101.3990 (17)
N1—C11.3497 (15)C9—H9A0.9500
N2—C31.3336 (15)C10—C111.4032 (17)
N2—C41.3354 (16)C11—C121.3816 (18)
C1—C21.3845 (17)C11—H11A0.9500
C2—C31.3930 (17)C12—C131.3977 (17)
C2—H2A0.9500C12—H12A0.9500
C5—H5A0.9800C13—C141.4722 (17)
C4—S1—C6101.55 (6)H6A—C6—H6C109.5
C1—O1—C7117.10 (10)H6B—C6—H6C109.5
C3—O2—C5116.61 (10)O1—C7—H7A109.5
C14—O4—H1O4112 (2)O1—C7—H7B109.5
C10—O5—H1O5112.7 (18)H7A—C7—H7B109.5
C4—N1—C1115.43 (10)O1—C7—H7C109.5
C3—N2—C4115.10 (11)H7A—C7—H7C109.5
O1—C1—N1111.95 (10)H7B—C7—H7C109.5
O1—C1—C2124.93 (11)C9—C8—C13121.05 (11)
N1—C1—C2123.11 (11)C9—C8—H8A119.5
C1—C2—C3115.03 (11)C13—C8—H8A119.5
C1—C2—H2A122.5C8—C9—C10119.61 (11)
C3—C2—H2A122.5C8—C9—H9A120.2
N2—C3—O2118.77 (11)C10—C9—H9A120.2
N2—C3—C2124.02 (11)O5—C10—C9123.27 (11)
O2—C3—C2117.20 (11)O5—C10—C11117.12 (11)
N2—C4—N1127.30 (11)C9—C10—C11119.60 (11)
N2—C4—S1118.35 (9)C12—C11—C10120.27 (12)
N1—C4—S1114.35 (9)C12—C11—H11A119.9
O2—C5—H5A109.5C10—C11—H11A119.9
O2—C5—H5B109.5C11—C12—C13120.47 (12)
H5A—C5—H5B109.5C11—C12—H12A119.8
O2—C5—H5C109.5C13—C12—H12A119.8
H5A—C5—H5C109.5C12—C13—C8118.99 (11)
H5B—C5—H5C109.5C12—C13—C14119.95 (11)
S1—C6—H6A109.5C8—C13—C14121.05 (11)
S1—C6—H6B109.5O3—C14—O4122.92 (12)
H6A—C6—H6B109.5O3—C14—C13120.49 (11)
S1—C6—H6C109.5O4—C14—C13116.60 (11)
C7—O1—C1—N1179.48 (10)C6—S1—C4—N20.74 (11)
C7—O1—C1—C20.01 (18)C6—S1—C4—N1179.09 (9)
C4—N1—C1—O1178.96 (10)C13—C8—C9—C100.86 (19)
C4—N1—C1—C20.52 (17)C8—C9—C10—O5178.72 (11)
O1—C1—C2—C3178.46 (11)C8—C9—C10—C110.08 (19)
N1—C1—C2—C30.95 (18)O5—C10—C11—C12177.68 (12)
C4—N2—C3—O2179.53 (10)C9—C10—C11—C121.2 (2)
C4—N2—C3—C20.63 (17)C10—C11—C12—C131.4 (2)
C5—O2—C3—N25.20 (16)C11—C12—C13—C80.42 (19)
C5—O2—C3—C2174.95 (11)C11—C12—C13—C14179.62 (12)
C1—C2—C3—N21.02 (18)C9—C8—C13—C120.70 (19)
C1—C2—C3—O2179.14 (11)C9—C8—C13—C14179.26 (11)
C3—N2—C4—N10.13 (18)C12—C13—C14—O37.67 (17)
C3—N2—C4—S1179.94 (8)C8—C13—C14—O3172.29 (11)
C1—N1—C4—N20.08 (18)C12—C13—C14—O4172.05 (11)
C1—N1—C4—S1179.89 (8)C8—C13—C14—O47.99 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.86 (2)1.76 (2)2.6189 (14)172 (3)
O5—H1O5···N1ii0.80 (3)1.99 (3)2.7562 (14)162 (3)
C9—H9A···O1ii0.952.443.3437 (16)160
C12—H12A···O2iii0.952.593.3340 (16)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H10N2O2S·C7H6O3
Mr324.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9923 (5), 10.2887 (8), 10.7578 (8)
α, β, γ (°)77.419 (2), 83.381 (2), 89.209 (2)
V3)750.27 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.44 × 0.37 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.901, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
13682, 3393, 3105
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.10
No. of reflections3393
No. of parameters210
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O3i0.862 (16)1.763 (18)2.6189 (14)172 (3)
O5—H1O5···N1ii0.80 (3)1.99 (3)2.7562 (14)162 (3)
C9—H9A···O1ii0.952.443.3437 (16)160
C12—H12A···O2iii0.952.593.3340 (16)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks the Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009). Acta Cryst. E65, o1895.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoly, A., Votruba, I. & Jost, K. (1974). Collect. Czech. Chem. Commun. 39, 634–646.  CAS Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 5, 164–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3415-o3416
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds