organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o612-o613

5,6-Di­methyl-4-(thio­phen-2-yl)-1H-pyrazolo­[3,4-b]pyridin-3-amine

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 January 2012; accepted 31 January 2012; online 4 February 2012)

In the title mol­ecule, C12H12N4S, the thio­phene ring is disordered over two orientations with a refined site-occupancy ratio of 0.777 (4):0.223 (4). The pyrazolo­pyridine ring system is essentially planar with an r.m.s. deviation of 0.0069 (3) Å and makes dihedral angles of 82.8 (2) and 72.6 (5)°, respectively, with the major and minor components of the thio­phene ring. In the crystal, mol­ecules are linked into a chain along the a axis by a pair of N—H⋯N(pyrazole) hydrogen bonds and a pair of N—H⋯N(pyridine) hydrogen bonds, both having a centrosymmetric R22(8) graph-set motif. A C—H⋯π inter­action is also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and bioactivity of pyrazole derivatives, see: Ali (2009[Ali, T. E. (2009). Eur. J. Med. Chem. 44, 4385-4392.]); Bharate et al. (2008[Bharate, S. B., Mahajan, T. R., Gole, Y. R., Nambiar, M., Matan, T. T., Kulkarni-Almeida, A., Balachandran, S., Junjappa, H., Balakrishnan, A. & Vishwakarma, R. A. (2008). Bioorg. Med. Chem. 16, 7167-7176.]); Fu et al. (2010[Fu, R.-G., You, Q.-D., Yang, L., Wu, W.-T., Jiang, C. & Xu, X.-L. (2010). Bioorg. Med. Chem. 18, 8035-8043.]); Thumar & Patel (2011[Thumar, N. J. & Patel, M. P. (2011). Saudi Pharm. J. 19, 75-83.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145-o2146.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N4S

  • Mr = 244.33

  • Monoclinic, P 21 /c

  • a = 10.0688 (2) Å

  • b = 8.0116 (2) Å

  • c = 15.7479 (3) Å

  • β = 106.809 (1)°

  • V = 1216.06 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.22 mm−1

  • T = 296 K

  • 0.44 × 0.33 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.445, Tmax = 0.746

  • 15551 measured reflections

  • 2379 independent reflections

  • 2073 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.05

  • 2379 reflections

  • 185 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3/N1/C5/C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.08 2.937 (2) 171
N4—H1N4⋯N3ii 0.93 (2) 2.13 (2) 3.056 (3) 176 (2)
C12—H12BCg1iii 0.96 2.94 3.717 (2) 139
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of pyrazole derivatives have attracted a lot of interests in medicinal chemistry owing to their biological properties such as anti-cancer (Fu et al., 2010), anti-inflammatory (Bharate et al., 2008) and antimicrobial activities (Ali, 2009; Thumar & Patel, 2011). Pyrazolopyridine, a fused heterocycle, is of interest as a component of potential bioactive molecules. Our on-going research on biological activity of pyrazolone Schiff bases led us to synthesize the title compound (I). Herein, its crystal structure was reported.

In the molecule, C12H12N4S, the thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.777 (4):0.223 (4). The pyrazolo[3,4-b]pyridine moiety (C1–C6/N1–N3) is planar with an r.m.s. deviation of 0.0069 (3) Å and the dihedral angle between the pyrazole and pyridine rings is 1.16 (9)°. This planar unit makes dihedral angles of 82.8 (2) and 77.6 (5)° with the major and minor components of the thiophene rings, respectively. The amine and two methyl substituents are co-planar with the pyrazolo[3,4-b]pyridine with an r.m.s. deviation of 0.0122 (3) Å for the 12 non-H atoms (C1–C6/N1–N4/C11-C12). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structure (Fun et al., 2011).

In the crystal packing, (Fig. 2), the molecules are linked by N2—H2A···N1 and N4—H1N4···N3 hydrogen bonds (Table 1) into cyclic centrosymmetric R22(8) dimers (Bernstein et al., 1995). These dimers are linked into a chain along the a axis (Fig. 2). A weak C—H···π interaction is also observed (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and bioactivity of pyrazole derivatives, see: Ali (2009); Bharate et al. (2008); Fu et al. (2010); Thumar & Patel (2011). For a related structure, see: Fun et al. (2011).

Experimental top

A mixture of 2-chloro-5,6-dimethyl-4-(thiophen-2-yl)nicotinonitrile (0.248 g, 1 mmol) and hydrazine hydrate (0.5 mL, 99%) in absolute ethanol (20 ml) was refluxed for 16 h. The reaction mixture was cooled and poured onto ice/water mixture. The precipitate that formed was filtered off, washed with water, dried and crystallized from EtOH/DMF to give yellow crystals of the title compound in 69% yield. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from ETOH/DMF (3:1 v/v) by the slow evaporation of the solvent at room temperature after several days.

Refinement top

Amine H atoms were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with N—H = 0.86 Å , and C—H = 0.93 for aromatic and 0.96 Å for CH3 groups. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.777 (4):0.223 (4). In the refinement, SAME and FLAT restraints were used for the minor component. The thermal ellipsoids of C9B and C10B were made to be the same.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor B component.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing chains along the [1 0 0]. Only the major component was shown. N—H···N hydrogen bonds are shown as dashed lines.
5,6-Dimethyl-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine top
Crystal data top
C12H12N4SF(000) = 512
Mr = 244.33Dx = 1.334 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2379 reflections
a = 10.0688 (2) Åθ = 4.6–72.1°
b = 8.0116 (2) ŵ = 2.22 mm1
c = 15.7479 (3) ÅT = 296 K
β = 106.809 (1)°Block, orange
V = 1216.06 (5) Å30.44 × 0.33 × 0.14 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2379 independent reflections
Radiation source: sealed tube2073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 72.1°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1112
Tmin = 0.445, Tmax = 0.746k = 99
15551 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.3031P]
where P = (Fo2 + 2Fc2)/3
2379 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.46 e Å3
8 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H12N4SV = 1216.06 (5) Å3
Mr = 244.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.0688 (2) ŵ = 2.22 mm1
b = 8.0116 (2) ÅT = 296 K
c = 15.7479 (3) Å0.44 × 0.33 × 0.14 mm
β = 106.809 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2073 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.746Rint = 0.040
15551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
2379 reflectionsΔρmin = 0.34 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.02326 (14)0.27878 (19)0.44140 (10)0.0528 (4)
N20.17129 (16)0.4642 (2)0.48858 (12)0.0599 (4)
H2A0.13380.53700.51450.072*
N30.30572 (15)0.4725 (2)0.48332 (12)0.0573 (4)
N40.44670 (17)0.3121 (3)0.41915 (12)0.0628 (5)
C10.02348 (19)0.0354 (2)0.36199 (12)0.0529 (4)
C20.06290 (18)0.1345 (2)0.39940 (12)0.0521 (4)
C30.10716 (17)0.3269 (2)0.44769 (11)0.0479 (4)
C40.32418 (17)0.3387 (2)0.43924 (11)0.0482 (4)
C50.20109 (16)0.2394 (2)0.41425 (10)0.0445 (4)
C60.15813 (17)0.0883 (2)0.37008 (10)0.0464 (4)
C70.2575 (2)0.0108 (2)0.33742 (12)0.0525 (4)
C8A0.3425 (11)0.1330 (14)0.3854 (6)0.119 (4)0.777 (4)
H8AA0.34190.16940.44140.143*0.777 (4)
C9A0.4344 (5)0.1978 (6)0.3355 (3)0.0991 (16)0.777 (4)
H9AA0.49440.28750.35400.119*0.777 (4)
C10A0.4219 (5)0.1147 (5)0.2621 (3)0.0750 (11)0.777 (4)
H10A0.47590.13610.22440.090*0.777 (4)
S1A0.29738 (18)0.03657 (17)0.24181 (9)0.0761 (4)0.777 (4)
C8B0.3177 (14)0.0482 (17)0.2633 (8)0.038 (3)*0.223 (4)
H8BA0.29860.14840.23230.045*0.223 (4)
C9B0.411 (3)0.083 (3)0.2509 (16)0.131 (9)*0.223 (4)
H9BA0.46190.08080.21020.157*0.223 (4)
C10B0.411 (3)0.204 (3)0.3054 (15)0.131 (9)*0.223 (4)
H10B0.45600.30400.30270.157*0.223 (4)
S1B0.3270 (16)0.1710 (17)0.3810 (8)0.168 (5)0.223 (4)
C110.0320 (3)0.1256 (3)0.31546 (18)0.0809 (7)
H11A0.03670.17500.29190.121*
H11B0.11440.10310.26800.121*
H11C0.05360.20110.35690.121*
C120.2079 (2)0.0787 (3)0.39368 (16)0.0687 (6)
H12A0.25040.15870.42300.103*
H12B0.20450.02810.42190.103*
H12C0.26120.07000.33250.103*
H1N40.524 (2)0.373 (3)0.4497 (15)0.067 (6)*
H2N40.456 (3)0.214 (4)0.4039 (19)0.085 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0438 (7)0.0573 (8)0.0612 (8)0.0020 (6)0.0212 (6)0.0079 (7)
N20.0477 (8)0.0560 (9)0.0829 (11)0.0053 (6)0.0296 (8)0.0224 (8)
N30.0462 (8)0.0569 (9)0.0741 (10)0.0071 (6)0.0259 (7)0.0156 (7)
N40.0468 (8)0.0693 (11)0.0791 (11)0.0066 (8)0.0290 (8)0.0206 (9)
C10.0558 (10)0.0527 (9)0.0515 (9)0.0068 (7)0.0177 (7)0.0069 (7)
C20.0481 (9)0.0580 (10)0.0514 (9)0.0072 (7)0.0164 (7)0.0038 (7)
C30.0445 (8)0.0484 (8)0.0533 (9)0.0015 (7)0.0184 (7)0.0052 (7)
C40.0433 (8)0.0515 (9)0.0526 (9)0.0011 (7)0.0187 (7)0.0040 (7)
C50.0440 (8)0.0467 (8)0.0451 (8)0.0012 (6)0.0166 (6)0.0008 (6)
C60.0509 (9)0.0483 (8)0.0423 (8)0.0006 (7)0.0172 (7)0.0014 (6)
C70.0592 (10)0.0499 (9)0.0530 (9)0.0008 (8)0.0235 (8)0.0081 (7)
C8A0.153 (6)0.121 (6)0.117 (5)0.085 (5)0.092 (5)0.027 (4)
C9A0.118 (3)0.107 (3)0.083 (3)0.069 (3)0.047 (2)0.003 (2)
C10A0.081 (2)0.073 (2)0.090 (2)0.0043 (16)0.0528 (19)0.0218 (18)
S1A0.0992 (9)0.0783 (6)0.0670 (7)0.0156 (5)0.0495 (7)0.0042 (5)
S1B0.243 (11)0.120 (5)0.121 (5)0.095 (6)0.023 (5)0.004 (4)
C110.0786 (15)0.0764 (14)0.0926 (16)0.0228 (12)0.0326 (12)0.0328 (13)
C120.0530 (11)0.0785 (13)0.0775 (13)0.0143 (10)0.0235 (10)0.0093 (11)
Geometric parameters (Å, º) top
N1—C21.334 (2)C7—S1A1.709 (2)
N1—C31.344 (2)C8A—C9A1.472 (6)
N2—C31.342 (2)C8A—H8AA0.9300
N2—N31.381 (2)C9A—C10A1.308 (5)
N2—H2A0.8600C9A—H9AA0.9300
N3—C41.319 (2)C10A—S1A1.706 (4)
N4—C41.376 (2)C10A—H10A0.9300
N4—H1N40.93 (2)C8B—C9B1.462 (19)
N4—H2N40.83 (3)C8B—H8BA0.9300
C1—C61.391 (2)C9B—C10B1.290 (17)
C1—C21.425 (3)C9B—H9BA0.9300
C1—C111.508 (3)C10B—S1B1.669 (17)
C2—C121.504 (3)C10B—H10B0.9300
C3—C51.397 (2)C11—H11A0.9600
C4—C51.429 (2)C11—H11B0.9600
C5—C61.401 (2)C11—H11C0.9600
C6—C71.481 (2)C12—H12A0.9600
C7—C8A1.374 (9)C12—H12B0.9600
C7—S1B1.527 (11)C12—H12C0.9600
C7—C8B1.537 (14)
C2—N1—C3115.52 (14)S1B—C7—S1A112.9 (5)
C3—N2—N3110.79 (14)C7—C8A—C9A110.2 (5)
C3—N2—H2A124.6C7—C8A—H8AA124.9
N3—N2—H2A124.6C9A—C8A—H8AA124.9
C4—N3—N2106.36 (14)C10A—C9A—C8A112.2 (4)
C4—N4—H1N4118.1 (15)C10A—C9A—H9AA123.9
C4—N4—H2N4113 (2)C8A—C9A—H9AA123.9
H1N4—N4—H2N4120 (2)C9A—C10A—S1A113.9 (3)
C6—C1—C2119.20 (15)C9A—C10A—H10A123.1
C6—C1—C11121.27 (17)S1A—C10A—H10A123.1
C2—C1—C11119.53 (18)C10A—S1A—C791.41 (17)
N1—C2—C1123.84 (16)C9B—C8B—C7106.8 (12)
N1—C2—C12115.67 (17)C9B—C8B—H8BA126.6
C1—C2—C12120.49 (17)C7—C8B—H8BA126.6
N2—C3—N1126.49 (15)C10B—C9B—C8B109 (2)
N2—C3—C5107.94 (15)C10B—C9B—H9BA125.5
N1—C3—C5125.56 (15)C8B—C9B—H9BA125.5
N3—C4—N4121.28 (16)C9B—C10B—S1B117.1 (19)
N3—C4—C5110.77 (15)C9B—C10B—H10B121.5
N4—C4—C5127.88 (16)S1B—C10B—H10B121.5
C3—C5—C6118.39 (15)C7—S1B—C10B94.1 (11)
C3—C5—C4104.14 (14)C1—C11—H11A109.5
C6—C5—C4137.45 (15)C1—C11—H11B109.5
C1—C6—C5117.49 (15)H11A—C11—H11B109.5
C1—C6—C7122.94 (16)C1—C11—H11C109.5
C5—C6—C7119.52 (15)H11A—C11—H11C109.5
C8A—C7—C6124.5 (3)H11B—C11—H11C109.5
C6—C7—S1B124.2 (5)C2—C12—H12A109.5
C8A—C7—C8B108.5 (6)C2—C12—H12B109.5
C6—C7—C8B123.6 (5)H12A—C12—H12B109.5
S1B—C7—C8B111.7 (7)C2—C12—H12C109.5
C8A—C7—S1A112.1 (3)H12A—C12—H12C109.5
C6—C7—S1A122.78 (14)H12B—C12—H12C109.5
C3—N2—N3—C40.3 (2)C5—C6—C7—C8A90.8 (7)
C3—N1—C2—C10.6 (3)C1—C6—C7—S1B72.2 (8)
C3—N1—C2—C12178.93 (17)C5—C6—C7—S1B105.4 (8)
C6—C1—C2—N11.0 (3)C1—C6—C7—C8B116.5 (6)
C11—C1—C2—N1179.7 (2)C5—C6—C7—C8B66.0 (6)
C6—C1—C2—C12178.53 (18)C1—C6—C7—S1A103.4 (2)
C11—C1—C2—C120.7 (3)C5—C6—C7—S1A79.1 (2)
N3—N2—C3—N1178.90 (17)C6—C7—C8A—C9A176.1 (5)
N3—N2—C3—C50.3 (2)S1B—C7—C8A—C9A91 (3)
C2—N1—C3—N2178.20 (18)C8B—C7—C8A—C9A16.4 (11)
C2—N1—C3—C50.1 (3)S1A—C7—C8A—C9A5.3 (10)
N2—N3—C4—N4177.36 (18)C7—C8A—C9A—C10A5.6 (11)
N2—N3—C4—C50.2 (2)C8A—C9A—C10A—S1A3.3 (8)
N2—C3—C5—C6178.62 (15)C9A—C10A—S1A—C70.2 (4)
N1—C3—C5—C60.0 (3)C8A—C7—S1A—C10A3.1 (6)
N2—C3—C5—C40.21 (19)C6—C7—S1A—C10A174.1 (2)
N1—C3—C5—C4178.79 (17)S1B—C7—S1A—C10A9.9 (7)
N3—C4—C5—C30.0 (2)C8B—C7—S1A—C10A76 (3)
N4—C4—C5—C3176.92 (19)C8A—C7—C8B—C9B19.9 (13)
N3—C4—C5—C6178.47 (19)C6—C7—C8B—C9B179.8 (10)
N4—C4—C5—C64.6 (3)S1B—C7—C8B—C9B7.5 (12)
C2—C1—C6—C50.8 (2)S1A—C7—C8B—C9B91 (3)
C11—C1—C6—C5179.96 (19)C7—C8B—C9B—C10B0.2 (18)
C2—C1—C6—C7176.76 (17)C8B—C9B—C10B—S1B7 (2)
C11—C1—C6—C72.5 (3)C8A—C7—S1B—C10B87 (3)
C3—C5—C6—C10.3 (2)C6—C7—S1B—C10B177.9 (10)
C4—C5—C6—C1178.65 (19)C8B—C7—S1B—C10B9.9 (13)
C3—C5—C6—C7177.34 (16)S1A—C7—S1B—C10B1.9 (13)
C4—C5—C6—C71.0 (3)C9B—C10B—S1B—C711 (2)
C1—C6—C7—C8A86.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/N1 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.082.937 (2)171
N4—H1N4···N3ii0.93 (2)2.13 (2)3.056 (3)176 (2)
C12—H12B···Cg1iii0.962.943.717 (2)139
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N4S
Mr244.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0688 (2), 8.0116 (2), 15.7479 (3)
β (°) 106.809 (1)
V3)1216.06 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.22
Crystal size (mm)0.44 × 0.33 × 0.14
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.445, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15551, 2379, 2073
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.05
No. of reflections2379
No. of parameters185
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C5/N1 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.082.937 (2)171
N4—H1N4···N3ii0.93 (2)2.13 (2)3.056 (3)176 (2)
C12—H12B···Cg1iii0.962.943.717 (2)139
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank King Saud University and the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. HKF thanks the King Saud University, Riyadn, Saudi Arabia, for the award of a visiting professorship (23 December 2011 to 14 January 2012). The authors also thank the Deanship of Scientific Research and Research Center, College of Pharmacy, King Saud University.

References

First citationAli, T. E. (2009). Eur. J. Med. Chem. 44, 4385–4392.  Web of Science CrossRef PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBharate, S. B., Mahajan, T. R., Gole, Y. R., Nambiar, M., Matan, T. T., Kulkarni-Almeida, A., Balachandran, S., Junjappa, H., Balakrishnan, A. & Vishwakarma, R. A. (2008). Bioorg. Med. Chem. 16, 7167–7176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, R.-G., You, Q.-D., Yang, L., Wu, W.-T., Jiang, C. & Xu, X.-L. (2010). Bioorg. Med. Chem. 18, 8035–8043.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Hemamalini, M., Abdel-Aziz, H. A. & Aboul-Fadl, T. (2011). Acta Cryst. E67, o2145–o2146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThumar, N. J. & Patel, M. P. (2011). Saudi Pharm. J. 19, 75–83.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages o612-o613
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds