organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Meth­­oxy­phen­yl)-3-(pyridin-2-yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 11 November 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, C16H16N4OS, the dihedral angle between the pyridine and benzene rings is 81.08 (6)°. The pyrazole ring makes dihedral angles of 12.36 (7) and 87.96 (6)°, respectively, with the pyridine and benzene rings. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds and a weak C—H⋯S inter­action into a layer parallel to the ab plane. Weak C—H⋯π and ππ inter­actions [centroid–centroid distances = 3.7043 (9) and 3.8120 (7) Å] are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701-o702.]). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-922.]); Bai et al. (2007[Bai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93-98.]); Gong et al. (2011[Gong, Z.-L., Zhao, B.-X., Liu, W.-Y. & Lv, H.-S. (2011). J. Photochem. Photobiol. A, 218, 6-10.]); Husain et al. (2008[Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403.]); Ji & Shi (2006[Ji, S.-J. & Shi, H.-B. (2006). Dyes Pigments, 70, 246-250.]); Manna & Agrawal (2009[Manna, K. & Agrawal, Y. K. (2009). Bioorg. Med. Chem. Lett. 19, 2688-2692.]); Shoman et al. (2009[Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068-3076.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4OS

  • Mr = 312.40

  • Triclinic, [P \overline 1]

  • a = 6.2434 (2) Å

  • b = 9.9348 (4) Å

  • c = 13.6564 (6) Å

  • α = 107.762 (1)°

  • β = 99.506 (1)°

  • γ = 94.331 (1)°

  • V = 788.43 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 297 K

  • 0.48 × 0.34 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.961

  • 19134 measured reflections

  • 4529 independent reflections

  • 3927 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.122

  • S = 1.05

  • 4529 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H2N4⋯O1i 0.845 (19) 2.278 (19) 3.0238 (18) 147.4 (17)
N4—H1N4⋯S1ii 0.839 (19) 2.603 (19) 3.4090 (13) 161.6 (18)
C14—H14A⋯S1iii 0.93 2.82 3.7033 (14) 158
C1—H1ACg3iv 0.93 2.60 3.5005 (15) 162
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) x+1, y, z; (iv) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoline derivatives which contain two N atoms in their 5-membered heterocyclic structures are ultilised in bioactivity studies for their antimicrobial (Manna & Agrawal, 2009), antiamoebic (Husain et al., 2008), anti-inflammatory (Amir et al., 2008; Shoman et al., 2009) and analgesic (Amir et al., 2008) properties as well as in optical studies involving fluorescence dyes (Ji & Shi, 2006; Bai et al., 2007) and fluorescent sensors (Gong et al., 2011). For our research on the biological properties of pyrazoline derivatives, the title compound (I) was synthesized from the cyclization reaction of the heteroaryl chalcone derivative and thiosemicarbazide. Crystals of (I) were grown in order to study the structural and activity relationship with another pyrazoline derivative (Fun et al., 2011).

In the title molecule (Fig. 1), C16H16N4OS, the dihedral angle between the pyridine and benzene ring is 81.08 (6)°, whereas the pyrazole ring makes dihedral angles of 12.36 (7) and 81.08 (6)° with the pyridine and benzene rings, respectively. The carbothioamide unit lies on the same plane with pyrazole ring with an r.m.s. of 0.0468 (1) Å for the eight non H atoms (C6, C7, C8, C15, N1, N2, N4 and S1). The methoxy group is co-planar with its attached benzene ring with a torsion angle C16–O1–C12–C13 = -0.5 (2)° and an r.m.s. of 0.0102 (1) Å for the eight non H atoms. Bond distances of (I) are in normal range (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, and N—H···S hydrogen bonds as well as with weak C—H···S interactions (Table 1) into a layer parallel to the ab plane. ππ interactions with the distances of Cg1···Cg2 (-1 + x, y, z) = 3.8120 (7) Å and Cg2···Cg2 (3 - x, -y, 1 - z) = 3.7043 (9) Å are also present. Cg1 and Cg2 are the centroids of N1/N2/C8/C7/C6 and N3/C1–C5 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2011). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008); Bai et al. (2007); Gong et al. (2011); Husain et al. (2008); Ji & Shi (2006); Manna & Agrawal (2009); Shoman et al. (2009).

Experimental top

The title compound was synthesized by the cyclization reaction of E-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (0.24 g, 1 mmol) with excess thiosemicarbazide (0.18 g, 2 mmol) in a solution of KOH (0.11 g, 2 mmol) in ethanol (10 ml). The reaction mixture was vigorously stirred and refluxed for 3 h. The pale-yellow solid of the title compound obtained after cooling off the reaction was then filtered off under vacuum. Pale yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol/ethanol (1:2 v/v) by slow evaporation of the solvent at room temperature after several days (m.p. 468–469 K).

Refinement top

Amide H atoms were located in a difference maps and refined freely [N—H = 0.847 (18) and 0.84 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic, 0.98 Å for CH, 0.97 Å for CH2 and 0.96 Å for CH3. The Uiso(H) values were constrained to be 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Pyrazoline derivatives which contain two N atoms in their 5-membered heterocyclic structures are ultilised in bioactivity studies for their antimicrobial (Manna & Agrawal, 2009), antiamoebic (Husain et al., 2008), anti-inflammatory (Amir et al., 2008; Shoman et al., 2009) and analgesic (Amir et al., 2008) properties as well as in optical studies involving fluorescence dyes (Ji & Shi, 2006; Bai et al., 2007) and fluorescent sensors (Gong et al., 2011). For our research on the biological properties of pyrazoline derivatives, the title compound (I) was synthesized from the cyclization reaction of the heteroaryl chalcone derivative and thiosemicarbazide. Crystals of (I) were grown in order to study the structural and activity relationship with another pyrazoline derivative (Fun et al., 2011).

In the title molecule (Fig. 1), C16H16N4OS, the dihedral angle between the pyridine and benzene ring is 81.08 (6)°, whereas the pyrazole ring makes dihedral angles of 12.36 (7) and 81.08 (6)° with the pyridine and benzene rings, respectively. The carbothioamide unit lies on the same plane with pyrazole ring with an r.m.s. of 0.0468 (1) Å for the eight non H atoms (C6, C7, C8, C15, N1, N2, N4 and S1). The methoxy group is co-planar with its attached benzene ring with a torsion angle C16–O1–C12–C13 = -0.5 (2)° and an r.m.s. of 0.0102 (1) Å for the eight non H atoms. Bond distances of (I) are in normal range (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O, and N—H···S hydrogen bonds as well as with weak C—H···S interactions (Table 1) into a layer parallel to the ab plane. ππ interactions with the distances of Cg1···Cg2 (-1 + x, y, z) = 3.8120 (7) Å and Cg2···Cg2 (3 - x, -y, 1 - z) = 3.7043 (9) Å are also present. Cg1 and Cg2 are the centroids of N1/N2/C8/C7/C6 and N3/C1–C5 rings, respectively.

For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2011). For background to and applications of pyrazoline derivatives, see: Amir et al. (2008); Bai et al. (2007); Gong et al. (2011); Husain et al. (2008); Ji & Shi (2006); Manna & Agrawal (2009); Shoman et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the a axis. For the sake of clarity, only H atoms involved in the hydrogen bonds were shown. Hydrogen bonds were drawn as dashed lines.
5-(4-Methoxyphenyl)-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazole-1- carbothioamide top
Crystal data top
C16H16N4OSZ = 2
Mr = 312.40F(000) = 328
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Melting point = 468–469 K
a = 6.2434 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9348 (4) ÅCell parameters from 4529 reflections
c = 13.6564 (6) Åθ = 1.6–30.0°
α = 107.762 (1)°µ = 0.21 mm1
β = 99.506 (1)°T = 297 K
γ = 94.331 (1)°Block, yellow
V = 788.43 (5) Å30.48 × 0.34 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4529 independent reflections
Radiation source: fine-focus sealed tube3927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.6°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.906, Tmax = 0.961l = 1918
19134 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1373P]
where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H16N4OSγ = 94.331 (1)°
Mr = 312.40V = 788.43 (5) Å3
Triclinic, P1Z = 2
a = 6.2434 (2) ÅMo Kα radiation
b = 9.9348 (4) ŵ = 0.21 mm1
c = 13.6564 (6) ÅT = 297 K
α = 107.762 (1)°0.48 × 0.34 × 0.19 mm
β = 99.506 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3927 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.961Rint = 0.019
19134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
4529 reflectionsΔρmin = 0.18 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50444 (5)0.19990 (4)0.13335 (2)0.04687 (11)
O11.0431 (2)0.76342 (12)0.12097 (10)0.0645 (3)
N11.06459 (15)0.13465 (10)0.27835 (7)0.03555 (19)
N20.88621 (16)0.19975 (9)0.25049 (8)0.0376 (2)
N31.48004 (19)0.27191 (11)0.50833 (8)0.0458 (2)
N40.7587 (2)0.00487 (12)0.11494 (10)0.0497 (3)
H2N40.873 (3)0.0389 (18)0.1330 (13)0.053 (4)*
H1N40.667 (3)0.046 (2)0.0593 (15)0.063 (5)*
C11.6684 (2)0.24072 (15)0.55409 (11)0.0537 (3)
H1A1.73410.30000.62120.064*
C21.7700 (2)0.12711 (17)0.50832 (13)0.0568 (3)
H2A1.90030.11010.54370.068*
C31.6751 (2)0.03853 (17)0.40878 (12)0.0562 (3)
H3A1.74110.03890.37540.067*
C41.4800 (2)0.06681 (14)0.35939 (10)0.0453 (3)
H4A1.41170.00840.29240.054*
C51.38864 (18)0.18390 (11)0.41175 (8)0.0354 (2)
C61.18371 (18)0.22122 (11)0.36368 (8)0.0347 (2)
C71.0938 (2)0.35789 (12)0.40702 (9)0.0416 (2)
H7A1.20140.43990.41910.050*
H7B1.04660.36300.47210.050*
C80.89669 (19)0.34932 (11)0.31893 (9)0.0364 (2)
H8A0.76270.36220.34740.044*
C90.93345 (18)0.45497 (11)0.26179 (8)0.0349 (2)
C100.8047 (2)0.56443 (13)0.26752 (10)0.0426 (3)
H10A0.69070.57000.30400.051*
C110.8453 (2)0.66491 (14)0.21933 (11)0.0486 (3)
H11A0.75860.73790.22390.058*
C121.0148 (2)0.65770 (13)0.16395 (10)0.0439 (3)
C131.1430 (2)0.54861 (14)0.15695 (11)0.0468 (3)
H13A1.25600.54230.11970.056*
C141.1009 (2)0.44869 (13)0.20617 (10)0.0434 (3)
H14A1.18750.37570.20160.052*
C150.72789 (18)0.12674 (12)0.16632 (9)0.0360 (2)
C161.2161 (3)0.7646 (2)0.06553 (15)0.0706 (5)
H16A1.22160.84780.04370.106*
H16B1.19100.68060.00500.106*
H16C1.35260.76620.11040.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03741 (17)0.05216 (19)0.04509 (18)0.01644 (13)0.00125 (12)0.00828 (13)
O10.0804 (8)0.0561 (6)0.0773 (7)0.0238 (5)0.0297 (6)0.0404 (6)
N10.0342 (4)0.0324 (4)0.0385 (4)0.0070 (3)0.0025 (3)0.0110 (3)
N20.0369 (4)0.0315 (4)0.0401 (5)0.0093 (3)0.0002 (4)0.0083 (4)
N30.0493 (6)0.0392 (5)0.0412 (5)0.0060 (4)0.0046 (4)0.0090 (4)
N40.0486 (6)0.0380 (5)0.0484 (6)0.0120 (4)0.0096 (5)0.0021 (4)
C10.0516 (7)0.0504 (7)0.0480 (7)0.0033 (6)0.0122 (6)0.0121 (5)
C20.0424 (7)0.0624 (8)0.0618 (8)0.0117 (6)0.0060 (6)0.0222 (7)
C30.0487 (7)0.0586 (8)0.0590 (8)0.0218 (6)0.0059 (6)0.0147 (6)
C40.0450 (6)0.0469 (6)0.0403 (6)0.0131 (5)0.0037 (5)0.0095 (5)
C50.0356 (5)0.0350 (5)0.0356 (5)0.0037 (4)0.0030 (4)0.0141 (4)
C60.0372 (5)0.0325 (5)0.0344 (5)0.0062 (4)0.0042 (4)0.0119 (4)
C70.0509 (6)0.0340 (5)0.0358 (5)0.0108 (4)0.0008 (4)0.0084 (4)
C80.0388 (5)0.0323 (5)0.0359 (5)0.0096 (4)0.0054 (4)0.0076 (4)
C90.0363 (5)0.0314 (5)0.0345 (5)0.0102 (4)0.0039 (4)0.0073 (4)
C100.0395 (6)0.0425 (6)0.0495 (6)0.0170 (5)0.0121 (5)0.0160 (5)
C110.0509 (7)0.0433 (6)0.0590 (7)0.0242 (5)0.0132 (6)0.0218 (6)
C120.0509 (7)0.0394 (6)0.0432 (6)0.0109 (5)0.0073 (5)0.0157 (5)
C130.0510 (7)0.0456 (6)0.0492 (6)0.0157 (5)0.0188 (5)0.0162 (5)
C140.0466 (6)0.0399 (5)0.0492 (6)0.0204 (5)0.0157 (5)0.0157 (5)
C150.0347 (5)0.0363 (5)0.0363 (5)0.0059 (4)0.0045 (4)0.0118 (4)
C160.0854 (12)0.0663 (10)0.0737 (11)0.0083 (9)0.0283 (9)0.0361 (9)
Geometric parameters (Å, º) top
S1—C151.6801 (11)C5—C61.4657 (15)
O1—C121.3644 (16)C6—C71.4978 (15)
O1—C161.419 (2)C7—C81.5498 (16)
N1—C61.2871 (14)C7—H7A0.9700
N1—N21.3864 (12)C7—H7B0.9700
N2—C151.3536 (14)C8—C91.5118 (15)
N2—C81.4844 (14)C8—H8A0.9800
N3—C11.3414 (17)C9—C141.3846 (17)
N3—C51.3425 (14)C9—C101.3911 (15)
N4—C151.3273 (15)C10—C111.3825 (18)
N4—H2N40.847 (18)C10—H10A0.9300
N4—H1N40.84 (2)C11—C121.3927 (19)
C1—C21.370 (2)C11—H11A0.9300
C1—H1A0.9300C12—C131.3848 (17)
C2—C31.378 (2)C13—C141.3901 (18)
C2—H2A0.9300C13—H13A0.9300
C3—C41.3834 (18)C14—H14A0.9300
C3—H3A0.9300C16—H16A0.9600
C4—C51.3847 (16)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C12—O1—C16118.84 (12)N2—C8—C9112.03 (9)
C6—N1—N2107.90 (9)N2—C8—C7100.52 (8)
C15—N2—N1119.54 (9)C9—C8—C7113.07 (9)
C15—N2—C8127.01 (9)N2—C8—H8A110.3
N1—N2—C8113.43 (8)C9—C8—H8A110.3
C1—N3—C5116.48 (12)C7—C8—H8A110.3
C15—N4—H2N4121.2 (11)C14—C9—C10118.46 (11)
C15—N4—H1N4115.2 (13)C14—C9—C8120.98 (10)
H2N4—N4—H1N4123.0 (17)C10—C9—C8120.52 (10)
N3—C1—C2124.18 (13)C11—C10—C9120.44 (11)
N3—C1—H1A117.9C11—C10—H10A119.8
C2—C1—H1A117.9C9—C10—H10A119.8
C1—C2—C3118.64 (12)C10—C11—C12120.53 (11)
C1—C2—H2A120.7C10—C11—H11A119.7
C3—C2—H2A120.7C12—C11—H11A119.7
C2—C3—C4118.81 (13)O1—C12—C13124.58 (12)
C2—C3—H3A120.6O1—C12—C11115.81 (11)
C4—C3—H3A120.6C13—C12—C11119.60 (11)
C3—C4—C5118.60 (12)C12—C13—C14119.22 (12)
C3—C4—H4A120.7C12—C13—H13A120.4
C5—C4—H4A120.7C14—C13—H13A120.4
N3—C5—C4123.29 (11)C9—C14—C13121.75 (11)
N3—C5—C6115.16 (10)C9—C14—H14A119.1
C4—C5—C6121.54 (10)C13—C14—H14A119.1
N1—C6—C5120.88 (10)N4—C15—N2115.95 (10)
N1—C6—C7114.44 (10)N4—C15—S1123.24 (9)
C5—C6—C7124.68 (10)N2—C15—S1120.78 (8)
C6—C7—C8102.65 (9)O1—C16—H16A109.5
C6—C7—H7A111.2O1—C16—H16B109.5
C8—C7—H7A111.2H16A—C16—H16B109.5
C6—C7—H7B111.2O1—C16—H16C109.5
C8—C7—H7B111.2H16A—C16—H16C109.5
H7A—C7—H7B109.2H16B—C16—H16C109.5
C6—N1—N2—C15175.98 (10)C6—C7—C8—N29.45 (11)
C6—N1—N2—C85.41 (13)C6—C7—C8—C9110.14 (10)
C5—N3—C1—C20.3 (2)N2—C8—C9—C1450.50 (14)
N3—C1—C2—C30.3 (2)C7—C8—C9—C1462.24 (14)
C1—C2—C3—C40.7 (2)N2—C8—C9—C10132.10 (11)
C2—C3—C4—C50.5 (2)C7—C8—C9—C10115.16 (12)
C1—N3—C5—C40.49 (19)C14—C9—C10—C110.53 (19)
C1—N3—C5—C6179.71 (11)C8—C9—C10—C11176.93 (11)
C3—C4—C5—N30.1 (2)C9—C10—C11—C120.3 (2)
C3—C4—C5—C6179.25 (12)C16—O1—C12—C130.5 (2)
N2—N1—C6—C5178.44 (9)C16—O1—C12—C11178.55 (14)
N2—N1—C6—C71.85 (13)C10—C11—C12—O1178.90 (13)
N3—C5—C6—N1169.93 (11)C10—C11—C12—C130.2 (2)
C4—C5—C6—N110.83 (17)O1—C12—C13—C14178.56 (13)
N3—C5—C6—C79.75 (16)C11—C12—C13—C140.5 (2)
C4—C5—C6—C7169.49 (11)C10—C9—C14—C130.26 (19)
N1—C6—C7—C87.69 (13)C8—C9—C14—C13177.19 (11)
C5—C6—C7—C8172.61 (10)C12—C13—C14—C90.2 (2)
C15—N2—C8—C967.76 (15)N1—N2—C15—N40.80 (16)
N1—N2—C8—C9110.73 (10)C8—N2—C15—N4177.61 (11)
C15—N2—C8—C7171.91 (11)N1—N2—C15—S1177.43 (8)
N1—N2—C8—C79.61 (12)C8—N2—C15—S14.16 (17)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N4—H2N4···O1i0.845 (19)2.278 (19)3.0238 (18)147.4 (17)
N4—H1N4···S1ii0.839 (19)2.603 (19)3.4090 (13)161.6 (18)
C14—H14A···S1iii0.932.823.7033 (14)158
C1—H1A···Cg3iv0.932.603.5005 (15)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N4OS
Mr312.40
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.2434 (2), 9.9348 (4), 13.6564 (6)
α, β, γ (°)107.762 (1), 99.506 (1), 94.331 (1)
V3)788.43 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.48 × 0.34 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.906, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
19134, 4529, 3927
Rint0.019
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.122, 1.05
No. of reflections4529
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N4—H2N4···O1i0.845 (19)2.278 (19)3.0238 (18)147.4 (17)
N4—H1N4···S1ii0.839 (19)2.603 (19)3.4090 (13)161.6 (18)
C14—H14A···S1iii0.932.823.7033 (14)158
C1—H1A···Cg3iv0.932.603.5005 (15)162
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z; (iv) x+3, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

PN thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmir, M., Kumar, H. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigments, 75, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGong, Z.-L., Zhao, B.-X., Liu, W.-Y. & Lv, H.-S. (2011). J. Photochem. Photobiol. A, 218, 6–10.  Web of Science CrossRef CAS Google Scholar
First citationHusain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393–403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJi, S.-J. & Shi, H.-B. (2006). Dyes Pigments, 70, 246–250.  CrossRef CAS Google Scholar
First citationManna, K. & Agrawal, Y. K. (2009). Bioorg. Med. Chem. Lett. 19, 2688–2692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds