organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl 2-methyl­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

In the title compound, C16H13BrO3, the dihedral angle formed between the bromo- and methyl-substituted benzene rings is 66.66 (8)°. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the ac plane. The crystal packing is further consolidated by C—H⋯π inter­actions.

Related literature

For background and applications of phenacyl benzoates, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1529.]). For the synthesis, see: Judefind & Reid (1920[Judefind, W. L. & Reid, E. E. (1920). J. Am. Chem. Soc. 42, 1043-1055.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO3

  • Mr = 333.17

  • Monoclinic, P 21 /c

  • a = 5.4519 (1) Å

  • b = 31.2382 (5) Å

  • c = 9.7206 (1) Å

  • β = 120.410 (1)°

  • V = 1427.74 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 100 K

  • 0.51 × 0.36 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.323, Tmax = 0.811

  • 20164 measured reflections

  • 5211 independent reflections

  • 4181 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 1.04

  • 5211 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.99 2.32 3.224 (2) 151
C8—H8B⋯O2ii 0.99 2.52 3.447 (3) 156
C15—H15ACg1iii 0.95 2.74 3.5472 (19) 143
C16—H16BCg1iv 0.98 2.98 3.4909 (19) 114
C2—H2ACg2v 0.95 2.91 3.5915 (19) 130
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoate derivatives are very important in identification of organic acids (Rather & Reid, 1919), since they undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996) and benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of 2-(4-bromophenyl)-2-oxoethyl 2-methylbenzoate which has potential commercial importance.

In the title compound (Fig. 1), the dihedral angle formed between the bromo-substituted (C1–C6) and the methyl-substituted (C10–C15) benzene rings is 66.66 (8)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structure (Fun et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C8—H8A···O2 and C8—H8B···O2 hydrogen bonds (Table 1), forming a two-dimensional network parallel to the ac plane. The crystal packing is further consolidated by C—H···π interactions, involving the centroids of the bromo-substituted (C1–C6; Cg1; Table 1) and methyl-substituted benzene rings (C10–C15; Cg2; Table 1).

Related literature top

For background and applications of phenacyl benzoates, see: Rather & Reid (1919); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Huang et al. (1996); Gandhi et al. (1995). For a related structure, see: Fun et al. (2011). For the synthesis, see: Judefind & Reid (1920). For bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 2-methylbenzoic acid (1.0 g, 0.0073 mol), potassium carbonate (1.10 g, 0.0080 mol) and 2-bromo-1-(4-bromophenyl)ethanone (2.02 g, 0.0073 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 2-methylbenzoate began to separate out. It was collected by filtration and recrystallized from ethanol. Yield: 2.35 g, 96.3%. M.p.: 330–331 K (Judefind & Reid, 1920).

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. In the final refinement, one outliner (0 2 0) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
2-(4-Bromophenyl)-2-oxoethyl 2-methylbenzoate top
Crystal data top
C16H13BrO3F(000) = 672
Mr = 333.17Dx = 1.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7724 reflections
a = 5.4519 (1) Åθ = 2.6–32.6°
b = 31.2382 (5) ŵ = 2.88 mm1
c = 9.7206 (1) ÅT = 100 K
β = 120.410 (1)°Plate, colourless
V = 1427.74 (4) Å30.51 × 0.36 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5211 independent reflections
Radiation source: fine-focus sealed tube4181 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 32.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.323, Tmax = 0.811k = 3547
20164 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.9854P]
where P = (Fo2 + 2Fc2)/3
5211 reflections(Δ/σ)max = 0.003
182 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C16H13BrO3V = 1427.74 (4) Å3
Mr = 333.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4519 (1) ŵ = 2.88 mm1
b = 31.2382 (5) ÅT = 100 K
c = 9.7206 (1) Å0.51 × 0.36 × 0.08 mm
β = 120.410 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4181 reflections with I > 2σ(I)
Tmin = 0.323, Tmax = 0.811Rint = 0.032
20164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.85 e Å3
5211 reflectionsΔρmin = 0.43 e Å3
182 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.17278 (4)0.970131 (6)0.70447 (3)0.03247 (7)
O10.2143 (2)0.70425 (4)0.82251 (14)0.0169 (2)
O20.4582 (2)0.75657 (4)0.70793 (14)0.0185 (2)
O30.1113 (3)0.70407 (4)0.56018 (15)0.0219 (3)
C10.1466 (3)0.84316 (5)0.81729 (19)0.0167 (3)
H1A0.07260.82730.87150.020*
C20.1160 (3)0.88749 (6)0.8057 (2)0.0194 (3)
H2A0.02320.90200.85260.023*
C30.2231 (3)0.91002 (6)0.7248 (2)0.0197 (3)
C40.3636 (4)0.88967 (6)0.6568 (2)0.0202 (3)
H4A0.43700.90570.60240.024*
C50.3940 (3)0.84555 (6)0.6701 (2)0.0177 (3)
H5A0.48970.83120.62460.021*
C60.2854 (3)0.82191 (5)0.74968 (18)0.0145 (3)
C70.3187 (3)0.77446 (5)0.75677 (18)0.0147 (3)
C80.1688 (4)0.74932 (5)0.8257 (2)0.0170 (3)
H8A0.24050.75850.93710.020*
H8B0.03760.75540.76350.020*
C90.0627 (3)0.68539 (5)0.67839 (19)0.0156 (3)
C100.1268 (3)0.63882 (5)0.68481 (19)0.0154 (3)
C110.4045 (3)0.62214 (6)0.7696 (2)0.0178 (3)
C120.4349 (4)0.57773 (6)0.7654 (2)0.0234 (3)
H12A0.62030.56570.81980.028*
C130.2030 (4)0.55090 (6)0.6846 (2)0.0259 (4)
H13A0.23060.52080.68660.031*
C140.0708 (4)0.56778 (6)0.6002 (2)0.0239 (3)
H14A0.23060.54950.54400.029*
C150.1062 (3)0.61174 (6)0.5995 (2)0.0191 (3)
H15A0.29170.62360.54000.023*
C160.6654 (3)0.64980 (6)0.8579 (2)0.0223 (3)
H16A0.83270.63380.87390.033*
H16B0.69050.65790.96160.033*
H16C0.64280.67570.79540.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03491 (11)0.01766 (9)0.04329 (13)0.00216 (7)0.01866 (9)0.00472 (8)
O10.0187 (5)0.0162 (5)0.0144 (5)0.0007 (4)0.0074 (4)0.0001 (4)
O20.0168 (5)0.0230 (6)0.0175 (6)0.0007 (4)0.0101 (4)0.0028 (4)
O30.0182 (5)0.0211 (6)0.0189 (6)0.0023 (4)0.0038 (5)0.0018 (5)
C10.0155 (7)0.0202 (7)0.0153 (7)0.0010 (6)0.0085 (6)0.0001 (6)
C20.0162 (7)0.0205 (8)0.0207 (8)0.0020 (6)0.0086 (6)0.0017 (6)
C30.0161 (7)0.0180 (7)0.0214 (8)0.0003 (6)0.0068 (6)0.0011 (6)
C40.0191 (7)0.0228 (8)0.0190 (8)0.0032 (6)0.0099 (6)0.0020 (6)
C50.0149 (7)0.0244 (8)0.0157 (7)0.0013 (6)0.0090 (6)0.0012 (6)
C60.0106 (6)0.0193 (7)0.0117 (6)0.0006 (5)0.0044 (5)0.0008 (5)
C70.0111 (6)0.0203 (7)0.0094 (6)0.0006 (5)0.0028 (5)0.0020 (5)
C80.0210 (7)0.0163 (7)0.0168 (7)0.0002 (6)0.0118 (6)0.0016 (6)
C90.0135 (6)0.0182 (7)0.0151 (7)0.0016 (5)0.0073 (5)0.0007 (5)
C100.0163 (7)0.0168 (7)0.0139 (7)0.0002 (5)0.0081 (6)0.0007 (5)
C110.0173 (7)0.0226 (8)0.0154 (7)0.0020 (6)0.0096 (6)0.0026 (6)
C120.0226 (8)0.0229 (8)0.0282 (9)0.0072 (6)0.0155 (7)0.0058 (7)
C130.0307 (9)0.0178 (8)0.0343 (10)0.0040 (7)0.0203 (8)0.0044 (7)
C140.0258 (8)0.0201 (8)0.0280 (9)0.0044 (7)0.0152 (7)0.0018 (7)
C150.0168 (7)0.0211 (8)0.0185 (8)0.0005 (6)0.0082 (6)0.0000 (6)
C160.0140 (7)0.0303 (9)0.0204 (8)0.0018 (6)0.0072 (6)0.0009 (7)
Geometric parameters (Å, º) top
Br1—C31.8935 (18)C8—H8A0.9900
O1—C91.3493 (19)C8—H8B0.9900
O1—C81.433 (2)C9—C101.490 (2)
O2—C71.2170 (19)C10—C151.397 (2)
O3—C91.207 (2)C10—C111.407 (2)
C1—C21.392 (2)C11—C121.400 (2)
C1—C61.396 (2)C11—C161.507 (2)
C1—H1A0.9500C12—C131.383 (3)
C2—C31.386 (2)C12—H12A0.9500
C2—H2A0.9500C13—C141.393 (3)
C3—C41.393 (2)C13—H13A0.9500
C4—C51.386 (2)C14—C151.386 (2)
C4—H4A0.9500C14—H14A0.9500
C5—C61.399 (2)C15—H15A0.9500
C5—H5A0.9500C16—H16A0.9800
C6—C71.491 (2)C16—H16B0.9800
C7—C81.512 (2)C16—H16C0.9800
C9—O1—C8115.46 (13)O3—C9—O1123.39 (15)
C2—C1—C6120.43 (15)O3—C9—C10124.51 (15)
C2—C1—H1A119.8O1—C9—C10112.05 (13)
C6—C1—H1A119.8C15—C10—C11120.62 (15)
C3—C2—C1118.88 (15)C15—C10—C9116.27 (14)
C3—C2—H2A120.6C11—C10—C9123.10 (14)
C1—C2—H2A120.6C12—C11—C10117.24 (15)
C2—C3—C4121.92 (16)C12—C11—C16119.55 (15)
C2—C3—Br1118.84 (13)C10—C11—C16123.17 (15)
C4—C3—Br1119.24 (13)C13—C12—C11121.96 (16)
C5—C4—C3118.51 (15)C13—C12—H12A119.0
C5—C4—H4A120.7C11—C12—H12A119.0
C3—C4—H4A120.7C12—C13—C14120.28 (17)
C4—C5—C6120.84 (15)C12—C13—H13A119.9
C4—C5—H5A119.6C14—C13—H13A119.9
C6—C5—H5A119.6C15—C14—C13118.89 (17)
C1—C6—C5119.42 (15)C15—C14—H14A120.6
C1—C6—C7122.24 (14)C13—C14—H14A120.6
C5—C6—C7118.33 (14)C14—C15—C10120.96 (16)
O2—C7—C6121.60 (15)C14—C15—H15A119.5
O2—C7—C8121.25 (15)C10—C15—H15A119.5
C6—C7—C8117.14 (13)C11—C16—H16A109.5
O1—C8—C7111.25 (13)C11—C16—H16B109.5
O1—C8—H8A109.4H16A—C16—H16B109.5
C7—C8—H8A109.4C11—C16—H16C109.5
O1—C8—H8B109.4H16A—C16—H16C109.5
C7—C8—H8B109.4H16B—C16—H16C109.5
H8A—C8—H8B108.0
C6—C1—C2—C30.6 (2)C8—O1—C9—O33.7 (2)
C1—C2—C3—C40.9 (3)C8—O1—C9—C10178.78 (12)
C1—C2—C3—Br1178.42 (12)O3—C9—C10—C1540.3 (2)
C2—C3—C4—C50.5 (3)O1—C9—C10—C15137.23 (15)
Br1—C3—C4—C5178.80 (12)O3—C9—C10—C11139.03 (17)
C3—C4—C5—C60.2 (2)O1—C9—C10—C1143.5 (2)
C2—C1—C6—C50.0 (2)C15—C10—C11—C120.6 (2)
C2—C1—C6—C7178.94 (14)C9—C10—C11—C12179.87 (15)
C4—C5—C6—C10.4 (2)C15—C10—C11—C16177.21 (16)
C4—C5—C6—C7178.59 (15)C9—C10—C11—C162.1 (2)
C1—C6—C7—O2174.45 (15)C10—C11—C12—C131.3 (3)
C5—C6—C7—O26.6 (2)C16—C11—C12—C13179.19 (17)
C1—C6—C7—C86.2 (2)C11—C12—C13—C141.8 (3)
C5—C6—C7—C8172.78 (14)C12—C13—C14—C150.3 (3)
C9—O1—C8—C775.92 (17)C13—C14—C15—C101.6 (3)
O2—C7—C8—O10.4 (2)C11—C10—C15—C142.0 (3)
C6—C7—C8—O1178.89 (12)C9—C10—C15—C14178.63 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.323.224 (2)151
C8—H8B···O2ii0.992.523.447 (3)156
C15—H15A···Cg1iii0.952.743.5472 (19)143
C16—H16B···Cg1iv0.982.983.4909 (19)114
C2—H2A···Cg2v0.952.913.5915 (19)130
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z; (iii) x1, y+1/2, z3/2; (iv) x+1, y+1/2, z1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13BrO3
Mr333.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.4519 (1), 31.2382 (5), 9.7206 (1)
β (°) 120.410 (1)
V3)1427.74 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.51 × 0.36 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.323, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
20164, 5211, 4181
Rint0.032
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 1.04
No. of reflections5211
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.323.224 (2)151
C8—H8B···O2ii0.992.523.447 (3)156
C15—H15A···Cg1iii0.952.743.5472 (19)143
C16—H16B···Cg1iv0.982.983.4909 (19)114
C2—H2A···Cg2v0.952.913.5915 (19)130
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z; (iii) x1, y+1/2, z3/2; (iv) x+1, y+1/2, z1/2; (v) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young scientist award. SMN thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationJudefind, W. L. & Reid, E. E. (1920). J. Am. Chem. Soc. 42, 1043–1055.  CrossRef CAS Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds