organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[2-(benzyl­oxycarbonyl­amino)­propan-2-yl]-5-hy­dr­oxy-6-meth­­oxy­pyrimidine-4-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Karnatak State, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 25 December 2010; accepted 29 December 2010; online 8 January 2011)

In the title compound, C18H21N3O6, a pyrimidine derivative, the dihedral angle between the benzene and pyrimidine rings is 52.26 (12)°. The carboxyl­ate unit is twisted with respect to the pyrimidine ring, making a dihedral angle of 12.33 (7)°. In the crystal, mol­ecules are linked by a pair of O—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are stacked into columns along the b axis through weak C—H⋯O inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and applications of pyrimidine derivatives, see: Cheng & Roth (1971[Cheng, C. C. & Roth, B. (1971). Prog. Med. Chem. 8, 61-117.]); Cox (1968[Cox, R. A. (1968). Quart. Rev, 22, 499-526.]); Eussell (1945[Eussell, J. A. (1945). Annu. Rev. Biochem. 14, 309-332.]); Jain et al. (2006[Jain, K. S., Chitre, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, V. S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793-803.]); Shinogi (1959[Shinogi (1959). US Patent 2 888 455.]); Tani et al. (1979[Tani, J., Yamada, Y., Oine, T., Ochiai, T., Ishida, R. & Inoue, I. (1979). J. Med. Chem. 22, 95-99.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O6

  • Mr = 375.38

  • Monoclinic, P 21 /c

  • a = 16.5226 (2) Å

  • b = 8.5717 (1) Å

  • c = 13.0944 (2) Å

  • β = 97.236 (1)°

  • V = 1839.75 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.57 × 0.52 × 0.39 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.961

  • 20111 measured reflections

  • 5348 independent reflections

  • 4087 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.164

  • S = 1.04

  • 5348 reflections

  • 256 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O5 0.87 (2) 1.93 (3) 2.6513 (15) 139 (2)
O4—H1O4⋯O2i 0.87 (2) 2.39 (2) 3.0508 (17) 132 (2)
C7—H7A⋯O5i 0.97 2.52 3.347 (3) 143
C15—H15A⋯O3ii 0.96 2.49 3.2148 (18) 132
C17—H17A⋯O2 0.96 2.54 3.099 (2) 117
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Several pyrimidine derivatives have been developed as chemotherapeutic agents and have found wide clinical applications (Jain et al., 2006). The pyrimidine ring is found in vitamins like thiamine, riboflavin and folic acid (Cox, 1968). Barbiton, a pyrimidine derivative, possesses hypnotic, sedative and anticonvulsant (Eussell, 1945) activities. Pyrimidine derivatives of sulfa drugs, namely sulfadiazine, sulfamerazine and sulfadimidine are superior to many other sulfonamides and are used for treatment in some acute UT infections, cerebrospinal meningitis and for patients allergic to pencillins (Shinogi, 1959). 2-Thiouracil and its alkyl analogue, thiobarbital, are effective drugs against hyperthyroidism. Propylthiouracil is used as a drug for hyperthyroidism with minimum side effects (Cheng & Roth, 1971). Afloqualone has been evaluated as a successful anti-inflammatory agent with lower-back-pain patients (Tani et al., 1979). In view of the importance of pyrimidine derivatives, the title compound (I) was synthesized and its crystal structure was reported.

The molecule of (I), (Fig. 1), is a V-shaped structure with the dihedral angle between the benzene and pyrimidine rings being 52.26 (12)°. The oxycarbonylamino unit (atoms C8, N1, O1 and O2) are planar with r.m.s. 0.0035 (1) Å. This unit makes dihedral angles of 62.35 (12) and 65.98 (8)° with the benzyl group (C1—C7) and pyrimidine ring, respectively. The hydroxy group is co-planar with the pyrimidine ring [r.m.s. 0.0190 (1) Å] whereas the methoxy is slightly deviated with the torsion angle C18–O3–C11–C12 = 175.74 (12)°. The carboxylate moiety is planar with r.m.s. 0.0033 (1) Å and makes the dihedral angle of 12.33 (7)° with the pyrimidine ring. The conformation of the carboxylate moiety is indicated by the torsion angles of C15–O6–C14–C13 = 179.53 (11)° and C12–C13–C14–O5 = -10.7 (2)°. Intramolecular O4–H1O4···O5 hydrogen bond generate S(6) ring motif (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked bya pair of O—H···O hydrogen bonds (Table 1), forming an inversion dimer. These dimers are stacked into columns along the b axis through weak C—H···O interactions (Table 1). The crystal is solidated and stabilized by O—H···O hydrogen bonds and C—H···O weak interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and applications of pyrimidine derivatives, see: Cheng & Roth (1971); Cox et al. (1968); Eussell (1945); Jain et al. (2006); Shinogi (1959); Tani et al. (1979).

Experimental top

The title compound was synthesized by taking benzyl (1-cyano-1-methylethyl) carbamate (0.10 mole) in xylene and dimethyl acetylene dicarboxylate (0.12 mole) was added. The reaction mixture is heated to 407 K and maintained at the temperature for 10 hrs until the reaction was completed. On cooling, the precipitated product, methyl 2-(1-{[(benzyloxy) carbonyl] amino}-1-methylethyl)-5,6-dihydroxypyrimidine-4-carboxylate, is filtered and washed with hexane. The sample is dried at 313 K for 4–5 hrs. The obtained material is taken in 5 volume of methanol and 0.22 mole of 5% sodium hydroxide in methanol. The mixture was cooled to 288 K and methyl iodide (0.20 mole) was then added and heated to 323 K. After the reaction was over, methanol was distilled off and the product was quenched in water and then filtered to get the title compound. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days, Mp. 391–393 K.

Refinement top

Amide and hydroxy H atoms are located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing columns along the b axis. Hydrogen bonds are shown as dashed lines.
Methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy- 6-methoxypyrimidine-4-carboxylate top
Crystal data top
C18H21N3O6F(000) = 792
Mr = 375.38Dx = 1.355 Mg m3
Monoclinic, P21/cMelting point = 391–393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.5226 (2) ÅCell parameters from 5348 reflections
b = 8.5717 (1) Åθ = 2.5–30.0°
c = 13.0944 (2) ŵ = 0.10 mm1
β = 97.236 (1)°T = 297 K
V = 1839.75 (4) Å3Block, colorless
Z = 40.57 × 0.52 × 0.39 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5348 independent reflections
Radiation source: sealed tube4087 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2322
Tmin = 0.944, Tmax = 0.961k = 812
20111 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.5187P]
where P = (Fo2 + 2Fc2)/3
5348 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H21N3O6V = 1839.75 (4) Å3
Mr = 375.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5226 (2) ŵ = 0.10 mm1
b = 8.5717 (1) ÅT = 297 K
c = 13.0944 (2) Å0.57 × 0.52 × 0.39 mm
β = 97.236 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5348 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4087 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.961Rint = 0.024
20111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.52 e Å3
5348 reflectionsΔρmin = 0.33 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33157 (8)0.66001 (18)0.07370 (11)0.0657 (4)
O20.24087 (8)0.48066 (17)0.11686 (10)0.0576 (3)
O30.06818 (6)0.74259 (11)0.14162 (9)0.0416 (3)
O40.06047 (6)0.56031 (12)0.13886 (9)0.0417 (3)
O50.10852 (6)0.26969 (13)0.11206 (10)0.0473 (3)
O60.01903 (6)0.07581 (11)0.11913 (8)0.0393 (2)
N10.30737 (7)0.45068 (16)0.02407 (11)0.0407 (3)
N20.15729 (7)0.53687 (13)0.11038 (9)0.0355 (3)
N30.10782 (7)0.27843 (13)0.09593 (9)0.0335 (2)
C10.43521 (17)0.8804 (4)0.2532 (3)0.0946 (9)
H1A0.43690.95410.20150.114*
C20.49368 (19)0.8838 (5)0.3419 (3)0.1240 (13)
H2A0.53340.96110.35000.149*
C30.49077 (19)0.7724 (5)0.4147 (3)0.1109 (12)
H3A0.53000.77210.47230.133*
C40.43242 (19)0.6625 (5)0.4054 (2)0.1040 (10)
H4A0.43100.58760.45660.125*
C50.37474 (15)0.6607 (3)0.3200 (2)0.0802 (7)
H5A0.33420.58480.31440.096*
C60.37579 (10)0.7669 (2)0.24422 (15)0.0554 (4)
C70.31165 (14)0.7682 (3)0.15168 (18)0.0690 (6)
H7A0.25930.74020.17270.083*
H7B0.30700.87270.12300.083*
C80.28785 (9)0.5255 (2)0.06047 (12)0.0438 (3)
C90.25579 (8)0.32633 (17)0.07422 (12)0.0402 (3)
C100.16670 (8)0.38177 (15)0.09313 (10)0.0334 (3)
C110.08266 (8)0.59052 (15)0.12577 (10)0.0331 (3)
C120.01324 (8)0.49250 (15)0.12617 (10)0.0319 (3)
C130.03020 (8)0.33494 (15)0.11279 (10)0.0306 (3)
C140.03910 (8)0.22435 (15)0.11428 (10)0.0327 (3)
C150.08544 (9)0.03516 (18)0.11987 (13)0.0428 (3)
H15A0.06880.13420.14430.064*
H15B0.13200.00210.16450.064*
H15C0.09950.04670.05130.064*
C160.28446 (11)0.2973 (3)0.17910 (16)0.0620 (5)
H16A0.27810.39100.21950.093*
H16B0.25240.21540.21410.093*
H16C0.34090.26720.16960.093*
C170.26450 (10)0.1795 (2)0.00690 (18)0.0621 (5)
H17A0.24310.19960.05670.093*
H17B0.32110.15170.00720.093*
H17C0.23480.09530.04240.093*
C180.13886 (10)0.84324 (18)0.13387 (14)0.0459 (4)
H18A0.12150.95000.14120.069*
H18B0.17140.81750.18730.069*
H18C0.17060.82910.06790.069*
H1N10.3337 (13)0.501 (3)0.0634 (16)0.056 (6)*
H1O40.0985 (14)0.492 (3)0.1310 (16)0.061 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0588 (8)0.0660 (9)0.0713 (8)0.0192 (6)0.0041 (6)0.0211 (7)
O20.0530 (7)0.0649 (8)0.0557 (7)0.0042 (6)0.0103 (6)0.0081 (6)
O30.0391 (5)0.0268 (5)0.0573 (6)0.0004 (4)0.0006 (4)0.0011 (4)
O40.0325 (5)0.0345 (5)0.0567 (6)0.0049 (4)0.0008 (4)0.0005 (4)
O50.0312 (5)0.0390 (6)0.0718 (8)0.0009 (4)0.0068 (5)0.0000 (5)
O60.0327 (5)0.0293 (5)0.0552 (6)0.0027 (4)0.0033 (4)0.0006 (4)
N10.0304 (6)0.0433 (7)0.0474 (7)0.0052 (5)0.0014 (5)0.0011 (5)
N20.0333 (5)0.0301 (5)0.0416 (6)0.0014 (4)0.0004 (4)0.0009 (4)
N30.0304 (5)0.0298 (5)0.0394 (6)0.0008 (4)0.0003 (4)0.0007 (4)
C10.0813 (16)0.0911 (19)0.111 (2)0.0374 (15)0.0084 (15)0.0063 (16)
C20.0691 (17)0.151 (3)0.147 (3)0.053 (2)0.0074 (19)0.038 (3)
C30.0686 (16)0.165 (4)0.093 (2)0.002 (2)0.0162 (15)0.040 (2)
C40.089 (2)0.142 (3)0.0788 (17)0.013 (2)0.0018 (14)0.0011 (18)
C50.0657 (13)0.0840 (17)0.0898 (16)0.0073 (12)0.0052 (12)0.0038 (13)
C60.0419 (8)0.0564 (10)0.0666 (11)0.0045 (7)0.0025 (8)0.0181 (9)
C70.0615 (11)0.0586 (11)0.0818 (14)0.0012 (9)0.0102 (10)0.0192 (10)
C80.0332 (7)0.0502 (8)0.0455 (8)0.0006 (6)0.0050 (6)0.0024 (6)
C90.0293 (6)0.0348 (7)0.0553 (8)0.0005 (5)0.0009 (6)0.0013 (6)
C100.0308 (6)0.0302 (6)0.0381 (6)0.0006 (5)0.0001 (5)0.0010 (5)
C110.0362 (6)0.0278 (6)0.0341 (6)0.0007 (5)0.0004 (5)0.0010 (5)
C120.0318 (6)0.0300 (6)0.0324 (6)0.0028 (5)0.0011 (5)0.0024 (5)
C130.0295 (6)0.0296 (6)0.0317 (6)0.0005 (5)0.0002 (4)0.0009 (5)
C140.0319 (6)0.0313 (6)0.0339 (6)0.0003 (5)0.0000 (5)0.0000 (5)
C150.0394 (7)0.0344 (7)0.0539 (8)0.0075 (6)0.0028 (6)0.0019 (6)
C160.0462 (9)0.0700 (12)0.0707 (12)0.0050 (9)0.0103 (8)0.0242 (10)
C170.0386 (8)0.0397 (8)0.1037 (15)0.0030 (7)0.0084 (9)0.0170 (9)
C180.0458 (8)0.0310 (7)0.0596 (9)0.0061 (6)0.0016 (7)0.0005 (6)
Geometric parameters (Å, º) top
O1—C81.360 (2)C4—H4A0.9300
O1—C71.448 (3)C5—C61.349 (3)
O2—C81.200 (2)C5—H5A0.9300
O3—C111.3368 (16)C6—C71.506 (3)
O3—C181.4452 (18)C7—H7A0.9700
O4—C121.3408 (16)C7—H7B0.9700
O4—H1O40.88 (2)C9—C161.529 (2)
O5—C141.2149 (17)C9—C171.533 (2)
O6—C141.3193 (16)C9—C101.5370 (18)
O6—C151.4513 (17)C11—C121.4213 (19)
N1—C81.353 (2)C12—C131.3860 (18)
N1—C91.4672 (19)C13—C141.4847 (18)
N1—H1N10.83 (2)C15—H15A0.9600
N2—C111.3077 (17)C15—H15B0.9600
N2—C101.3542 (17)C15—H15C0.9600
N3—C101.3127 (17)C16—H16A0.9600
N3—C131.3627 (16)C16—H16B0.9600
C1—C61.376 (3)C16—H16C0.9600
C1—C21.414 (5)C17—H17A0.9600
C1—H1A0.9300C17—H17B0.9600
C2—C31.354 (5)C17—H17C0.9600
C2—H2A0.9300C18—H18A0.9600
C3—C41.343 (5)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.375 (4)
C8—O1—C7117.95 (16)C17—C9—C10111.42 (13)
C11—O3—C18116.35 (11)N3—C10—N2126.07 (12)
C12—O4—H1O4110.4 (15)N3—C10—C9119.16 (12)
C14—O6—C15116.01 (11)N2—C10—C9114.70 (12)
C8—N1—C9121.72 (13)N2—C11—O3120.91 (12)
C8—N1—H1N1117.3 (15)N2—C11—C12122.52 (12)
C9—N1—H1N1114.6 (15)O3—C11—C12116.57 (12)
C11—N2—C10117.20 (12)O4—C12—C13127.17 (12)
C10—N3—C13116.34 (11)O4—C12—C11117.66 (12)
C6—C1—C2119.4 (3)C13—C12—C11115.17 (12)
C6—C1—H1A120.3N3—C13—C12122.55 (12)
C2—C1—H1A120.3N3—C13—C14118.93 (11)
C3—C2—C1118.8 (3)C12—C13—C14118.50 (11)
C3—C2—H2A120.6O5—C14—O6123.62 (13)
C1—C2—H2A120.6O5—C14—C13121.63 (12)
C4—C3—C2121.3 (3)O6—C14—C13114.75 (11)
C4—C3—H3A119.3O6—C15—H15A109.5
C2—C3—H3A119.3O6—C15—H15B109.5
C3—C4—C5119.9 (3)H15A—C15—H15B109.5
C3—C4—H4A120.1O6—C15—H15C109.5
C5—C4—H4A120.1H15A—C15—H15C109.5
C6—C5—C4121.3 (3)H15B—C15—H15C109.5
C6—C5—H5A119.4C9—C16—H16A109.5
C4—C5—H5A119.4C9—C16—H16B109.5
C5—C6—C1119.3 (2)H16A—C16—H16B109.5
C5—C6—C7121.61 (19)C9—C16—H16C109.5
C1—C6—C7119.1 (2)H16A—C16—H16C109.5
O1—C7—C6111.30 (17)H16B—C16—H16C109.5
O1—C7—H7A109.4C9—C17—H17A109.5
C6—C7—H7A109.4C9—C17—H17B109.5
O1—C7—H7B109.4H17A—C17—H17B109.5
C6—C7—H7B109.4C9—C17—H17C109.5
H7A—C7—H7B108.0H17A—C17—H17C109.5
O2—C8—N1126.21 (16)H17B—C17—H17C109.5
O2—C8—O1124.59 (16)O3—C18—H18A109.5
N1—C8—O1109.19 (14)O3—C18—H18B109.5
N1—C9—C16106.99 (13)H18A—C18—H18B109.5
N1—C9—C17109.39 (13)O3—C18—H18C109.5
C16—C9—C17111.45 (16)H18A—C18—H18C109.5
N1—C9—C10109.75 (11)H18B—C18—H18C109.5
C16—C9—C10107.73 (12)
C6—C1—C2—C31.6 (5)C17—C9—C10—N330.53 (19)
C1—C2—C3—C41.8 (6)N1—C9—C10—N231.13 (17)
C2—C3—C4—C50.7 (6)C16—C9—C10—N285.01 (16)
C3—C4—C5—C60.6 (5)C17—C9—C10—N2152.45 (14)
C4—C5—C6—C10.8 (4)C10—N2—C11—O3178.86 (12)
C4—C5—C6—C7178.5 (2)C10—N2—C11—C120.8 (2)
C2—C1—C6—C50.3 (4)C18—O3—C11—N23.98 (19)
C2—C1—C6—C7177.4 (3)C18—O3—C11—C12175.74 (12)
C8—O1—C7—C6106.6 (2)N2—C11—C12—O4177.56 (12)
C5—C6—C7—O184.3 (3)O3—C11—C12—O42.16 (18)
C1—C6—C7—O198.0 (3)N2—C11—C12—C132.25 (19)
C9—N1—C8—O218.1 (2)O3—C11—C12—C13178.04 (12)
C9—N1—C8—O1163.27 (13)C10—N3—C13—C120.14 (19)
C7—O1—C8—O29.7 (2)C10—N3—C13—C14178.53 (11)
C7—O1—C8—N1171.67 (15)O4—C12—C13—N3177.02 (12)
C8—N1—C9—C16166.62 (15)C11—C12—C13—N32.76 (19)
C8—N1—C9—C1772.52 (18)O4—C12—C13—C141.4 (2)
C8—N1—C9—C1050.01 (18)C11—C12—C13—C14178.85 (11)
C13—N3—C10—N23.5 (2)C15—O6—C14—O51.1 (2)
C13—N3—C10—C9179.89 (12)C15—O6—C14—C13179.53 (11)
C11—N2—C10—N34.0 (2)N3—C13—C14—O5167.78 (13)
C11—N2—C10—C9179.24 (12)C12—C13—C14—O510.7 (2)
N1—C9—C10—N3151.85 (13)N3—C13—C14—O612.83 (17)
C16—C9—C10—N392.00 (17)C12—C13—C14—O6168.72 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O50.87 (2)1.93 (3)2.6513 (15)139 (2)
O4—H1O4···O2i0.87 (2)2.39 (2)3.0508 (17)132 (2)
C7—H7A···O5i0.972.523.347 (3)143
C15—H15A···O3ii0.962.493.2148 (18)132
C17—H17A···O20.962.543.099 (2)117
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H21N3O6
Mr375.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)16.5226 (2), 8.5717 (1), 13.0944 (2)
β (°) 97.236 (1)
V3)1839.75 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.57 × 0.52 × 0.39
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.944, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
20111, 5348, 4087
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.164, 1.04
No. of reflections5348
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O50.87 (2)1.93 (3)2.6513 (15)139 (2)
O4—H1O4···O2i0.87 (2)2.39 (2)3.0508 (17)132 (2)
C7—H7A···O5i0.972.523.347 (3)143
C15—H15A···O3ii0.962.493.2148 (18)132
C17—H17A···O20.962.543.099 (2)117
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

VS, DJP and BP thank Mangalore University for a research grant. SC thanks the Prince of Songkla University for generous support. The authors thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. C. & Roth, B. (1971). Prog. Med. Chem. 8, 61–117.  CrossRef CAS PubMed Google Scholar
First citationCox, R. A. (1968). Quart. Rev, 22, 499–526.  CrossRef CAS Web of Science Google Scholar
First citationEussell, J. A. (1945). Annu. Rev. Biochem. 14, 309–332.  Google Scholar
First citationJain, K. S., Chitre, T. S., Miniyar, P. B., Kathiravan, M. K., Bendre, V. S., Veer, V. S., Shahane, S. R. & Shishoo, C. J. (2006). Curr. Sci. 90, 793–803.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShinogi (1959). US Patent 2 888 455.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTani, J., Yamada, Y., Oine, T., Ochiai, T., Ishida, R. & Inoue, I. (1979). J. Med. Chem. 22, 95–99.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds