organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2531-o2532

(2E)-2-Benzyl­­idene-5,6-di­meth­oxy­indan-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 September 2010; accepted 6 September 2010; online 11 September 2010)

The mol­ecular structure of the title compound, C18H16O3, is roughly planar; the maximum deviation of the indanone ring system is 0.027 (1) Å and it makes a dihedral angle of 2.69 (3)° with the phenyl ring. The torsion angles between the two meth­oxy groups and the ­indanone ring are −14.67 (11) and −1.11 (12)°. In the crystal, mol­ecules are connected into a ribbon along the a axis via weak inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π and ππ [centroid–centroid distance = 3.7086 (6) Å] inter­actions are also observed.

Related literature

For general background to and the biological activity of chalcone derivatives, see: Boumendjel et al. (2009[Boumendjel, A., Ronot, X. & Boutonnat, J. (2009). Curr. Drug Targets, 10, 363-371.]); D'Archivio et al. (2008[D'Archivio, M., Santangelo, C., Scazzocchio, B., Vari, R., Filesi, C., Masella, R. & Giovannini, C. (2008). Int. J. Mol. Sci. 9, 213-228.]); Dicarlo et al. (1999[Dicarlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]); Echeverria et al. (2009[Echeverria, C., Santibanez, J. S., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). Int. J. Mol. Sci. 10, 221-231.]); Heidenreich et al. (2008[Heidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68-80.]); Katsori & Hadjipavlou-Latina (2009[Katsori, A. M. & Hadjipavlou-Latina, D. (2009). Curr. Med. Chem. 16, 1062-1081.]); Miranda et al. (1999[Miranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., Deinzer, M. L., Barnes, D. W. & Buhler, D. R. (1999). Food Chem. Toxicol. 37, 271-285.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Shah et al. (2008[Shah, A., Khan, A. M., Qureshi, R., Ansari, F. L., Nazar, M. F. & Shah, S. S. (2008). Int. J. Mol. Sci. 9, 1424-1434.]); Syed et al. (2008[Syed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167-176.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O3

  • Mr = 280.31

  • Monoclinic, P 21 /c

  • a = 6.0209 (6) Å

  • b = 14.8550 (14) Å

  • c = 15.2292 (15) Å

  • β = 90.603 (2)°

  • V = 1362.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.44 × 0.29 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.985

  • 31475 measured reflections

  • 6003 independent reflections

  • 4902 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.130

  • S = 1.09

  • 6003 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3i 0.96 2.53 3.4107 (11) 152
C18—H18B⋯O2ii 0.96 2.58 3.5320 (11) 173
C16—H16ACg1iii 0.93 2.99 3.7224 (9) 137
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have been reported to possess antiinflammatory, antimicrobial, antioxidant and anticancer properties (Echeverria et al., 2009; Nowakowska, 2007; Miranda et al., 1999; Shah et al., 2008; Boumendjel et al., 2009; Katsori & Hadjipavlou-Latina, 2009). Chalcones are one of the major classes of natural products with widespread distribution in spices, tea, beer, fruits and vegetables. They have been recently subjects of great interest for their pharmacological activities (Dicarlo et al., 1999). Prostate cancer is one of the most commonly diagnosed cancers in men and the second leading cause of cancer deaths in the European Union and United States of America (Heidenreich et al., 2008). Many antitumor drugs have been developed for prostate cancer patients, but their intolerable systemic toxicity often limits their clinical use. Chemoprevention is one of the most promising approaches in prostate cancer research, in which natural or synthetic agents are used to prevent this malignant disease (Heidenreich et al., 2008; Syed et al., 2008; D'Archivio et al., 2008).

The molecular structure of the title compound is essentially coplanar (Fig. 1). The maximum deviation of the indanone group is 0.027 (1) Å and it makes dihedral angle of 2.69 (3)° with the phenyl ring [C11–C16]. The torsion angles of the two methoxy groups are [C17–O2–C4–C5] 165.99 (7) and [C18–O3–C5–C4] 179.19 (7)°.

In the crystal structure, intermolecular C17—H17A···O3 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). These dimers are interconnected into ribbons propagating along the [100] direction via intermolecular C18—H18B···O2 hydrogen bonds (Fig. 2, Table 1). Weak intermolecular C—H···π (Table 1) and ππ interactions are also observed. [Cg1···Cg2iv of 3.7086 (6) Å; (iv) 1 - x, 1 - y, -z. Cg1 and Cg2 are the centroids of C2–C7 and C11–C16 benzene ring.]

Related literature top

For general background to and the biological activity of chalcone derivatives, see: Boumendjel et al. (2009); D'Archivio et al. (2008); Dicarlo et al. (1999); Echeverria et al. (2009); Heidenreich et al. (2008); Katsori & Hadjipavlou-Latina (2009); Miranda et al. (1999); Nowakowska (2007); Shah et al. (2008); Syed et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5,6-dimethoxyindan-1-one (0.001 mmol) and benzaldehyde (0.001 mmol) were dissolved in methanol (10 ml) and 30% sodium hydroxide solution (5 ml) was added and stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as light yellow crystals.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model. A rotating-group model were applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, showing chains along the [100] direction. Intermolecular hydrogen bonds are shown as dashed lines.
(2E)-2-Benzylidene-5,6-dimethoxyindan-1-one top
Crystal data top
C18H16O3F(000) = 592
Mr = 280.31Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7296 reflections
a = 6.0209 (6) Åθ = 2.7–34.9°
b = 14.8550 (14) ŵ = 0.09 mm1
c = 15.2292 (15) ÅT = 100 K
β = 90.603 (2)°Yellow, colourless
V = 1362.0 (2) Å30.44 × 0.29 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6003 independent reflections
Radiation source: fine-focus sealed tube4902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.960, Tmax = 0.985k = 2323
31475 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2363P]
where P = (Fo2 + 2Fc2)/3
6003 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C18H16O3V = 1362.0 (2) Å3
Mr = 280.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0209 (6) ŵ = 0.09 mm1
b = 14.8550 (14) ÅT = 100 K
c = 15.2292 (15) Å0.44 × 0.29 × 0.16 mm
β = 90.603 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4902 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.048
31475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.60 e Å3
6003 reflectionsΔρmin = 0.58 e Å3
192 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07043 (10)0.71482 (4)0.09037 (4)0.01685 (13)
O20.07512 (10)0.55593 (4)0.41523 (4)0.01527 (12)
O30.42675 (10)0.46101 (4)0.40716 (4)0.01623 (13)
C10.22764 (13)0.66575 (5)0.11035 (5)0.01189 (13)
C20.26214 (13)0.61731 (5)0.19344 (5)0.01122 (13)
C30.12486 (13)0.61613 (5)0.26768 (5)0.01208 (13)
H3A0.00550.64970.26890.014*
C40.18842 (13)0.56395 (5)0.33862 (5)0.01188 (13)
C50.38768 (13)0.51154 (5)0.33496 (5)0.01213 (13)
C60.52425 (13)0.51522 (5)0.26166 (5)0.01263 (14)
H6A0.65610.48270.26020.015*
C70.45911 (12)0.56873 (5)0.19043 (5)0.01121 (13)
C80.57760 (13)0.58179 (5)0.10412 (5)0.01231 (13)
H8A0.59660.52490.07380.015*
H8B0.72190.60950.11310.015*
C90.42250 (13)0.64368 (5)0.05349 (5)0.01186 (13)
C100.43407 (13)0.67809 (5)0.02828 (5)0.01274 (14)
H10A0.31540.71500.04410.015*
C110.60191 (13)0.66724 (5)0.09638 (5)0.01229 (13)
C120.79718 (14)0.61621 (6)0.08618 (5)0.01469 (14)
H12A0.82590.58680.03340.018*
C130.94801 (14)0.60945 (6)0.15463 (6)0.01690 (15)
H13A1.07600.57510.14720.020*
C140.90917 (15)0.65353 (6)0.23413 (6)0.01682 (15)
H14A1.01060.64870.27950.020*
C150.71743 (15)0.70489 (6)0.24506 (6)0.01576 (15)
H15A0.69100.73490.29770.019*
C160.56526 (14)0.71135 (5)0.17716 (5)0.01416 (14)
H16A0.43700.74540.18530.017*
C170.09525 (14)0.62140 (6)0.43137 (6)0.01619 (15)
H17A0.15450.61220.48900.024*
H17B0.21180.61490.38830.024*
H17C0.03330.68080.42760.024*
C180.62128 (14)0.40534 (6)0.40883 (6)0.01640 (15)
H18A0.62350.37010.46170.025*
H18B0.75140.44260.40710.025*
H18C0.61920.36600.35880.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0151 (3)0.0202 (3)0.0153 (3)0.0057 (2)0.0018 (2)0.0026 (2)
O20.0144 (3)0.0191 (3)0.0123 (3)0.0035 (2)0.0052 (2)0.0029 (2)
O30.0157 (3)0.0197 (3)0.0133 (3)0.0048 (2)0.0024 (2)0.0056 (2)
C10.0121 (3)0.0125 (3)0.0111 (3)0.0000 (2)0.0014 (2)0.0003 (2)
C20.0117 (3)0.0116 (3)0.0104 (3)0.0001 (2)0.0013 (2)0.0003 (2)
C30.0116 (3)0.0128 (3)0.0119 (3)0.0004 (2)0.0017 (2)0.0001 (2)
C40.0109 (3)0.0137 (3)0.0111 (3)0.0003 (2)0.0024 (2)0.0000 (2)
C50.0122 (3)0.0126 (3)0.0116 (3)0.0001 (2)0.0005 (2)0.0014 (2)
C60.0116 (3)0.0143 (3)0.0120 (3)0.0013 (2)0.0012 (2)0.0009 (2)
C70.0112 (3)0.0114 (3)0.0110 (3)0.0005 (2)0.0013 (2)0.0001 (2)
C80.0118 (3)0.0140 (3)0.0111 (3)0.0013 (2)0.0021 (2)0.0007 (2)
C90.0118 (3)0.0124 (3)0.0115 (3)0.0005 (2)0.0019 (2)0.0000 (2)
C100.0134 (3)0.0130 (3)0.0118 (3)0.0010 (2)0.0015 (2)0.0003 (2)
C110.0136 (3)0.0120 (3)0.0113 (3)0.0004 (2)0.0015 (2)0.0002 (2)
C120.0143 (3)0.0165 (3)0.0133 (3)0.0018 (3)0.0019 (3)0.0014 (3)
C130.0148 (3)0.0193 (4)0.0167 (4)0.0021 (3)0.0038 (3)0.0005 (3)
C140.0175 (4)0.0185 (4)0.0146 (3)0.0029 (3)0.0057 (3)0.0015 (3)
C150.0186 (4)0.0164 (3)0.0123 (3)0.0030 (3)0.0024 (3)0.0015 (3)
C160.0154 (3)0.0145 (3)0.0126 (3)0.0003 (2)0.0012 (3)0.0013 (2)
C170.0141 (3)0.0189 (4)0.0156 (3)0.0024 (3)0.0043 (3)0.0007 (3)
C180.0153 (3)0.0169 (3)0.0171 (4)0.0032 (3)0.0010 (3)0.0032 (3)
Geometric parameters (Å, º) top
O1—C11.2303 (10)C10—C111.4645 (11)
O2—C41.3628 (10)C10—H10A0.9300
O2—C171.4366 (10)C11—C121.4061 (11)
O3—C51.3499 (10)C11—C161.4092 (11)
O3—C181.4338 (10)C12—C131.3933 (12)
C1—C21.4687 (11)C12—H12A0.9300
C1—C91.5017 (11)C13—C141.3941 (12)
C2—C71.3894 (11)C13—H13A0.9300
C2—C31.4076 (11)C14—C151.3923 (13)
C3—C41.3805 (11)C14—H14A0.9300
C3—H3A0.9300C15—C161.3920 (12)
C4—C51.4318 (11)C15—H15A0.9300
C5—C61.3945 (11)C16—H16A0.9300
C6—C71.3977 (11)C17—H17A0.9600
C6—H6A0.9300C17—H17B0.9600
C7—C81.5146 (11)C17—H17C0.9600
C8—C91.5154 (11)C18—H18A0.9600
C8—H8A0.9700C18—H18B0.9600
C8—H8B0.9700C18—H18C0.9600
C9—C101.3487 (11)
C4—O2—C17116.88 (6)C9—C10—H10A114.5
C5—O3—C18118.07 (7)C11—C10—H10A114.5
O1—C1—C2127.21 (7)C12—C11—C16118.04 (7)
O1—C1—C9126.20 (7)C12—C11—C10124.30 (7)
C2—C1—C9106.59 (6)C16—C11—C10117.65 (7)
C7—C2—C3121.92 (7)C13—C12—C11120.47 (8)
C7—C2—C1109.82 (7)C13—C12—H12A119.8
C3—C2—C1128.26 (7)C11—C12—H12A119.8
C4—C3—C2118.38 (7)C12—C13—C14120.74 (8)
C4—C3—H3A120.8C12—C13—H13A119.6
C2—C3—H3A120.8C14—C13—H13A119.6
O2—C4—C3125.58 (7)C15—C14—C13119.50 (8)
O2—C4—C5114.40 (7)C15—C14—H14A120.2
C3—C4—C5120.02 (7)C13—C14—H14A120.2
O3—C5—C6125.08 (7)C16—C15—C14120.02 (8)
O3—C5—C4114.17 (7)C16—C15—H15A120.0
C6—C5—C4120.75 (7)C14—C15—H15A120.0
C5—C6—C7118.72 (7)C15—C16—C11121.21 (8)
C5—C6—H6A120.6C15—C16—H16A119.4
C7—C6—H6A120.6C11—C16—H16A119.4
C2—C7—C6120.16 (7)O2—C17—H17A109.5
C2—C7—C8111.85 (7)O2—C17—H17B109.5
C6—C7—C8127.99 (7)H17A—C17—H17B109.5
C7—C8—C9103.06 (6)O2—C17—H17C109.5
C7—C8—H8A111.2H17A—C17—H17C109.5
C9—C8—H8A111.2H17B—C17—H17C109.5
C7—C8—H8B111.2O3—C18—H18A109.5
C9—C8—H8B111.2O3—C18—H18B109.5
H8A—C8—H8B109.1H18A—C18—H18B109.5
C10—C9—C1119.86 (7)O3—C18—H18C109.5
C10—C9—C8131.47 (7)H18A—C18—H18C109.5
C1—C9—C8108.67 (6)H18B—C18—H18C109.5
C9—C10—C11130.91 (7)
O1—C1—C2—C7179.73 (8)C5—C6—C7—C20.24 (11)
C9—C1—C2—C70.12 (8)C5—C6—C7—C8178.92 (7)
O1—C1—C2—C30.09 (13)C2—C7—C8—C91.30 (8)
C9—C1—C2—C3179.76 (7)C6—C7—C8—C9177.91 (8)
C7—C2—C3—C40.86 (11)O1—C1—C9—C100.86 (13)
C1—C2—C3—C4178.74 (7)C2—C1—C9—C10179.00 (7)
C17—O2—C4—C314.67 (11)O1—C1—C9—C8179.44 (8)
C17—O2—C4—C5165.99 (7)C2—C1—C9—C80.71 (8)
C2—C3—C4—O2179.62 (7)C7—C8—C9—C10178.48 (8)
C2—C3—C4—C51.07 (11)C7—C8—C9—C11.18 (8)
C18—O3—C5—C61.11 (12)C1—C9—C10—C11179.66 (8)
C18—O3—C5—C4179.19 (7)C8—C9—C10—C110.03 (15)
O2—C4—C5—O31.72 (10)C9—C10—C11—C121.40 (14)
C3—C4—C5—O3177.66 (7)C9—C10—C11—C16178.97 (8)
O2—C4—C5—C6178.00 (7)C16—C11—C12—C130.44 (12)
C3—C4—C5—C62.62 (12)C10—C11—C12—C13179.93 (8)
O3—C5—C6—C7178.15 (7)C11—C12—C13—C140.46 (13)
C4—C5—C6—C72.16 (12)C12—C13—C14—C150.04 (13)
C3—C2—C7—C61.31 (11)C13—C14—C15—C160.54 (13)
C1—C2—C7—C6178.36 (7)C14—C15—C16—C110.55 (12)
C3—C2—C7—C8179.41 (7)C12—C11—C16—C150.06 (12)
C1—C2—C7—C80.92 (9)C10—C11—C16—C15179.60 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.962.533.4107 (11)152
C18—H18B···O2ii0.962.583.5320 (11)173
C16—H16A···Cg1iii0.932.993.7224 (9)137
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC18H16O3
Mr280.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.0209 (6), 14.8550 (14), 15.2292 (15)
β (°) 90.603 (2)
V3)1362.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.29 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
31475, 6003, 4902
Rint0.048
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.09
No. of reflections6003
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O3i0.962.533.4107 (11)152
C18—H18B···O2ii0.962.583.5320 (11)173
C16—H16A···Cg1iii0.932.993.7224 (9)137
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors wish to express their thanks to Universiti Sains Malysia (USM) for providing research facilities. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160 and CSY thanks USM for the award of a USM Fellowship.

References

First citationBoumendjel, A., Ronot, X. & Boutonnat, J. (2009). Curr. Drug Targets, 10, 363–371.  Web of Science PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationD'Archivio, M., Santangelo, C., Scazzocchio, B., Vari, R., Filesi, C., Masella, R. & Giovannini, C. (2008). Int. J. Mol. Sci. 9, 213–228.  Web of Science PubMed Google Scholar
First citationDicarlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science PubMed CAS Google Scholar
First citationEcheverria, C., Santibanez, J. S., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). Int. J. Mol. Sci. 10, 221–231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeidenreich, A., Aus, G., Bolla, M., Joniau, S., Matveev, V. B., Schmid, H. P. & Zattoni, F. (2008). Eur. Urol. 53, 68–80.  Web of Science CrossRef PubMed Google Scholar
First citationKatsori, A. M. & Hadjipavlou-Latina, D. (2009). Curr. Med. Chem. 16, 1062–1081.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiranda, C. L., Stevens, J. F., Helmrich, A., Henderson, M. C., Rodriguez, R. J., Yang, Y. H., Deinzer, M. L., Barnes, D. W. & Buhler, D. R. (1999). Food Chem. Toxicol. 37, 271–285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShah, A., Khan, A. M., Qureshi, R., Ansari, F. L., Nazar, M. F. & Shah, S. S. (2008). Int. J. Mol. Sci. 9, 1424–1434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed, D. N., Suh, Y., Afag, F. & Mukhtar, H. (2008). Cancer Lett. 265, 167–176.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2531-o2532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds