organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 2-carb­­oxy­benzoate–benzene-1,2-dicarb­­oxy­lic acid (3/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 September 2010; accepted 7 September 2010; online 11 September 2010)

The asymmetric unit of the title compound, 3C5H6ClN2+·3C8H5O4·C8H6O4, contains three independent 2-amino-5-chloro­pyridinium cations, three independent hydrogen phthal­ate anions and one phthalic acid mol­ecule. In the crystal structure, there are two kinds of supra­molecular tapes. One is formed by two independent cations with two anions through N—H⋯O and C—H⋯O hydrogen bonds. Another one is formed by the other cation and anion, and the phthalic acid mol­ecule via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. These two tapes are connected by an O—H⋯O hydrogen bond, forming a double-tape structure.

Related literature

For details of hydrogen bonding, see: Jeffery (1997[Jeffery, J. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]). For details of structures incorporating phthalic acid, see: Dale et al. (2004[Dale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207-214.]); Ballabh et al. (2005[Ballabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1548-1553.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 3C5H6ClN2+·3C8H5O4·C8H6O4

  • Mr = 1050.19

  • Triclinic, [P \overline 1]

  • a = 9.8522 (2) Å

  • b = 14.0242 (2) Å

  • c = 17.4312 (3) Å

  • α = 68.920 (1)°

  • β = 87.507 (1)°

  • γ = 83.906 (1)°

  • V = 2234.54 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.49 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.940

  • 63061 measured reflections

  • 12966 independent reflections

  • 11359 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.03

  • 12966 reflections

  • 696 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2C—H2C⋯O3C 0.82 1.58 2.4004 (13) 177
O2A—H1OA⋯O3A 0.86 1.55 2.4123 (13) 177
O2B—H1OB⋯O3B 0.89 1.52 2.4126 (14) 178
O2X—H1OX⋯O4C 0.88 (2) 1.76 (2) 2.6091 (12) 163 (2)
O4X—H2OX⋯O1Ai 0.83 (2) 1.86 (2) 2.6880 (13) 177 (2)
N2A—H2NA⋯O1Bii 0.895 (18) 2.018 (18) 2.9095 (14) 173.4 (19)
N1B—H1NB⋯O4Aiii 0.92 (2) 1.69 (2) 2.5938 (14) 169 (2)
N2B—H2NB⋯O3Aiii 0.87 (2) 2.12 (2) 2.9570 (14) 161.8 (17)
N1C—H1NC⋯O4B 0.94 (2) 1.69 (2) 2.6169 (16) 168 (2)
N2C—H3NC⋯O3B 0.83 (2) 2.11 (2) 2.9279 (15) 168.4 (19)
C4A—H4AA⋯O2Bii 0.93 2.26 3.1614 (14) 164
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen bonding is one of the key interactions for molecular assembly and molecular recognition (Jeffery, 1997). In nature, biopolymers such as nucleic acids and polypeptides form supramolecular structures through hydrogen bonding of which the dynamic nature of the interaction contributes to chemical and biological molecular processes. Phthalic acid forms hydrogen phthalate salts with various organic compounds. Hydrogen phthalates also form supramolecular assemblies, such as extended chains, ribbons and three-dimensional networks (Dale et al., 2004; Ballabh et al., 2005). In this paper, the hydrogen-bonding patterns of tris(2-amino-5-chloropyridinium hydrogen phthalate) phthalic acid, (I), are discussed.

The asymmetric unit of the title compound consists of three crystallographically independent 2-amino-5-chloropyridinium cations (A, B & C), three hydrogen phthalate anions (A, B & C) and one phthalic acid molecule (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.008 (1) Å for atom C4A (molecule A), 0.019 (1) Å for atom Cl1B (molecule B) and 0.028 (1) Å for atom N2C (molecule C).

In the crystal structure, there are two kinds of supramolecular tapes. One is formed by the cations A and B with the anions B and C, through N—H···O and C—H···O hydrogen bonds (Fig. 2). The another one is formed by the cation B, the anion A and the phthalic acid molecule via N—H···O, O—H···O and C—H···O hydrogen bonds (Fig. 3). Furthermore, these two tapes are connected by an O—H···O hydrogen bond, forming a double tape structure (Fig. 4). There is an intramolecular O—H···O hydrogen bond in the hydrogen phthalate anions, which generates an S(6) (Bernstein et al., 1995) ring motif.

Related literature top

For details of hydrogen bonding, see: Jeffery (1997). For details of phthalic acid, see: Dale et al. (2004); Ballabh et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (65 mg, Aldrich) and phthalic acid (83 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow coloured crystals of the title compound appeared after a few days.

Refinement top

Atoms H1OX, H2OX, H1NA, H2NA, H3NA, H1NB, H2NB, H3NB, H1NC, H2NC and H3NC were located from a difference Fourier map and were refined freely [N—H = 0.83 (2)–0.92 (2) Å and O—H =0.83 (2)–0.88 (2) Å]. The remaining O-bound H atoms were also located in a difference Fourier map. They were treated as riding and the isotropic displacement parameters were refined. The C-bound H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of supramolecular tape formed by cations (A & B) with the anions (B & C) through N—H···O and C—H···O hydrogen bonds.
[Figure 3] Fig. 3. A view of supramolecular tape formed by cation B, the anion A and the phthalic acid molecule via N—H···O, O—H···O and C—H···O hydrogen bonds.
[Figure 4] Fig. 4. Hydrogen bonding patterns in (I).
2-Amino-5-chloropyridinium 2-carboxybenzoate–benzene-1,2-dicarboxylic acid (3/1) top
Crystal data top
3C5H6ClN2+·3C8H5O4·C8H6O4Z = 2
Mr = 1050.19F(000) = 1084
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8522 (2) ÅCell parameters from 9964 reflections
b = 14.0242 (2) Åθ = 2.4–36.1°
c = 17.4312 (3) ŵ = 0.29 mm1
α = 68.920 (1)°T = 100 K
β = 87.507 (1)°Block, yellow
γ = 83.906 (1)°0.49 × 0.22 × 0.22 mm
V = 2234.54 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12966 independent reflections
Radiation source: fine-focus sealed tube11359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.870, Tmax = 0.940k = 1919
63061 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.8733P]
where P = (Fo2 + 2Fc2)/3
12966 reflections(Δ/σ)max = 0.001
696 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
3C5H6ClN2+·3C8H5O4·C8H6O4γ = 83.906 (1)°
Mr = 1050.19V = 2234.54 (7) Å3
Triclinic, P1Z = 2
a = 9.8522 (2) ÅMo Kα radiation
b = 14.0242 (2) ŵ = 0.29 mm1
c = 17.4312 (3) ÅT = 100 K
α = 68.920 (1)°0.49 × 0.22 × 0.22 mm
β = 87.507 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12966 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
11359 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.940Rint = 0.032
63061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
12966 reflectionsΔρmin = 0.35 e Å3
696 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.45378 (3)0.01683 (2)0.401827 (17)0.02226 (7)
N1A0.42388 (10)0.14773 (7)0.26255 (6)0.01629 (18)
N2A0.37929 (11)0.11497 (8)0.12618 (6)0.02002 (19)
C1A0.44162 (11)0.11900 (9)0.32770 (7)0.0169 (2)
H1AA0.46040.16870.37930.020*
C2A0.43208 (11)0.01796 (9)0.31773 (7)0.0166 (2)
C3A0.40361 (12)0.05652 (9)0.23923 (7)0.0186 (2)
H3AA0.39620.12600.23170.022*
C4A0.38690 (12)0.02632 (9)0.17425 (7)0.0186 (2)
H4AA0.36940.07520.12220.022*
C5A0.39631 (11)0.07983 (9)0.18631 (7)0.0160 (2)
O1A0.10557 (9)0.89607 (6)0.30990 (5)0.02235 (18)
O2A0.12677 (9)0.75913 (7)0.27580 (5)0.02175 (17)
H1OA0.12410.69370.29900.074 (8)*
O3A0.11516 (9)0.57696 (6)0.34407 (5)0.02090 (17)
O4A0.13550 (9)0.45909 (6)0.46883 (5)0.01945 (16)
C6A0.15173 (11)0.73752 (8)0.42026 (7)0.01448 (19)
C7A0.15713 (11)0.62917 (8)0.45923 (7)0.01426 (19)
C8A0.18655 (12)0.58619 (9)0.54319 (7)0.0173 (2)
H8AA0.19000.51530.56910.021*
C9A0.21081 (12)0.64477 (9)0.58947 (7)0.0188 (2)
H9AA0.23090.61360.64510.023*
C10A0.20461 (11)0.75089 (9)0.55149 (7)0.0181 (2)
H10C0.22030.79160.58160.022*
C11A0.17475 (11)0.79561 (8)0.46828 (7)0.0166 (2)
H11C0.16990.86670.44350.020*
C12A0.12482 (11)0.80204 (9)0.33027 (7)0.0169 (2)
C13A0.13380 (11)0.55001 (8)0.42119 (7)0.0159 (2)
Cl1B0.83721 (3)0.98373 (2)0.460859 (17)0.02238 (7)
N1B0.87824 (10)0.68696 (7)0.58805 (6)0.01643 (18)
N2B0.92305 (11)0.58396 (8)0.72337 (6)0.0204 (2)
C1B0.85787 (11)0.77934 (9)0.52648 (7)0.0168 (2)
H1BA0.84190.78240.47340.020*
C2B0.86063 (11)0.86783 (8)0.54165 (7)0.0167 (2)
C3B0.88534 (12)0.86258 (9)0.62235 (7)0.0180 (2)
H3BA0.88760.92230.63370.022*
C4B0.90591 (12)0.76850 (9)0.68346 (7)0.0180 (2)
H4BA0.92240.76410.73680.022*
C5B0.90231 (11)0.67760 (9)0.66603 (7)0.0163 (2)
O1B0.69143 (10)0.98082 (7)0.04092 (6)0.02612 (19)
O2B0.65261 (11)0.84422 (7)0.01512 (5)0.02608 (19)
H1OB0.66050.77600.03940.063 (7)*
O3B0.66767 (10)0.65998 (7)0.08159 (5)0.02202 (17)
O4B0.74305 (12)0.54133 (7)0.19770 (6)0.0299 (2)
C6B0.72617 (11)0.82179 (8)0.15300 (7)0.0158 (2)
C7B0.73424 (11)0.71332 (8)0.19160 (7)0.0161 (2)
C8B0.76723 (13)0.67044 (9)0.27519 (7)0.0208 (2)
H8BA0.77310.59940.30090.025*
C9B0.79150 (13)0.72924 (10)0.32115 (8)0.0229 (2)
H9BA0.81150.69820.37680.027*
C10B0.78571 (13)0.83507 (9)0.28324 (8)0.0218 (2)
H10D0.80290.87570.31310.026*
C11B0.75399 (12)0.87967 (9)0.20027 (7)0.0189 (2)
H11D0.75110.95060.17510.023*
C12B0.68907 (12)0.88739 (9)0.06458 (7)0.0191 (2)
C13B0.71365 (12)0.63318 (9)0.15401 (7)0.0184 (2)
Cl1C0.74116 (3)0.09871 (2)0.262958 (19)0.02519 (7)
N1C0.71246 (10)0.39640 (8)0.14020 (6)0.01702 (18)
N2C0.66401 (12)0.50347 (8)0.00715 (6)0.0212 (2)
C1C0.73257 (12)0.30282 (9)0.20019 (7)0.0179 (2)
H1CA0.75860.29750.25230.022*
C2C0.71499 (12)0.21651 (9)0.18475 (7)0.0179 (2)
C3C0.67473 (12)0.22535 (9)0.10550 (7)0.0202 (2)
H3CA0.66100.16710.09430.024*
C4C0.65611 (12)0.32028 (9)0.04550 (7)0.0198 (2)
H4CA0.62960.32690.00690.024*
C5C0.67722 (11)0.40911 (9)0.06294 (7)0.0167 (2)
O1C0.43733 (9)0.64971 (6)0.32698 (5)0.02123 (17)
O2C0.40372 (9)0.63362 (6)0.20871 (5)0.02070 (17)
H2C0.40070.58750.19050.031*
O3C0.38734 (10)0.49905 (7)0.15591 (5)0.02425 (18)
O4C0.38122 (9)0.33117 (7)0.19965 (5)0.02149 (17)
C60.43344 (10)0.47894 (8)0.33267 (7)0.01398 (19)
C7C0.42704 (11)0.39947 (8)0.30070 (7)0.01478 (19)
C8C0.44379 (11)0.29758 (9)0.35547 (7)0.0178 (2)
H8CA0.44290.24490.33490.021*
C9C0.46168 (12)0.27235 (9)0.43908 (7)0.0197 (2)
H9CA0.47300.20390.47380.024*
C10C0.46265 (12)0.34990 (9)0.47055 (7)0.0203 (2)
H10B0.47160.33410.52680.024*
C11C0.45017 (11)0.45127 (9)0.41744 (7)0.0173 (2)
H11B0.45300.50280.43900.021*
C12C0.42405 (11)0.59425 (8)0.28679 (7)0.01572 (19)
C13C0.39680 (11)0.41033 (9)0.21310 (7)0.0163 (2)
O1X0.04664 (9)0.38078 (6)0.11892 (5)0.02047 (17)
O2X0.23396 (8)0.28591 (6)0.09895 (5)0.01790 (16)
O3X0.06412 (10)0.13221 (6)0.19699 (5)0.02195 (17)
O4X0.05428 (10)0.00430 (6)0.15024 (6)0.02134 (17)
C6X0.03190 (11)0.27963 (8)0.03490 (7)0.01521 (19)
C7X0.01326 (11)0.17532 (8)0.05616 (7)0.01504 (19)
C8X0.04564 (11)0.14237 (9)0.00028 (7)0.0180 (2)
H8XA0.05900.07350.01380.022*
C9X0.08435 (12)0.21229 (10)0.07743 (7)0.0216 (2)
H9XA0.12050.18980.11560.026*
C10X0.06893 (13)0.31588 (10)0.09748 (7)0.0222 (2)
H10A0.09700.36270.14860.027*
C11X0.01162 (12)0.34997 (9)0.04143 (7)0.0191 (2)
H11A0.00240.41940.05490.023*
C12X0.10282 (11)0.31957 (8)0.09010 (6)0.01542 (19)
C13X0.04723 (11)0.10283 (8)0.14117 (7)0.01508 (19)
H1OX0.2711 (19)0.3112 (15)0.1314 (12)0.041 (5)*
H2OX0.070 (2)0.0309 (16)0.1993 (13)0.041 (5)*
H1NA0.4293 (17)0.2157 (14)0.2731 (11)0.030 (4)*
H2NA0.3604 (17)0.0697 (14)0.0756 (11)0.032 (4)*
H3NA0.3800 (17)0.1818 (14)0.1364 (11)0.030 (4)*
H1NB0.880 (2)0.6302 (16)0.5737 (13)0.048 (6)*
H2NB0.9243 (18)0.5284 (15)0.7124 (11)0.033 (4)*
H3NB0.9351 (18)0.5837 (14)0.7723 (12)0.030 (4)*
H1NC0.7207 (19)0.4549 (15)0.1536 (13)0.044 (5)*
H2NC0.6456 (18)0.5087 (14)0.0434 (12)0.034 (5)*
H3NC0.6673 (18)0.5536 (15)0.0214 (12)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.03296 (15)0.01957 (13)0.01586 (12)0.00135 (11)0.00293 (10)0.00829 (10)
N1A0.0208 (4)0.0126 (4)0.0151 (4)0.0025 (3)0.0013 (3)0.0041 (3)
N2A0.0270 (5)0.0179 (5)0.0163 (5)0.0040 (4)0.0025 (4)0.0067 (4)
C1A0.0200 (5)0.0158 (5)0.0134 (5)0.0023 (4)0.0008 (4)0.0033 (4)
C2A0.0199 (5)0.0166 (5)0.0141 (5)0.0024 (4)0.0013 (4)0.0061 (4)
C3A0.0238 (5)0.0128 (5)0.0181 (5)0.0014 (4)0.0022 (4)0.0042 (4)
C4A0.0230 (5)0.0155 (5)0.0145 (5)0.0020 (4)0.0027 (4)0.0016 (4)
C5A0.0155 (4)0.0170 (5)0.0153 (5)0.0027 (4)0.0002 (4)0.0052 (4)
O1A0.0317 (4)0.0138 (4)0.0201 (4)0.0019 (3)0.0044 (3)0.0039 (3)
O2A0.0339 (5)0.0161 (4)0.0150 (4)0.0027 (3)0.0025 (3)0.0050 (3)
O3A0.0321 (4)0.0161 (4)0.0168 (4)0.0027 (3)0.0044 (3)0.0081 (3)
O4A0.0282 (4)0.0137 (4)0.0181 (4)0.0040 (3)0.0005 (3)0.0072 (3)
C6A0.0151 (4)0.0134 (5)0.0149 (5)0.0024 (4)0.0002 (4)0.0048 (4)
C7A0.0163 (4)0.0130 (5)0.0151 (5)0.0024 (4)0.0000 (4)0.0068 (4)
C8A0.0223 (5)0.0143 (5)0.0150 (5)0.0025 (4)0.0003 (4)0.0046 (4)
C9A0.0232 (5)0.0193 (5)0.0148 (5)0.0025 (4)0.0019 (4)0.0071 (4)
C10A0.0208 (5)0.0182 (5)0.0189 (5)0.0031 (4)0.0008 (4)0.0107 (4)
C11A0.0185 (5)0.0137 (5)0.0185 (5)0.0033 (4)0.0003 (4)0.0065 (4)
C12A0.0173 (5)0.0163 (5)0.0166 (5)0.0030 (4)0.0010 (4)0.0049 (4)
C13A0.0174 (5)0.0152 (5)0.0170 (5)0.0017 (4)0.0003 (4)0.0082 (4)
Cl1B0.03245 (15)0.01553 (12)0.01737 (13)0.00288 (10)0.00214 (10)0.00333 (10)
N1B0.0214 (4)0.0147 (4)0.0153 (4)0.0026 (3)0.0000 (3)0.0077 (4)
N2B0.0317 (5)0.0145 (4)0.0157 (5)0.0021 (4)0.0024 (4)0.0062 (4)
C1B0.0191 (5)0.0180 (5)0.0148 (5)0.0024 (4)0.0006 (4)0.0075 (4)
C2B0.0203 (5)0.0145 (5)0.0150 (5)0.0022 (4)0.0002 (4)0.0048 (4)
C3B0.0232 (5)0.0161 (5)0.0180 (5)0.0039 (4)0.0011 (4)0.0098 (4)
C4B0.0244 (5)0.0171 (5)0.0154 (5)0.0039 (4)0.0003 (4)0.0087 (4)
C5B0.0187 (5)0.0164 (5)0.0158 (5)0.0026 (4)0.0009 (4)0.0080 (4)
O1B0.0377 (5)0.0162 (4)0.0208 (4)0.0039 (4)0.0039 (4)0.0015 (3)
O2B0.0468 (6)0.0167 (4)0.0135 (4)0.0012 (4)0.0051 (4)0.0046 (3)
O3B0.0350 (5)0.0188 (4)0.0133 (4)0.0041 (3)0.0026 (3)0.0063 (3)
O4B0.0557 (6)0.0146 (4)0.0204 (4)0.0036 (4)0.0118 (4)0.0062 (3)
C6B0.0170 (5)0.0144 (5)0.0149 (5)0.0021 (4)0.0003 (4)0.0039 (4)
C7B0.0200 (5)0.0150 (5)0.0143 (5)0.0033 (4)0.0008 (4)0.0060 (4)
C8B0.0311 (6)0.0152 (5)0.0158 (5)0.0027 (4)0.0046 (4)0.0047 (4)
C9B0.0322 (6)0.0208 (6)0.0166 (5)0.0015 (5)0.0072 (4)0.0073 (4)
C10B0.0262 (6)0.0197 (5)0.0224 (6)0.0018 (4)0.0055 (4)0.0107 (5)
C11B0.0218 (5)0.0143 (5)0.0207 (5)0.0023 (4)0.0018 (4)0.0062 (4)
C12B0.0231 (5)0.0172 (5)0.0153 (5)0.0013 (4)0.0007 (4)0.0038 (4)
C13B0.0255 (5)0.0163 (5)0.0140 (5)0.0043 (4)0.0005 (4)0.0055 (4)
Cl1C0.03599 (16)0.01527 (13)0.02110 (14)0.00401 (11)0.00132 (11)0.00209 (10)
N1C0.0234 (5)0.0146 (4)0.0141 (4)0.0031 (3)0.0017 (3)0.0058 (3)
N2C0.0339 (5)0.0163 (5)0.0139 (4)0.0053 (4)0.0028 (4)0.0050 (4)
C1C0.0228 (5)0.0163 (5)0.0143 (5)0.0024 (4)0.0011 (4)0.0048 (4)
C2C0.0218 (5)0.0151 (5)0.0154 (5)0.0028 (4)0.0013 (4)0.0036 (4)
C3C0.0258 (5)0.0184 (5)0.0197 (5)0.0053 (4)0.0019 (4)0.0100 (4)
C4C0.0272 (6)0.0193 (5)0.0159 (5)0.0055 (4)0.0000 (4)0.0092 (4)
C5C0.0196 (5)0.0169 (5)0.0145 (5)0.0034 (4)0.0006 (4)0.0064 (4)
O1C0.0328 (4)0.0140 (4)0.0182 (4)0.0034 (3)0.0033 (3)0.0067 (3)
O2C0.0326 (4)0.0150 (4)0.0147 (4)0.0024 (3)0.0025 (3)0.0053 (3)
O3C0.0397 (5)0.0199 (4)0.0137 (4)0.0033 (4)0.0043 (3)0.0060 (3)
O4C0.0261 (4)0.0210 (4)0.0219 (4)0.0013 (3)0.0069 (3)0.0126 (3)
C60.0153 (4)0.0131 (4)0.0139 (5)0.0015 (3)0.0019 (3)0.0050 (4)
C7C0.0156 (4)0.0161 (5)0.0140 (5)0.0024 (4)0.0020 (4)0.0066 (4)
C8C0.0203 (5)0.0141 (5)0.0203 (5)0.0025 (4)0.0035 (4)0.0069 (4)
C9C0.0226 (5)0.0150 (5)0.0192 (5)0.0028 (4)0.0039 (4)0.0026 (4)
C10C0.0250 (5)0.0201 (5)0.0143 (5)0.0010 (4)0.0039 (4)0.0044 (4)
C11C0.0215 (5)0.0170 (5)0.0144 (5)0.0014 (4)0.0031 (4)0.0067 (4)
C12C0.0168 (5)0.0146 (5)0.0157 (5)0.0019 (4)0.0006 (4)0.0052 (4)
C13C0.0170 (5)0.0187 (5)0.0152 (5)0.0011 (4)0.0025 (4)0.0083 (4)
O1X0.0276 (4)0.0166 (4)0.0190 (4)0.0009 (3)0.0017 (3)0.0087 (3)
O2X0.0203 (4)0.0190 (4)0.0179 (4)0.0035 (3)0.0032 (3)0.0099 (3)
O3X0.0367 (5)0.0150 (4)0.0151 (4)0.0046 (3)0.0026 (3)0.0057 (3)
O4X0.0341 (5)0.0121 (4)0.0180 (4)0.0022 (3)0.0065 (3)0.0048 (3)
C6X0.0171 (5)0.0157 (5)0.0138 (5)0.0020 (4)0.0016 (4)0.0061 (4)
C7X0.0173 (5)0.0144 (5)0.0143 (5)0.0015 (4)0.0015 (4)0.0061 (4)
C8X0.0204 (5)0.0180 (5)0.0179 (5)0.0030 (4)0.0023 (4)0.0086 (4)
C9X0.0232 (5)0.0266 (6)0.0175 (5)0.0042 (4)0.0047 (4)0.0100 (5)
C10X0.0257 (6)0.0238 (6)0.0151 (5)0.0031 (4)0.0051 (4)0.0038 (4)
C11X0.0236 (5)0.0164 (5)0.0160 (5)0.0040 (4)0.0027 (4)0.0033 (4)
C12X0.0217 (5)0.0119 (4)0.0121 (4)0.0046 (4)0.0013 (4)0.0025 (4)
C13X0.0173 (5)0.0129 (5)0.0158 (5)0.0031 (4)0.0007 (4)0.0054 (4)
Geometric parameters (Å, º) top
Cl1A—C2A1.7311 (11)C8B—H8BA0.9300
N1A—C5A1.3464 (14)C9B—C10B1.3865 (17)
N1A—C1A1.3579 (14)C9B—H9BA0.9300
N1A—H1NA0.899 (18)C10B—C11B1.3884 (17)
N2A—C5A1.3320 (15)C10B—H10D0.9300
N2A—H2NA0.896 (18)C11B—H11D0.9300
N2A—H3NA0.888 (18)Cl1C—C2C1.7246 (12)
C1A—C2A1.3575 (16)N1C—C5C1.3493 (14)
C1A—H1AA0.9300N1C—C1C1.3532 (14)
C2A—C3A1.4089 (15)N1C—H1NC0.94 (2)
C3A—C4A1.3659 (16)N2C—C5C1.3276 (15)
C3A—H3AA0.9300N2C—H2NC0.88 (2)
C4A—C5A1.4199 (16)N2C—H3NC0.83 (2)
C4A—H4AA0.9300C1C—C2C1.3603 (16)
O1A—C12A1.2315 (14)C1C—H1CA0.9300
O2A—C12A1.2927 (14)C2C—C3C1.4125 (16)
O2A—H1OA0.8626C3C—C4C1.3649 (17)
O3A—C13A1.2748 (14)C3C—H3CA0.9300
O4A—C13A1.2453 (14)C4C—C5C1.4214 (16)
C6A—C11A1.4007 (15)C4C—H4CA0.9300
C6A—C7A1.4201 (14)O1C—C12C1.2388 (14)
C6A—C12A1.5212 (15)O2C—C12C1.2873 (13)
C7A—C8A1.3981 (15)O2C—H2C0.8200
C7A—C13A1.5237 (15)O3C—C13C1.2814 (14)
C8A—C9A1.3849 (16)O4C—C13C1.2400 (14)
C8A—H8AA0.9300C6—C11C1.3986 (15)
C9A—C10A1.3902 (16)C6—C7C1.4218 (15)
C9A—H9AA0.9300C6—C12C1.5191 (15)
C10A—C11A1.3882 (16)C7C—C8C1.4009 (15)
C10A—H10C0.9300C7C—C13C1.5186 (15)
C11A—H11C0.9300C8C—C9C1.3852 (16)
Cl1B—C2B1.7264 (11)C8C—H8CA0.9300
N1B—C5B1.3468 (14)C9C—C10C1.3839 (17)
N1B—C1B1.3543 (15)C9C—H9CA0.9300
N1B—H1NB0.92 (2)C10C—C11C1.3854 (16)
N2B—C5B1.3349 (15)C10C—H10B0.9300
N2B—H2NB0.865 (19)C11C—H11B0.9300
N2B—H3NB0.865 (19)O1X—C12X1.2170 (14)
C1B—C2B1.3618 (15)O2X—C12X1.3234 (14)
C1B—H1BA0.9300O2X—H1OX0.88 (2)
C2B—C3B1.4125 (15)O3X—C13X1.2088 (14)
C3B—C4B1.3666 (16)O4X—C13X1.3277 (13)
C3B—H3BA0.9300O4X—H2OX0.83 (2)
C4B—C5B1.4169 (15)C6X—C11X1.3938 (15)
C4B—H4BA0.9300C6X—C7X1.4043 (15)
O1B—C12B1.2266 (15)C6X—C12X1.5023 (15)
O2B—C12B1.2990 (15)C7X—C8X1.3971 (15)
O2B—H1OB0.8922C7X—C13X1.4928 (15)
O3B—C13B1.2698 (14)C8X—C9X1.3900 (16)
O4B—C13B1.2480 (14)C8X—H8XA0.9300
C6B—C11B1.4004 (16)C9X—C10X1.3903 (18)
C6B—C7B1.4198 (15)C9X—H9XA0.9300
C6B—C12B1.5208 (15)C10X—C11X1.3940 (16)
C7B—C8B1.3999 (15)C10X—H10A0.9300
C7B—C13B1.5242 (16)C11X—H11A0.9300
C8B—C9B1.3829 (16)
C5A—N1A—C1A122.94 (10)C11B—C10B—H10D120.4
C5A—N1A—H1NA120.8 (11)C10B—C11B—C6B122.47 (11)
C1A—N1A—H1NA116.2 (11)C10B—C11B—H11D118.8
C5A—N2A—H2NA118.7 (12)C6B—C11B—H11D118.8
C5A—N2A—H3NA121.1 (12)O1B—C12B—O2B120.49 (11)
H2NA—N2A—H3NA120.1 (16)O1B—C12B—C6B119.76 (11)
C2A—C1A—N1A120.19 (10)O2B—C12B—C6B119.73 (10)
C2A—C1A—H1AA119.9O4B—C13B—O3B122.28 (11)
N1A—C1A—H1AA119.9O4B—C13B—C7B117.01 (10)
C1A—C2A—C3A119.33 (10)O3B—C13B—C7B120.71 (10)
C1A—C2A—Cl1A119.37 (9)C5C—N1C—C1C122.59 (10)
C3A—C2A—Cl1A121.30 (9)C5C—N1C—H1NC119.0 (13)
C4A—C3A—C2A119.73 (10)C1C—N1C—H1NC118.4 (13)
C4A—C3A—H3AA120.1C5C—N2C—H2NC116.2 (12)
C2A—C3A—H3AA120.1C5C—N2C—H3NC119.9 (13)
C3A—C4A—C5A119.92 (10)H2NC—N2C—H3NC123.7 (17)
C3A—C4A—H4AA120.0N1C—C1C—C2C120.46 (10)
C5A—C4A—H4AA120.0N1C—C1C—H1CA119.8
N2A—C5A—N1A118.85 (10)C2C—C1C—H1CA119.8
N2A—C5A—C4A123.27 (10)C1C—C2C—C3C119.41 (10)
N1A—C5A—C4A117.88 (10)C1C—C2C—Cl1C119.03 (9)
C12A—O2A—H1OA110.8C3C—C2C—Cl1C121.55 (9)
C11A—C6A—C7A118.17 (10)C4C—C3C—C2C119.35 (11)
C11A—C6A—C12A113.49 (9)C4C—C3C—H3CA120.3
C7A—C6A—C12A128.33 (10)C2C—C3C—H3CA120.3
C8A—C7A—C6A118.26 (10)C3C—C4C—C5C120.09 (11)
C8A—C7A—C13A113.54 (9)C3C—C4C—H4CA120.0
C6A—C7A—C13A128.20 (10)C5C—C4C—H4CA120.0
C9A—C8A—C7A122.76 (10)N2C—C5C—N1C118.63 (10)
C9A—C8A—H8AA118.6N2C—C5C—C4C123.31 (11)
C7A—C8A—H8AA118.6N1C—C5C—C4C118.06 (10)
C8A—C9A—C10A119.01 (11)C12C—O2C—H2C109.5
C8A—C9A—H9AA120.5C11C—C6—C7C118.23 (10)
C10A—C9A—H9AA120.5C11C—C6—C12C113.09 (9)
C11A—C10A—C9A119.41 (10)C7C—C6—C12C128.68 (10)
C11A—C10A—H10C120.3C8C—C7C—C6118.07 (10)
C9A—C10A—H10C120.3C8C—C7C—C13C113.93 (9)
C10A—C11A—C6A122.38 (10)C6—C7C—C13C127.93 (10)
C10A—C11A—H11C118.8C9C—C8C—C7C122.41 (11)
C6A—C11A—H11C118.8C9C—C8C—H8CA118.8
O1A—C12A—O2A120.63 (11)C7C—C8C—H8CA118.8
O1A—C12A—C6A118.80 (10)C10C—C9C—C8C119.41 (11)
O2A—C12A—C6A120.53 (10)C10C—C9C—H9CA120.3
O4A—C13A—O3A122.55 (10)C8C—C9C—H9CA120.3
O4A—C13A—C7A116.75 (10)C9C—C10C—C11C119.34 (11)
O3A—C13A—C7A120.70 (10)C9C—C10C—H10B120.3
C5B—N1B—C1B122.49 (10)C11C—C10C—H10B120.3
C5B—N1B—H1NB120.8 (13)C10C—C11C—C6122.45 (11)
C1B—N1B—H1NB116.6 (13)C10C—C11C—H11B118.8
C5B—N2B—H2NB122.8 (12)C6—C11C—H11B118.8
C5B—N2B—H3NB114.2 (12)O1C—C12C—O2C120.72 (10)
H2NB—N2B—H3NB123.0 (17)O1C—C12C—C6117.77 (10)
N1B—C1B—C2B120.52 (10)O2C—C12C—C6121.51 (10)
N1B—C1B—H1BA119.7O4C—C13C—O3C121.99 (10)
C2B—C1B—H1BA119.7O4C—C13C—C7C117.77 (10)
C1B—C2B—C3B119.40 (10)O3C—C13C—C7C120.24 (10)
C1B—C2B—Cl1B118.85 (9)C12X—O2X—H1OX109.1 (12)
C3B—C2B—Cl1B121.73 (9)C13X—O4X—H2OX108.6 (14)
C4B—C3B—C2B119.05 (10)C11X—C6X—C7X119.87 (10)
C4B—C3B—H3BA120.5C11X—C6X—C12X117.43 (10)
C2B—C3B—H3BA120.5C7X—C6X—C12X122.66 (9)
C3B—C4B—C5B120.41 (10)C8X—C7X—C6X119.68 (10)
C3B—C4B—H4BA119.8C8X—C7X—C13X121.01 (10)
C5B—C4B—H4BA119.8C6X—C7X—C13X119.15 (9)
N2B—C5B—N1B119.18 (10)C9X—C8X—C7X120.18 (11)
N2B—C5B—C4B122.69 (10)C9X—C8X—H8XA119.9
N1B—C5B—C4B118.13 (10)C7X—C8X—H8XA119.9
C12B—O2B—H1OB110.9C8X—C9X—C10X119.94 (11)
C11B—C6B—C7B118.19 (10)C8X—C9X—H9XA120.0
C11B—C6B—C12B113.14 (10)C10X—C9X—H9XA120.0
C7B—C6B—C12B128.66 (10)C9X—C10X—C11X120.44 (11)
C8B—C7B—C6B118.08 (10)C9X—C10X—H10A119.8
C8B—C7B—C13B113.18 (10)C11X—C10X—H10A119.8
C6B—C7B—C13B128.74 (10)C6X—C11X—C10X119.82 (11)
C9B—C8B—C7B122.76 (11)C6X—C11X—H11A120.1
C9B—C8B—H8BA118.6C10X—C11X—H11A120.1
C7B—C8B—H8BA118.6O1X—C12X—O2X124.43 (10)
C8B—C9B—C10B119.23 (11)O1X—C12X—C6X123.11 (10)
C8B—C9B—H9BA120.4O2X—C12X—C6X112.32 (9)
C10B—C9B—H9BA120.4O3X—C13X—O4X123.32 (10)
C9B—C10B—C11B119.25 (11)O3X—C13X—C7X122.29 (10)
C9B—C10B—H10D120.4O4X—C13X—C7X114.38 (9)
C5A—N1A—C1A—C2A0.11 (17)C7B—C6B—C12B—O2B3.60 (18)
N1A—C1A—C2A—C3A0.01 (17)C8B—C7B—C13B—O4B7.92 (16)
N1A—C1A—C2A—Cl1A179.51 (8)C6B—C7B—C13B—O4B171.08 (12)
C1A—C2A—C3A—C4A0.43 (17)C8B—C7B—C13B—O3B171.62 (11)
Cl1A—C2A—C3A—C4A179.91 (9)C6B—C7B—C13B—O3B9.37 (19)
C2A—C3A—C4A—C5A0.91 (17)C5C—N1C—C1C—C2C1.30 (17)
C1A—N1A—C5A—N2A179.42 (10)N1C—C1C—C2C—C3C0.34 (17)
C1A—N1A—C5A—C4A0.59 (16)N1C—C1C—C2C—Cl1C179.82 (9)
C3A—C4A—C5A—N2A179.02 (11)C1C—C2C—C3C—C4C0.94 (18)
C3A—C4A—C5A—N1A0.99 (16)Cl1C—C2C—C3C—C4C179.60 (9)
C11A—C6A—C7A—C8A0.66 (15)C2C—C3C—C4C—C5C0.03 (18)
C12A—C6A—C7A—C8A178.68 (10)C1C—N1C—C5C—N2C177.75 (11)
C11A—C6A—C7A—C13A178.97 (10)C1C—N1C—C5C—C4C2.23 (17)
C12A—C6A—C7A—C13A1.68 (18)C3C—C4C—C5C—N2C178.42 (12)
C6A—C7A—C8A—C9A0.18 (17)C3C—C4C—C5C—N1C1.57 (17)
C13A—C7A—C8A—C9A179.86 (10)C11C—C6—C7C—C8C2.71 (15)
C7A—C8A—C9A—C10A0.61 (18)C12C—C6—C7C—C8C177.49 (10)
C8A—C9A—C10A—C11A0.19 (17)C11C—C6—C7C—C13C173.98 (10)
C9A—C10A—C11A—C6A0.68 (17)C12C—C6—C7C—C13C5.82 (18)
C7A—C6A—C11A—C10A1.11 (16)C6—C7C—C8C—C9C2.13 (16)
C12A—C6A—C11A—C10A178.34 (10)C13C—C7C—C8C—C9C175.01 (10)
C11A—C6A—C12A—O1A10.47 (15)C7C—C8C—C9C—C10C0.30 (18)
C7A—C6A—C12A—O1A170.16 (11)C8C—C9C—C10C—C11C2.10 (18)
C11A—C6A—C12A—O2A167.19 (10)C9C—C10C—C11C—C61.46 (18)
C7A—C6A—C12A—O2A12.18 (17)C7C—C6—C11C—C10C0.99 (17)
C8A—C7A—C13A—O4A4.03 (14)C12C—C6—C11C—C10C179.18 (10)
C6A—C7A—C13A—O4A175.62 (10)C11C—C6—C12C—O1C2.83 (14)
C8A—C7A—C13A—O3A175.22 (10)C7C—C6—C12C—O1C177.36 (11)
C6A—C7A—C13A—O3A5.13 (17)C11C—C6—C12C—O2C177.53 (10)
C5B—N1B—C1B—C2B0.22 (17)C7C—C6—C12C—O2C2.28 (17)
N1B—C1B—C2B—C3B0.16 (17)C8C—C7C—C13C—O4C4.56 (15)
N1B—C1B—C2B—Cl1B178.83 (8)C6—C7C—C13C—O4C172.25 (11)
C1B—C2B—C3B—C4B0.02 (17)C8C—C7C—C13C—O3C175.82 (10)
Cl1B—C2B—C3B—C4B178.65 (9)C6—C7C—C13C—O3C7.38 (17)
C2B—C3B—C4B—C5B0.07 (17)C11X—C6X—C7X—C8X1.67 (16)
C1B—N1B—C5B—N2B179.22 (11)C12X—C6X—C7X—C8X175.84 (10)
C1B—N1B—C5B—C4B0.13 (16)C11X—C6X—C7X—C13X173.77 (10)
C3B—C4B—C5B—N2B179.35 (11)C12X—C6X—C7X—C13X8.72 (16)
C3B—C4B—C5B—N1B0.02 (17)C6X—C7X—C8X—C9X0.65 (17)
C11B—C6B—C7B—C8B1.11 (16)C13X—C7X—C8X—C9X176.00 (10)
C12B—C6B—C7B—C8B178.24 (11)C7X—C8X—C9X—C10X2.29 (18)
C11B—C6B—C7B—C13B177.86 (11)C8X—C9X—C10X—C11X1.62 (19)
C12B—C6B—C7B—C13B2.79 (19)C7X—C6X—C11X—C10X2.34 (17)
C6B—C7B—C8B—C9B0.24 (18)C12X—C6X—C11X—C10X175.30 (11)
C13B—C7B—C8B—C9B179.36 (12)C9X—C10X—C11X—C6X0.70 (18)
C7B—C8B—C9B—C10B1.2 (2)C11X—C6X—C12X—O1X64.87 (15)
C8B—C9B—C10B—C11B0.80 (19)C7X—C6X—C12X—O1X117.57 (13)
C9B—C10B—C11B—C6B0.58 (19)C11X—C6X—C12X—O2X110.99 (11)
C7B—C6B—C11B—C10B1.54 (17)C7X—C6X—C12X—O2X66.58 (14)
C12B—C6B—C11B—C10B177.91 (11)C8X—C7X—C13X—O3X160.33 (11)
C11B—C6B—C12B—O1B2.92 (16)C6X—C7X—C13X—O3X15.04 (16)
C7B—C6B—C12B—O1B177.70 (12)C8X—C7X—C13X—O4X18.32 (15)
C11B—C6B—C12B—O2B175.78 (11)C6X—C7X—C13X—O4X166.30 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2C···O3C0.821.582.4004 (13)177
O2A—H1OA···O3A0.861.552.4123 (13)177
O2B—H1OB···O3B0.891.522.4126 (14)178
O2X—H1OX···O4C0.88 (2)1.76 (2)2.6091 (12)163 (2)
O4X—H2OX···O1Ai0.83 (2)1.86 (2)2.6880 (13)177 (2)
N2A—H2NA···O1Bii0.895 (18)2.018 (18)2.9095 (14)173.4 (19)
N1B—H1NB···O4Aiii0.92 (2)1.69 (2)2.5938 (14)169 (2)
N2B—H2NB···O3Aiii0.87 (2)2.12 (2)2.9570 (14)161.8 (17)
N1C—H1NC···O4B0.94 (2)1.69 (2)2.6169 (16)168 (2)
N2C—H3NC···O3B0.83 (2)2.11 (2)2.9279 (15)168.4 (19)
C4A—H4AA···O2Bii0.932.263.1614 (14)164
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula3C5H6ClN2+·3C8H5O4·C8H6O4
Mr1050.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8522 (2), 14.0242 (2), 17.4312 (3)
α, β, γ (°)68.920 (1), 87.507 (1), 83.906 (1)
V3)2234.54 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.49 × 0.22 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.870, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
63061, 12966, 11359
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.03
No. of reflections12966
No. of parameters696
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2C—H2C···O3C0.82001.58002.4004 (13)177.00
O2A—H1OA···O3A0.86001.55002.4123 (13)177.00
O2B—H1OB···O3B0.89001.52002.4126 (14)178.00
O2X—H1OX···O4C0.88 (2)1.76 (2)2.6091 (12)163 (2)
O4X—H2OX···O1Ai0.83 (2)1.86 (2)2.6880 (13)177 (2)
N2A—H2NA···O1Bii0.895 (18)2.018 (18)2.9095 (14)173.4 (19)
N1B—H1NB···O4Aiii0.92 (2)1.69 (2)2.5938 (14)169 (2)
N2B—H2NB···O3Aiii0.87 (2)2.12 (2)2.9570 (14)161.8 (17)
N1C—H1NC···O4B0.94 (2)1.69 (2)2.6169 (16)168 (2)
N2C—H3NC···O3B0.83 (2)2.11 (2)2.9279 (15)168.4 (19)
C4A—H4AA···O2Bii0.93002.26003.1614 (14)164.00
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBallabh, A., Trivedi, D. R. & Dastidar, P. (2005). Cryst. Growth Des. 5, 1548–1553.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeffery, J. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds