organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Eth­­oxy-1,3,3-tri­methyl­spiro­[indoline-2,3′-3H-naphtho­[2,1-b][1,4]oxazine]

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 2 June 2010; accepted 14 June 2010; online 18 June 2010)

In the title compound, C24H24N2O2, the five-membered ring of the indoline ring system adopts an envelope conformation with the spiro C atom at the flap. The dihedral angle between the benzene ring of the indoline ring system and the naphthalene ring system is 71.70 (7)°. In the crystal structure, pair of weak C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For applications of spiro­oxazines, see: Chibisov & Gardner (1999[Chibisov, A. K. & Gardner, H. (1999). J. Phys. Chem. A, 103, 5211-5216.]); Khairutdinov et al. (1998[Khairutdinov, R. F., Giertz, K., Hurst, J. K., Voloshina, E. N., Voloshin, N. A. & Minkin, V. I. (1998). J. Am. Chem. Soc. 49, 12707-12713.]); Pozzo et al. (1993[Pozzo, J. L., Samat, A., Guglielmetti, R. & Keukeleireb, D. D. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1327-1332.]); Tan et al. (2005[Tan, T.-F., Chen, P.-L., Huang, H.-M. & Meng, J.-B. (2005). Tetrahedron, 61, 8192-8198.]); Zhang et al. (2008[Zhang, C.-R., Zhang, Z.-B., Fan, M.-G. & Yan, W.-P. (2008). Dyes Pigm. 76, 832-835.]). For related structures, see: Lin et al. (2009[Lin, J., Chai, W., Song, L., Qin, L. & Shu, K. (2009). Acta Cryst. C65, o621-o623.]); Uznanski et al. (2001[Uznanski, P., Amiens, C., Donnadieu, B., Coppel, Y. & Chaudret, B. (2001). New J. Chem. 25, 1486-1494.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N2O2

  • Mr = 372.45

  • Monoclinic, P 21 /c

  • a = 8.6105 (4) Å

  • b = 22.9239 (8) Å

  • c = 10.2022 (5) Å

  • β = 93.516 (4)°

  • V = 2009.98 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Oxford Xcalibur Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.974, Tmax = 0.984

  • 12650 measured reflections

  • 4449 independent reflections

  • 2198 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.085

  • S = 0.98

  • 4449 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.60 3.5014 (18) 164
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Serve as an organic photochromic, spirooxazines have real or potential applications in many field, such as protection, decoration, display, memory, switches, photography, photometry and photomechanics (Chibisov & Gardner, 1999). For further approach to real applications, numerous types of spirooxazine derivatives have been reported over the past several decades (Pozzo et al., 1993; Khairutdinov et al., 1998; Zhang et al., 2008). Traditionally, synthesis of spirooxazines is based on a thermal condensation reaction of the corresponding alkylidene heterocycle or its conjugate acid with ortho-hydroxynitroso aromatic derivatives in most polar organic solvents. To be notice, alkylidene heterocycle, such as: 1,3,3-trimethyl-2- methyleneindoline derivatives, were not stable in the air at room temperature, so they must be purified by vacuum distillation before use (Tan et al., 2005). This brings to a big problem that we have to re-synthesis alkylidene heterocycle part if we want to get a novel spirooxazine with different substituents at alkylidene heterocycle moiety. According to our previous work (Lin et al., 2009) in which we reported a new strategy to get a 2'-position substituted spirooxazine, a new derivative, 1,3,3-trimethyl-2'-ethoxy-1,3-dihydrospiro(indole-2,3'-naphtho(2,1-b) (1,4)oxazine), (II), has been synthesized and its crystal structure is reported here.

Since we synthesized an unexpected new organic photochromic compound, (2S)-2'-ethoxy-1,3,3-trimethyl-6'-(piperidin-1-yl) spiro[indoline-2,3'-3'H-naphtho[2,1-b][1,4]oxazine], we studied on the possibility of the ethoxy reaction at the 2'-position of spirooxazine using another spirooxazine derivative, C22H20N2O, (I). The title compound, C24H24N2O2, (II), was synthesized successfully (Fig. 1), which testified it is a general method to fabricate ethoxy-substituted (may be alkoxy-substituted) spirooxazines at the C2'carbon atom of the C2'=N1' bond.

The title compound, C24H24N2O2, consists of an ethoxy group bonded to parent molecule (I) at the 2'-position crystallizing with a molecule in the asymmetric unit (Fig. 2). The five-membered ring C1/N2/C6–C8 adopts an envelope conformation with the flap at C8. The dihedral angle between the benzene ring (atoms C1–C6) and the naphthalene ring (atoms C10–C19) is 71.70 (7)°. For the other 2'-position substituted derivatives (C23H22N2O2, C27H24N2O2 and C29H33N3O2), the corresponding dihedral angles are 74.2 (1), 76.5 (6) and 71.6 (2)/72.7 (2)°, respectively (Uznanski et al., 2001; Lin et al., 2009). The bond lengths and angles around the spiro carbon in (II) are similar to those in the other photochromic spirooxazines.

Related literature top

For applications of spirooxazines, see: Chibisov & Gardner (1999); Khairutdinov et al. (1998); Pozzo et al. (1993); Tan et al. (2005); Zhang et al. (2008). For related structures, see: Lin et al. (2009); Uznanski et al. (2001).

Experimental top

Potassium iodide (17 mg, 0.1 mmol) and the parent spirooxazine, 1,3,3-trimethylspiro[indoline-2,3'-[3H]-naphth[2,1-b][1,4]oxazine] (33 mg, 0.1 mmol) were heated in a Teflon-lined stainless steel autoclave with ethanol (10 ml) at 393 K. Block-shaped colorless crystals of (II), were obtained by slow evaporation from the filtrated reaction solution at room temperature. Yield: 45% (with reaction solution left). m.p.: 418–419 K. IR (KBr, cm-1): 3053, 2982, 2964, 2888, 1724, 1714, 1637, 1609, 1577, 1508, 1490, 1466, 1398, 1383, 1367, 1321, 1296, 1267, 1252, 1232, 1198, 1188, 1153, 1140, 1101, 1086, 1037, 1024, 993, 977, 952, 895, 862, 816, 781, 750, 743, 683, 655, 632, 606, 566, 551, 516, 499, 437. 1H NMR (CDCl3): δ 6.56–8.47 (10H, ArH), 4.58 (2H, CH2), 2.94 (3H, CH3), 1.42 (3H, CH3), 1.22 (6H, CH3). Analysis found (calculated) for C24H24N2O2: C 77.35 (77.39), H 6.60 (6.49), N 7.50% (7.52%).

Refinement top

The H atoms were placed in their calculated positions (C—H = 0.93–0.97 Å) and included in the refinement using the riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the title compound, (II).
[Figure 2] Fig. 2. The structure of (II), showing the atom-labeling scheme of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A packing diagram of (II), viewed along the a axis.
2'-Ethoxy-1,3,3-trimethylspiro[indoline-2,3'-3H- naphtho[2,1-b][1,4]oxazine] top
Crystal data top
C24H24N2O2F(000) = 792
Mr = 372.45Dx = 1.231 Mg m3
Monoclinic, P21/cMelting point: 418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6105 (4) ÅCell parameters from 3384 reflections
b = 22.9239 (8) Åθ = 3.2–27.3°
c = 10.2022 (5) ŵ = 0.08 mm1
β = 93.516 (4)°T = 293 K
V = 2009.98 (15) Å3Block, colorless
Z = 40.34 × 0.30 × 0.20 mm
Data collection top
Oxford Xcalibur Gemini ultra
diffractometer
4449 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3592 pixels mm-1θmax = 27.3°, θmin = 3.3°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 2928
Tmin = 0.974, Tmax = 0.984l = 1313
12650 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H24N2O2V = 2009.98 (15) Å3
Mr = 372.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6105 (4) ŵ = 0.08 mm1
b = 22.9239 (8) ÅT = 293 K
c = 10.2022 (5) Å0.34 × 0.30 × 0.20 mm
β = 93.516 (4)°
Data collection top
Oxford Xcalibur Gemini ultra
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
2198 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.984Rint = 0.033
12650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
4449 reflectionsΔρmin = 0.18 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10563 (10)0.53152 (4)0.31415 (9)0.0480 (3)
O20.22203 (12)0.57809 (4)0.00532 (9)0.0593 (3)
N10.23974 (13)0.48659 (5)0.09366 (11)0.0489 (3)
N20.09544 (13)0.62319 (5)0.21564 (12)0.0482 (3)
C10.13539 (18)0.66314 (6)0.31558 (15)0.0487 (4)
C20.0555 (2)0.71249 (7)0.3510 (2)0.0713 (5)
H20.03780.72340.30690.086*
C30.1210 (3)0.74527 (7)0.4557 (2)0.0930 (7)
H30.07040.77890.48140.112*
C40.2579 (3)0.72923 (9)0.5217 (2)0.0945 (7)
H40.29720.75110.59290.113*
C50.3369 (2)0.68093 (7)0.48276 (17)0.0704 (5)
H50.43080.67040.52630.085*
C60.27635 (18)0.64807 (6)0.37867 (14)0.0473 (4)
C70.34049 (16)0.59543 (6)0.31284 (14)0.0450 (4)
C80.19045 (15)0.57223 (5)0.23417 (13)0.0410 (3)
C90.21867 (16)0.54118 (6)0.10658 (13)0.0454 (4)
C100.22059 (15)0.45194 (5)0.20565 (14)0.0416 (3)
C110.26861 (15)0.39259 (6)0.20617 (15)0.0441 (4)
C120.34693 (17)0.36818 (6)0.10200 (16)0.0568 (4)
H120.36680.39100.02960.068*
C130.39369 (19)0.31155 (7)0.1063 (2)0.0715 (5)
H130.44630.29610.03720.086*
C140.3635 (2)0.27640 (7)0.2132 (2)0.0758 (6)
H140.39620.23770.21500.091*
C150.2869 (2)0.29814 (6)0.31467 (19)0.0671 (5)
H150.26660.27410.38500.081*
C160.23744 (16)0.35707 (6)0.31460 (16)0.0498 (4)
C170.16004 (19)0.38141 (6)0.41846 (16)0.0620 (5)
H170.13720.35800.48910.074*
C180.11748 (17)0.43869 (6)0.41815 (15)0.0575 (4)
H180.06700.45420.48830.069*
C190.15037 (16)0.47384 (5)0.31146 (14)0.0438 (4)
C200.06197 (19)0.61855 (7)0.15824 (19)0.0748 (5)
H20A0.12900.60460.22320.112*
H20B0.06430.59180.08570.112*
H20C0.09710.65620.12770.112*
C210.46191 (17)0.61472 (6)0.21791 (16)0.0620 (5)
H21A0.41640.64290.15730.093*
H21B0.49620.58150.17030.093*
H21C0.54920.63190.26670.093*
C220.4158 (2)0.55129 (6)0.40929 (17)0.0717 (5)
H22A0.50250.56910.45740.108*
H22B0.45130.51820.36180.108*
H22C0.34080.53880.46930.108*
C230.2486 (2)0.55342 (7)0.12201 (15)0.0756 (5)
H23A0.17230.52340.14450.091*
H23B0.35160.53620.12130.091*
C240.2344 (2)0.60208 (8)0.21924 (17)0.0930 (6)
H24A0.13140.61820.22040.139*
H24B0.25370.58750.30500.139*
H24C0.30900.63190.19490.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (6)0.0358 (5)0.0510 (6)0.0043 (5)0.0201 (5)0.0047 (4)
O20.0940 (8)0.0462 (6)0.0382 (6)0.0067 (5)0.0094 (5)0.0066 (5)
N10.0654 (8)0.0389 (7)0.0436 (8)0.0023 (6)0.0126 (6)0.0006 (6)
N20.0505 (8)0.0390 (7)0.0543 (8)0.0086 (6)0.0031 (6)0.0064 (6)
C10.0630 (10)0.0305 (8)0.0545 (10)0.0000 (7)0.0183 (8)0.0056 (7)
C20.0823 (12)0.0414 (10)0.0938 (15)0.0106 (9)0.0344 (11)0.0083 (10)
C30.1261 (19)0.0404 (10)0.1195 (19)0.0058 (12)0.0634 (16)0.0214 (12)
C40.1252 (19)0.0703 (14)0.0921 (17)0.0293 (13)0.0388 (15)0.0338 (12)
C50.0889 (13)0.0617 (11)0.0616 (12)0.0206 (10)0.0123 (10)0.0123 (9)
C60.0604 (10)0.0366 (8)0.0458 (9)0.0056 (7)0.0099 (8)0.0008 (7)
C70.0509 (9)0.0378 (8)0.0460 (9)0.0027 (7)0.0004 (7)0.0055 (7)
C80.0486 (9)0.0349 (7)0.0401 (9)0.0017 (7)0.0076 (7)0.0061 (6)
C90.0567 (10)0.0419 (9)0.0381 (9)0.0045 (7)0.0063 (7)0.0043 (7)
C100.0487 (9)0.0344 (8)0.0426 (9)0.0033 (6)0.0088 (7)0.0003 (7)
C110.0401 (8)0.0364 (8)0.0557 (10)0.0027 (7)0.0026 (7)0.0040 (7)
C120.0566 (10)0.0454 (9)0.0688 (12)0.0018 (8)0.0064 (9)0.0114 (8)
C130.0694 (12)0.0547 (11)0.0904 (15)0.0075 (9)0.0040 (10)0.0217 (10)
C140.0750 (13)0.0415 (10)0.1086 (18)0.0119 (9)0.0133 (12)0.0127 (11)
C150.0749 (12)0.0407 (9)0.0841 (14)0.0019 (8)0.0092 (11)0.0060 (9)
C160.0506 (10)0.0356 (8)0.0629 (11)0.0028 (7)0.0004 (8)0.0021 (8)
C170.0761 (12)0.0466 (10)0.0646 (12)0.0051 (8)0.0152 (9)0.0186 (8)
C180.0722 (11)0.0476 (9)0.0555 (11)0.0025 (8)0.0262 (8)0.0082 (8)
C190.0493 (9)0.0328 (8)0.0503 (10)0.0007 (7)0.0117 (7)0.0039 (7)
C200.0609 (12)0.0686 (11)0.0928 (14)0.0078 (9)0.0135 (10)0.0146 (10)
C210.0533 (10)0.0603 (10)0.0734 (12)0.0029 (8)0.0120 (9)0.0050 (8)
C220.0805 (12)0.0560 (10)0.0748 (13)0.0045 (9)0.0259 (10)0.0107 (9)
C230.1160 (15)0.0711 (11)0.0406 (11)0.0154 (10)0.0133 (10)0.0001 (9)
C240.1305 (17)0.1011 (15)0.0468 (12)0.0337 (13)0.0011 (11)0.0163 (10)
Geometric parameters (Å, º) top
O1—C191.3780 (14)C12—C131.3591 (19)
O1—C81.4640 (15)C12—H120.9300
O2—C91.3371 (15)C13—C141.393 (2)
O2—C231.4478 (18)C13—H130.9300
N1—C91.2724 (16)C14—C151.356 (2)
N1—C101.4095 (16)C14—H140.9300
N2—C11.3977 (18)C15—C161.417 (2)
N2—C81.4320 (16)C15—H150.9300
N2—C201.4471 (18)C16—C171.402 (2)
C1—C61.3823 (19)C17—C181.3631 (19)
C1—C21.383 (2)C17—H170.9300
C2—C31.397 (3)C18—C191.3971 (19)
C2—H20.9300C18—H180.9300
C3—C41.372 (3)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.371 (3)C20—H20C0.9600
C4—H40.9300C21—H21A0.9600
C5—C61.378 (2)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.5025 (19)C22—H22A0.9600
C7—C221.5278 (18)C22—H22B0.9600
C7—C211.5332 (19)C22—H22C0.9600
C7—C81.5713 (18)C23—C241.493 (2)
C8—C91.5163 (18)C23—H23A0.9700
C10—C191.3649 (19)C23—H23B0.9700
C10—C111.4218 (17)C24—H24A0.9600
C11—C121.409 (2)C24—H24B0.9600
C11—C161.4125 (19)C24—H24C0.9600
C19—O1—C8116.81 (10)C14—C13—H13119.7
C9—O2—C23117.27 (11)C15—C14—C13120.53 (16)
C9—N1—C10116.47 (12)C15—C14—H14119.7
C1—N2—C8108.97 (11)C13—C14—H14119.7
C1—N2—C20121.73 (13)C14—C15—C16120.68 (17)
C8—N2—C20120.44 (11)C14—C15—H15119.7
C6—C1—C2121.30 (15)C16—C15—H15119.7
C6—C1—N2110.22 (12)C17—C16—C11118.98 (13)
C2—C1—N2128.46 (15)C17—C16—C15122.42 (15)
C1—C2—C3117.11 (17)C11—C16—C15118.60 (15)
C1—C2—H2121.4C18—C17—C16121.46 (14)
C3—C2—H2121.4C18—C17—H17119.3
C4—C3—C2121.72 (18)C16—C17—H17119.3
C4—C3—H3119.1C17—C18—C19119.34 (14)
C2—C3—H3119.1C17—C18—H18120.3
C5—C4—C3120.08 (19)C19—C18—H18120.3
C5—C4—H4120.0C10—C19—O1120.43 (12)
C3—C4—H4120.0C10—C19—C18121.66 (12)
C4—C5—C6119.59 (18)O1—C19—C18117.88 (13)
C4—C5—H5120.2N2—C20—H20A109.5
C6—C5—H5120.2N2—C20—H20B109.5
C5—C6—C1120.14 (15)H20A—C20—H20B109.5
C5—C6—C7130.64 (15)N2—C20—H20C109.5
C1—C6—C7109.21 (12)H20A—C20—H20C109.5
C6—C7—C22113.40 (13)H20B—C20—H20C109.5
C6—C7—C21109.53 (11)C7—C21—H21A109.5
C22—C7—C21108.61 (12)C7—C21—H21B109.5
C6—C7—C8100.77 (11)H21A—C21—H21B109.5
C22—C7—C8114.07 (11)C7—C21—H21C109.5
C21—C7—C8110.25 (12)H21A—C21—H21C109.5
N2—C8—O1107.05 (10)H21B—C21—H21C109.5
N2—C8—C9112.96 (11)C7—C22—H22A109.5
O1—C8—C9106.91 (10)C7—C22—H22B109.5
N2—C8—C7103.68 (10)H22A—C22—H22B109.5
O1—C8—C7110.71 (10)C7—C22—H22C109.5
C9—C8—C7115.30 (11)H22A—C22—H22C109.5
N1—C9—O2122.16 (13)H22B—C22—H22C109.5
N1—C9—C8125.60 (12)O2—C23—C24107.05 (14)
O2—C9—C8112.23 (11)O2—C23—H23A110.3
C19—C10—N1120.89 (12)C24—C23—H23A110.3
C19—C10—C11119.45 (13)O2—C23—H23B110.3
N1—C10—C11119.60 (13)C24—C23—H23B110.3
C12—C11—C16118.97 (13)H23A—C23—H23B108.6
C12—C11—C10121.99 (14)C23—C24—H24A109.5
C16—C11—C10119.04 (13)C23—C24—H24B109.5
C13—C12—C11120.65 (16)H24A—C24—H24B109.5
C13—C12—H12119.7C23—C24—H24C109.5
C11—C12—H12119.7H24A—C24—H24C109.5
C12—C13—C14120.55 (17)H24B—C24—H24C109.5
C12—C13—H13119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.603.5014 (18)164
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H24N2O2
Mr372.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6105 (4), 22.9239 (8), 10.2022 (5)
β (°) 93.516 (4)
V3)2009.98 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerOxford Xcalibur Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.974, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12650, 4449, 2198
Rint0.033
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.085, 0.98
No. of reflections4449
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.603.5014 (18)164.0
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (project Nos. 50702054 and 20803070) and the Analysis and Testing Foundation of Zhejiang Province (project Nos. 2008 F70034 and 2008 F70053).

References

First citationChibisov, A. K. & Gardner, H. (1999). J. Phys. Chem. A, 103, 5211–5216.  Web of Science CrossRef CAS Google Scholar
First citationKhairutdinov, R. F., Giertz, K., Hurst, J. K., Voloshina, E. N., Voloshin, N. A. & Minkin, V. I. (1998). J. Am. Chem. Soc. 49, 12707–12713.  Web of Science CrossRef Google Scholar
First citationLin, J., Chai, W., Song, L., Qin, L. & Shu, K. (2009). Acta Cryst. C65, o621–o623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPozzo, J. L., Samat, A., Guglielmetti, R. & Keukeleireb, D. D. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1327–1332.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, T.-F., Chen, P.-L., Huang, H.-M. & Meng, J.-B. (2005). Tetrahedron, 61, 8192–8198.  Web of Science CrossRef CAS Google Scholar
First citationUznanski, P., Amiens, C., Donnadieu, B., Coppel, Y. & Chaudret, B. (2001). New J. Chem. 25, 1486–1494.  CAS Google Scholar
First citationZhang, C.-R., Zhang, Z.-B., Fan, M.-G. & Yan, W.-P. (2008). Dyes Pigm. 76, 832–835.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds