organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-Benzyl-1-methyl-N-nitro-1,3,5-triazinan-2-imine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 10 March 2010; accepted 12 March 2010; online 20 March 2010)

In the title compound, C11H15N5O2, the 1,3,5-triazine ring exhibits a half-chair conformation. An intra­molecular N—H⋯O inter­action occurs. In the crystal structure, mol­ecules are connected by inter­molecular C—H⋯O and N—H⋯N hydrogen bonds, forming a zigzag chain along the b axis.

Related literature

For the synthesis of the title compound, see: Ebihara et al. (1998[Ebihara, K., Ura, D., Miyamoto, M. & Kaiho, T. (1998). EP Patent No. 0869120.]). For related structures, see: Hu et al. (2008[Hu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121.]); Zhao et al. (2008[Zhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N5O2

  • Mr = 249.28

  • Monoclinic, P 21 /c

  • a = 12.293 (3) Å

  • b = 6.7769 (14) Å

  • c = 14.858 (3) Å

  • β = 107.36 (3)°

  • V = 1181.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.45 × 0.13 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.990

  • 10812 measured reflections

  • 2697 independent reflections

  • 2215 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.141

  • S = 1.15

  • 2697 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 0.86 2.27 3.093 (2) 162
C3—H3A⋯O2ii 0.97 2.59 3.305 (2) 131
N1—H1A⋯O1 0.86 2.33 2.730 (2) 109
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was synthesized as an intermediate for the synthesis of clothianidin (Ebihara et al., 1998). We report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Hu et al., 2008). The 1,3,5-triazine ring (C1/C3/C4/N1—N3) exhibits a half-chair conformation. The crystal structure is stabilized by intermolecular C–H···O and N–H···N hydrogen bonds.

Related literature top

For the synthesis of the title compound, see: Ebihara et al. (1998). For related structures, see: Hu et al. (2008); Zhao et al. (2008).

Experimental top

1-Methyl-2-nitroguanidine 1.18 g (10 mmol) and 2.5 g formaldehyde (concentration 36%, 30 mmol) was dissolved in 20 ml ethanol, then phenylmethanamine (10 mmol) was added dropwise during 30 min at 30-40 °C. After this addition, the reaction mixture was heated with stirring for three hours at 30-40 °C. The mixture was cooled to room temperature and filtered to afford title compound 2.39 g (yield 96%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C–H = 0.93-0.97 Å and N–H = 0.86 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C, N) for aryl, methylene and N-bounded H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
(E)-5-Benzyl-1-methyl-N-nitro-1,3,5-triazinan-2-imine top
Crystal data top
C11H15N5O2F(000) = 528
Mr = 249.28Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2501 reflections
a = 12.293 (3) Åθ = 2.3–25.1°
b = 6.7769 (14) ŵ = 0.10 mm1
c = 14.858 (3) ÅT = 293 K
β = 107.36 (3)°Needle, colorless
V = 1181.5 (4) Å30.45 × 0.13 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2697 independent reflections
Radiation source: Rotating Anode2215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.956, Tmax = 0.990k = 88
10812 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.4408P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2697 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (5)
Crystal data top
C11H15N5O2V = 1181.5 (4) Å3
Mr = 249.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.293 (3) ŵ = 0.10 mm1
b = 6.7769 (14) ÅT = 293 K
c = 14.858 (3) Å0.45 × 0.13 × 0.10 mm
β = 107.36 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2697 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2215 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.990Rint = 0.026
10812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.15Δρmax = 0.33 e Å3
2697 reflectionsΔρmin = 0.28 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08476 (12)0.2664 (2)0.32912 (13)0.0648 (5)
O20.20472 (10)0.4688 (2)0.23990 (9)0.0491 (4)
N10.13187 (12)0.3877 (2)0.34487 (10)0.0396 (4)
H1A0.09460.29660.30810.048*
N20.13204 (11)0.69132 (19)0.41305 (9)0.0337 (3)
N30.29652 (11)0.4822 (2)0.47169 (9)0.0324 (3)
N40.03718 (11)0.5836 (2)0.31457 (11)0.0399 (4)
N50.10875 (11)0.4321 (2)0.29433 (9)0.0342 (3)
C10.07548 (13)0.5462 (2)0.35840 (10)0.0320 (3)
C20.07568 (15)0.8650 (3)0.43518 (14)0.0446 (4)
H2A0.00530.85130.40840.067*
H2B0.10110.97990.40940.067*
H2C0.09400.87860.50240.067*
C30.25803 (13)0.6801 (2)0.44754 (12)0.0379 (4)
H3A0.28930.72880.39910.046*
H3B0.28580.76390.50250.046*
C40.25463 (13)0.3596 (3)0.38930 (11)0.0354 (4)
H4B0.26940.22220.40710.043*
H4C0.29510.39130.34430.043*
C50.26964 (14)0.4064 (3)0.55497 (11)0.0370 (4)
H5A0.18890.37650.53810.044*
H5B0.28550.50830.60300.044*
C60.33636 (12)0.2241 (2)0.59520 (10)0.0305 (3)
C70.29232 (14)0.0894 (3)0.64553 (11)0.0366 (4)
H7A0.22000.10990.65160.044*
C80.35422 (16)0.0750 (3)0.68681 (12)0.0420 (4)
H8A0.32390.16320.72090.050*
C90.46112 (16)0.1076 (3)0.67726 (12)0.0426 (4)
H9A0.50290.21810.70460.051*
C100.50547 (14)0.0239 (3)0.62723 (12)0.0426 (4)
H10A0.57750.00180.62090.051*
C110.44426 (13)0.1892 (3)0.58611 (11)0.0376 (4)
H11A0.47530.27700.55240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0479 (8)0.0396 (8)0.1065 (13)0.0004 (6)0.0227 (8)0.0232 (8)
O20.0311 (6)0.0622 (9)0.0465 (7)0.0060 (6)0.0002 (5)0.0005 (6)
N10.0354 (7)0.0328 (7)0.0410 (8)0.0066 (6)0.0033 (6)0.0094 (6)
N20.0310 (7)0.0272 (7)0.0375 (7)0.0028 (5)0.0022 (5)0.0029 (5)
N30.0301 (6)0.0355 (7)0.0283 (6)0.0030 (5)0.0038 (5)0.0022 (5)
N40.0302 (7)0.0320 (7)0.0485 (8)0.0010 (6)0.0020 (6)0.0041 (6)
N50.0324 (7)0.0367 (7)0.0341 (7)0.0014 (6)0.0106 (5)0.0000 (5)
C10.0325 (7)0.0290 (7)0.0297 (7)0.0025 (6)0.0019 (6)0.0016 (6)
C20.0442 (9)0.0344 (9)0.0510 (10)0.0073 (7)0.0079 (8)0.0097 (7)
C30.0306 (8)0.0341 (8)0.0423 (9)0.0016 (6)0.0005 (6)0.0018 (7)
C40.0336 (8)0.0413 (9)0.0296 (7)0.0088 (7)0.0065 (6)0.0003 (6)
C50.0372 (8)0.0441 (9)0.0301 (8)0.0096 (7)0.0105 (6)0.0018 (7)
C60.0297 (7)0.0363 (8)0.0231 (6)0.0011 (6)0.0042 (5)0.0020 (6)
C70.0329 (7)0.0467 (9)0.0296 (7)0.0024 (7)0.0086 (6)0.0020 (7)
C80.0502 (10)0.0419 (9)0.0324 (8)0.0064 (8)0.0101 (7)0.0030 (7)
C90.0486 (10)0.0378 (9)0.0346 (8)0.0066 (8)0.0021 (7)0.0045 (7)
C100.0339 (8)0.0483 (10)0.0442 (9)0.0103 (7)0.0094 (7)0.0042 (8)
C110.0326 (8)0.0449 (9)0.0357 (8)0.0022 (7)0.0109 (6)0.0071 (7)
Geometric parameters (Å, º) top
O1—N51.2350 (19)C3—H3B0.9700
O2—N51.2404 (18)C4—H4B0.9700
N1—C11.326 (2)C4—H4C0.9700
N1—C41.468 (2)C5—C61.505 (2)
N1—H1A0.8600C5—H5A0.9700
N2—C11.332 (2)C5—H5B0.9700
N2—C21.452 (2)C6—C71.388 (2)
N2—C31.4811 (19)C6—C111.393 (2)
N3—C31.431 (2)C7—C81.385 (2)
N3—C41.442 (2)C7—H7A0.9300
N3—C51.466 (2)C8—C91.381 (3)
N4—N51.3269 (19)C8—H8A0.9300
N4—C11.367 (2)C9—C101.373 (3)
C2—H2A0.9600C9—H9A0.9300
C2—H2B0.9600C10—C111.385 (2)
C2—H2C0.9600C10—H10A0.9300
C3—H3A0.9700C11—H11A0.9300
C1—N1—C4123.43 (14)N3—C4—H4B109.3
C1—N1—H1A118.3N1—C4—H4B109.3
C4—N1—H1A118.3N3—C4—H4C109.3
C1—N2—C2122.62 (13)N1—C4—H4C109.3
C1—N2—C3118.34 (13)H4B—C4—H4C108.0
C2—N2—C3118.93 (13)N3—C5—C6112.94 (12)
C3—N3—C4108.64 (12)N3—C5—H5A109.0
C3—N3—C5113.51 (13)C6—C5—H5A109.0
C4—N3—C5113.66 (14)N3—C5—H5B109.0
N5—N4—C1118.25 (13)C6—C5—H5B109.0
O1—N5—O2121.13 (14)H5A—C5—H5B107.8
O1—N5—N4123.34 (14)C7—C6—C11118.43 (15)
O2—N5—N4115.48 (14)C7—C6—C5120.00 (14)
N1—C1—N2119.30 (14)C11—C6—C5121.53 (14)
N1—C1—N4125.42 (14)C8—C7—C6121.10 (15)
N2—C1—N4115.07 (14)C8—C7—H7A119.5
N2—C2—H2A109.5C6—C7—H7A119.5
N2—C2—H2B109.5C9—C8—C7119.81 (16)
H2A—C2—H2B109.5C9—C8—H8A120.1
N2—C2—H2C109.5C7—C8—H8A120.1
H2A—C2—H2C109.5C10—C9—C8119.68 (16)
H2B—C2—H2C109.5C10—C9—H9A120.2
N3—C3—N2111.61 (13)C8—C9—H9A120.2
N3—C3—H3A109.3C9—C10—C11120.81 (16)
N2—C3—H3A109.3C9—C10—H10A119.6
N3—C3—H3B109.3C11—C10—H10A119.6
N2—C3—H3B109.3C10—C11—C6120.15 (15)
H3A—C3—H3B108.0C10—C11—H11A119.9
N3—C4—N1111.46 (13)C6—C11—H11A119.9
C1—N4—N5—O115.3 (2)C5—N3—C4—N177.68 (17)
C1—N4—N5—O2167.27 (14)C1—N1—C4—N320.6 (2)
C4—N1—C1—N21.7 (2)C3—N3—C5—C6164.43 (13)
C4—N1—C1—N4176.15 (15)C4—N3—C5—C670.73 (17)
C2—N2—C1—N1176.81 (16)N3—C5—C6—C7153.33 (14)
C3—N2—C1—N17.1 (2)N3—C5—C6—C1128.9 (2)
C2—N2—C1—N48.2 (2)C11—C6—C7—C80.7 (2)
C3—N2—C1—N4167.92 (14)C5—C6—C7—C8177.09 (14)
N5—N4—C1—N134.1 (2)C6—C7—C8—C90.7 (3)
N5—N4—C1—N2151.22 (15)C7—C8—C9—C100.3 (3)
C4—N3—C3—N259.01 (17)C8—C9—C10—C110.0 (3)
C5—N3—C3—N268.49 (17)C9—C10—C11—C60.1 (3)
C1—N2—C3—N338.5 (2)C7—C6—C11—C100.4 (2)
C2—N2—C3—N3145.25 (15)C5—C6—C11—C10177.37 (15)
C3—N3—C4—N149.73 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.273.093 (2)162
C3—H3A···O2ii0.972.593.305 (2)131
N1—H1A···O10.862.332.730 (2)109
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15N5O2
Mr249.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.293 (3), 6.7769 (14), 14.858 (3)
β (°) 107.36 (3)
V3)1181.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.13 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10812, 2697, 2215
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.141, 1.15
No. of reflections2697
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i0.862.273.093 (2)162
C3—H3A···O2ii0.972.593.305 (2)131
N1—H1A···O10.862.332.730 (2)109
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

References

First citationEbihara, K., Ura, D., Miyamoto, M. & Kaiho, T. (1998). EP Patent No. 0869120.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, Z.-Q., Yang, X.-D., An, G.-W., Yang, Z. & Xu, L.-Z. (2008). Acta Cryst. E64, o121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, C., Yang, W., Hu, Y., Shen, L. & Lu, X. (2008). Acta Cryst. E64, o1515.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds