organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3,5-Bis(benz­yl­oxy)phen­yl]methanol

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
*Correspondence e-mail: chm_zhuph@ujn.edu.cn

(Received 12 March 2009; accepted 24 March 2009; online 8 April 2009)

In the title compound, C21H20O3, the two terminal phenyl rings are each approximately perpendicular to the central benzene ring, making dihedral angles of 84.40 (16) and 75.12 (15)°. The H atom of the hydr­oxy group is disordered over two positions with equal occupancies. The mol­ecules are linked by O—H⋯O hydrogen bonds, forming a chain along the a axis.

Related literature

For related compounds, see: Rheiner & Seebach (1999[Rheiner, P. B. & Seebach, D. (1999). Chem. Eur. J. 5, 3221-3236.]); Pan et al. (2005[Pan, Z.-G., Cheung, E.-Y., Harris, K. D. M., Constable, E. C. & Housecroft, C. E. (2005). Cryst. Growth Des. 5, 2084-2090.]); Xiao et al. (2007[Xiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Chen, X. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951-957.]). For the synthesis, see: Hawker & Fréchet (1990[Hawker, C. J. & Fréchet, J. M. (1990). J. Am. Chem. Soc. 112, 7638-7647.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20O3

  • Mr = 320.37

  • Triclinic, [P \overline 1]

  • a = 4.8555 (6) Å

  • b = 12.2442 (18) Å

  • c = 15.017 (2) Å

  • α = 74.049 (1)°

  • β = 83.293 (1)°

  • γ = 89.733 (2)°

  • V = 852.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.46 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.988

  • 4355 measured reflections

  • 2909 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.168

  • S = 0.99

  • 2909 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O3i 0.87 1.98 2.791 (4) 155
O3—H3′⋯O3ii 0.86 1.95 2.805 (5) 179
Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dendrimers are three-dimensional hyperbranched macromolecules that provide well defined nanoscopic objects at the single molecular level. Recent studies on dendritic macromolecules have extended the scope of research from synthesis to applications for catalysts, photoactive and electronic materials, medicinal and biomedical materials, and other functional materials. As a part of our structural investigations on dendritic macromolecules, the single-crystal X-ray diffraction study on the title compound was carried out.

In the title compound, the bond lengths and angles are within the normal ranges. Each unit cell of the title compound contains two molecules like other analogues reported before (Pan et al., 2005; Rheiner & Seebach, 1999; Xiao et al., 2007). It is worth noting that the dihedral angles between the central benzene ring and the two peripheral phenyl rings are 84.40 (16) and 75.12 (15)°. Probably because of the effects of substitution of the central benzene ring, the dihedral angels of the title compound are different from ones reported (Xiao et al., 2007). The O—CH2 bonds lie in the plane of the central phenyl ring and adopt a syn, anti conformation (Pan et al., 2005). The crystal structure is stabilized by intermolecular hydrogen bonds.

Related literature top

For related compounds, see: Rheiner & Seebach (1999); Pan et al. (2005); Xiao et al. (2007). For the synthesis, see: Hawker & Fréchet (1990).

Experimental top

Benzylbromide (10.0 g, 58 mmol), 3,5-dihydroxybenzyl alcohol (4.10 g, 129 mmol), 18-crown-6-ether (1.54 g, 5.8 mmol) and potassium carbonate (16 g, 578.6 mmol) were suspended in 500 ml of 2-butanone under nitrogen atmosphere. The mixture was heated under reflux for 48 h. Upon completion of the reaction, the solvent was evaporated and the water and dichloromethanewere added to the residue. Conventional workup and purification by silica-gel column chromatography (eluent: dichloromethane) yielded 5.6 g of the title compound (60%) as a white needle (Hawker & Fréchet, 1990). Single crystals suitable for X-ray study were grown by diffusion method [dichloromethane/n-hexane (1:4 v/v)] at room temperature.

Refinement top

H atoms bound to carbon were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq (C) for aromatic atoms, and C—H = 0.97 Å and Uiso(H) = 1.2Ueq (C) for methylene atoms. The H atom of the OH group was found to be disordered over two positions with approximately equal occupancies from a difference Fourier map. The positions were then constrained, with Uiso(H) = 1.2Ueq(O), and with equal occupancies.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with atom labels and 25% probability displacement ellipsoids for non-H atoms.
[3,5-Bis(benzyloxy)phenyl]methanol top
Crystal data top
C21H20O3Z = 2
Mr = 320.37F(000) = 340
Triclinic, P1Dx = 1.249 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8555 (6) ÅCell parameters from 1252 reflections
b = 12.2442 (18) Åθ = 2.5–23.9°
c = 15.017 (2) ŵ = 0.08 mm1
α = 74.049 (1)°T = 298 K
β = 83.293 (1)°Needle, colorless
γ = 89.733 (2)°0.46 × 0.16 × 0.15 mm
V = 852.2 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2909 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 55
Tmin = 0.963, Tmax = 0.988k = 1413
4355 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0808P)2]
where P = (Fo2 + 2Fc2)/3
2909 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H20O3γ = 89.733 (2)°
Mr = 320.37V = 852.2 (2) Å3
Triclinic, P1Z = 2
a = 4.8555 (6) ÅMo Kα radiation
b = 12.2442 (18) ŵ = 0.08 mm1
c = 15.017 (2) ÅT = 298 K
α = 74.049 (1)°0.46 × 0.16 × 0.15 mm
β = 83.293 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2909 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1563 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.988Rint = 0.035
4355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 0.99Δρmax = 0.37 e Å3
2909 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7476 (4)0.54725 (14)0.18038 (12)0.0568 (6)
O20.7536 (4)0.14526 (14)0.29783 (13)0.0635 (6)
O31.2666 (5)0.48874 (17)0.45678 (15)0.0789 (7)
H31.37380.49820.49700.095*0.50
H3'1.10260.49580.48280.095*0.50
C10.8253 (5)0.4491 (2)0.24052 (17)0.0426 (6)
C20.7487 (5)0.34076 (19)0.23990 (17)0.0453 (7)
H2A0.63410.32990.19740.054*
C30.8453 (6)0.2488 (2)0.30348 (18)0.0464 (7)
C41.0120 (6)0.2635 (2)0.36729 (18)0.0480 (7)
H4A1.07470.20070.40980.058*
C51.0871 (5)0.3729 (2)0.36817 (17)0.0425 (6)
C60.9927 (5)0.4648 (2)0.30581 (17)0.0438 (7)
H6A1.04020.53790.30690.053*
C70.5903 (6)0.5371 (2)0.10822 (18)0.0533 (7)
H7A0.40950.50240.13510.064*
H7B0.68540.48970.07290.064*
C80.5585 (6)0.6536 (2)0.04585 (18)0.0496 (7)
C90.7312 (7)0.6937 (3)0.0356 (2)0.0754 (10)
H9A0.86760.64730.05280.090*
C100.7059 (10)0.8012 (3)0.0920 (3)0.0962 (13)
H10A0.82630.82740.14670.115*
C110.5067 (10)0.8696 (3)0.0687 (3)0.0908 (12)
H11A0.48830.94220.10760.109*
C120.3331 (9)0.8312 (3)0.0124 (3)0.1023 (13)
H12A0.19820.87810.02970.123*
C130.3587 (8)0.7224 (3)0.0687 (2)0.0794 (10)
H13A0.23720.69590.12320.095*
C140.8719 (7)0.0468 (2)0.3518 (2)0.0680 (9)
H14A0.83310.04220.41760.082*
H14B1.07160.05010.33540.082*
C150.7497 (7)0.0552 (2)0.3328 (2)0.0557 (8)
C160.8521 (8)0.0914 (3)0.2569 (2)0.0772 (10)
H16A0.99850.05100.21580.093*
C170.7416 (8)0.1859 (3)0.2410 (3)0.0869 (11)
H17A0.81470.20900.18930.104*
C180.5285 (9)0.2461 (3)0.2992 (3)0.0790 (11)
H18A0.45610.31060.28800.095*
C190.4214 (8)0.2119 (3)0.3736 (3)0.0840 (11)
H19A0.27320.25260.41360.101*
C200.5308 (7)0.1165 (3)0.3910 (2)0.0724 (9)
H20A0.45520.09370.44270.087*
C211.2750 (6)0.3847 (2)0.43799 (19)0.0533 (7)
H21C1.22430.32580.49580.064*
H21A1.46410.37210.41480.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0814 (15)0.0381 (10)0.0525 (11)0.0110 (9)0.0322 (10)0.0052 (9)
O20.0863 (16)0.0319 (10)0.0791 (14)0.0001 (9)0.0387 (12)0.0149 (9)
O30.0913 (17)0.0735 (14)0.0969 (17)0.0106 (12)0.0500 (14)0.0495 (13)
C10.0504 (17)0.0370 (14)0.0399 (14)0.0060 (12)0.0073 (12)0.0090 (12)
C20.0548 (18)0.0405 (15)0.0447 (15)0.0049 (12)0.0162 (13)0.0141 (12)
C30.0544 (18)0.0364 (14)0.0529 (16)0.0019 (12)0.0106 (14)0.0179 (13)
C40.0553 (18)0.0407 (15)0.0521 (16)0.0023 (12)0.0168 (14)0.0156 (13)
C50.0382 (15)0.0501 (16)0.0421 (14)0.0022 (12)0.0080 (12)0.0166 (13)
C60.0480 (17)0.0412 (15)0.0451 (14)0.0094 (12)0.0073 (13)0.0162 (12)
C70.067 (2)0.0495 (17)0.0465 (15)0.0089 (14)0.0208 (14)0.0128 (13)
C80.0575 (19)0.0477 (16)0.0469 (16)0.0056 (14)0.0173 (14)0.0139 (13)
C90.090 (3)0.064 (2)0.064 (2)0.0044 (18)0.0077 (19)0.0125 (18)
C100.131 (4)0.074 (3)0.065 (2)0.018 (2)0.002 (2)0.005 (2)
C110.114 (3)0.060 (2)0.087 (3)0.006 (2)0.039 (3)0.010 (2)
C120.109 (3)0.073 (3)0.112 (3)0.023 (2)0.015 (3)0.002 (2)
C130.082 (3)0.073 (2)0.070 (2)0.014 (2)0.0027 (18)0.0004 (18)
C140.097 (3)0.0410 (16)0.073 (2)0.0056 (16)0.0391 (18)0.0153 (15)
C150.072 (2)0.0330 (15)0.0616 (19)0.0019 (14)0.0210 (16)0.0064 (14)
C160.088 (3)0.059 (2)0.086 (2)0.0220 (18)0.009 (2)0.0278 (18)
C170.093 (3)0.072 (2)0.109 (3)0.006 (2)0.003 (2)0.050 (2)
C180.092 (3)0.0474 (19)0.102 (3)0.0107 (19)0.037 (2)0.019 (2)
C190.084 (3)0.069 (2)0.088 (3)0.028 (2)0.020 (2)0.001 (2)
C200.081 (3)0.070 (2)0.065 (2)0.0024 (19)0.0113 (19)0.0148 (18)
C210.0524 (18)0.0574 (17)0.0596 (18)0.0020 (14)0.0189 (14)0.0267 (15)
Geometric parameters (Å, º) top
O1—C11.371 (3)C10—C111.354 (5)
O1—C71.429 (3)C10—H10A0.9300
O2—C31.374 (3)C11—C121.365 (5)
O2—C141.416 (3)C11—H11A0.9300
O3—C211.378 (3)C12—C131.381 (5)
O3—H30.8727C12—H12A0.9300
O3—H3'0.8599C13—H13A0.9300
C1—C21.382 (3)C14—C151.496 (4)
C1—C61.396 (3)C14—H14A0.9700
C2—C31.381 (3)C14—H14B0.9700
C2—H2A0.9300C15—C161.372 (4)
C3—C41.372 (3)C15—C201.374 (4)
C4—C51.394 (3)C16—C171.369 (4)
C4—H4A0.9300C16—H16A0.9300
C5—C61.367 (3)C17—C181.349 (5)
C5—C211.503 (3)C17—H17A0.9300
C6—H6A0.9300C18—C191.347 (5)
C7—C81.494 (4)C18—H18A0.9300
C7—H7A0.9700C19—C201.387 (4)
C7—H7B0.9700C19—H19A0.9300
C8—C131.358 (4)C20—H20A0.9300
C8—C91.369 (4)C21—H21C0.9700
C9—C101.370 (5)C21—H21A0.9700
C9—H9A0.9300
C1—O1—C7117.82 (18)C10—C11—H11A120.3
C3—O2—C14117.6 (2)C12—C11—H11A120.3
C21—O3—H3116.4C11—C12—C13119.7 (4)
C21—O3—H3'107.9C11—C12—H12A120.1
H3—O3—H3'103.4C13—C12—H12A120.1
O1—C1—C2124.7 (2)C8—C13—C12121.0 (3)
O1—C1—C6115.0 (2)C8—C13—H13A119.5
C2—C1—C6120.3 (2)C12—C13—H13A119.5
C3—C2—C1118.9 (2)O2—C14—C15108.6 (2)
C3—C2—H2A120.6O2—C14—H14A110.0
C1—C2—H2A120.6C15—C14—H14A110.0
C4—C3—O2124.6 (2)O2—C14—H14B110.0
C4—C3—C2121.2 (2)C15—C14—H14B110.0
O2—C3—C2114.1 (2)H14A—C14—H14B108.4
C3—C4—C5119.7 (2)C16—C15—C20117.6 (3)
C3—C4—H4A120.1C16—C15—C14121.4 (3)
C5—C4—H4A120.1C20—C15—C14121.0 (3)
C6—C5—C4119.8 (2)C17—C16—C15120.9 (3)
C6—C5—C21122.4 (2)C17—C16—H16A119.5
C4—C5—C21117.8 (2)C15—C16—H16A119.5
C5—C6—C1120.1 (2)C18—C17—C16121.0 (4)
C5—C6—H6A119.9C18—C17—H17A119.5
C1—C6—H6A119.9C16—C17—H17A119.5
O1—C7—C8108.02 (19)C19—C18—C17119.4 (3)
O1—C7—H7A110.1C19—C18—H18A120.3
C8—C7—H7A110.1C17—C18—H18A120.3
O1—C7—H7B110.1C18—C19—C20120.4 (3)
C8—C7—H7B110.1C18—C19—H19A119.8
H7A—C7—H7B108.4C20—C19—H19A119.8
C13—C8—C9118.4 (3)C15—C20—C19120.6 (3)
C13—C8—C7120.9 (3)C15—C20—H20A119.7
C9—C8—C7120.8 (3)C19—C20—H20A119.7
C8—C9—C10120.9 (3)O3—C21—C5114.2 (2)
C8—C9—H9A119.6O3—C21—H21C108.7
C10—C9—H9A119.6C5—C21—H21C108.7
C11—C10—C9120.5 (4)O3—C21—H21A108.7
C11—C10—H10A119.8C5—C21—H21A108.7
C9—C10—H10A119.8H21C—C21—H21A107.6
C10—C11—C12119.5 (4)
C7—O1—C1—C24.0 (4)C7—C8—C9—C10178.8 (3)
C7—O1—C1—C6176.2 (2)C8—C9—C10—C110.7 (6)
O1—C1—C2—C3178.9 (2)C9—C10—C11—C120.9 (6)
C6—C1—C2—C31.3 (4)C10—C11—C12—C131.3 (6)
C14—O2—C3—C410.0 (4)C9—C8—C13—C121.3 (5)
C14—O2—C3—C2171.7 (2)C7—C8—C13—C12178.3 (3)
C1—C2—C3—C40.7 (4)C11—C12—C13—C81.6 (6)
C1—C2—C3—O2179.1 (2)C3—O2—C14—C15178.2 (2)
O2—C3—C4—C5178.4 (2)O2—C14—C15—C1683.4 (4)
C2—C3—C4—C50.3 (4)O2—C14—C15—C2096.8 (3)
C3—C4—C5—C60.4 (4)C20—C15—C16—C170.9 (5)
C3—C4—C5—C21178.7 (2)C14—C15—C16—C17178.9 (3)
C4—C5—C6—C11.0 (4)C15—C16—C17—C180.2 (6)
C21—C5—C6—C1178.1 (2)C16—C17—C18—C190.6 (6)
O1—C1—C6—C5178.8 (2)C17—C18—C19—C200.7 (5)
C2—C1—C6—C51.5 (4)C16—C15—C20—C190.8 (5)
C1—O1—C7—C8173.7 (2)C14—C15—C20—C19179.0 (3)
O1—C7—C8—C1382.1 (3)C18—C19—C20—C150.0 (5)
O1—C7—C8—C997.5 (3)C6—C5—C21—O321.5 (4)
C13—C8—C9—C100.9 (5)C4—C5—C21—O3159.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3i0.871.982.791 (4)155
O3—H3···O3ii0.861.952.805 (5)179
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H20O3
Mr320.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.8555 (6), 12.2442 (18), 15.017 (2)
α, β, γ (°)74.049 (1), 83.293 (1), 89.733 (2)
V3)852.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4355, 2909, 1563
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 0.99
No. of reflections2909
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O3i0.871.982.791 (4)155
O3—H3'···O3ii0.861.952.805 (5)179
Symmetry codes: (i) x+3, y+1, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by Shandong Province (2007BS02016) and the Key Subject Research Foundation of Shandong Province (XTD 0705).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHawker, C. J. & Fréchet, J. M. (1990). J. Am. Chem. Soc. 112, 7638–7647.  CrossRef CAS Web of Science Google Scholar
First citationPan, Z.-G., Cheung, E.-Y., Harris, K. D. M., Constable, E. C. & Housecroft, C. E. (2005). Cryst. Growth Des. 5, 2084–2090.  Web of Science CSD CrossRef CAS Google Scholar
First citationRheiner, P. B. & Seebach, D. (1999). Chem. Eur. J. 5, 3221–3236.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Shi, L., Ding, H., Chen, X. & Zhu, H.-L. (2007). Can. J. Chem. 85, 951–957.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds