organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phenyl­sulfon­yl)-2,2,2-tri­methyl­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 June 2008; accepted 11 June 2008; online 19 June 2008)

In the crystal structure of the title compound (N4CPSTMAA), C11H14ClNO3S, the conformations of the N—H and C=O bonds in the amide group are anti to each other, similar to those observed in N-phenyl­sulfonyl-2,2,2-trimethyl­acetamide (NPSTMAA) and 2,2,2-trimethyl-N-(4-methyl­phenyl­sulfon­yl)acetamide (N4MPSTMAA). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-aryl-2,2,2-trimethyl­acetamides and 4-chloro­benzene­sulfonamide. The –SNHCOC– unit including the amide group is essentially planar and makes a dihedral angle of 82.2 (1)° with the benzene ring, comparable to the values of 79.1 (1) and 71.2 (1)° in NPSTMAA and N4MPSTMAA, respectively. The mol­ecules in N4CPSTMAA are linked into a chain by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.], 2007[Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331-337.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64. Submitted.],b[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64. Submitted. [Paper reference RK2096].]).

[Scheme 1]

Experimental

Crystal data
  • C11H14ClNO3S

  • Mr = 275.74

  • Triclinic, [P \overline 1]

  • a = 6.034 (2) Å

  • b = 10.695 (2) Å

  • c = 11.134 (2) Å

  • α = 67.13 (2)°

  • β = 79.76 (2)°

  • γ = 88.46 (2)°

  • V = 650.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 299 (2) K

  • 0.50 × 0.24 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.806, Tmax = 0.948

  • 7016 measured reflections

  • 2595 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.10

  • 2595 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (3) 2.19 (3) 2.986 (3) 165 (3)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) has been determined (Gowda et al., 2003, 2007, 2008a,b). The conformations of the N—H and C=O bonds of the SO2—NH—CO—C group in N4CPSTMAA are anti to each other (Fig. 1), similar to those observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008a,b). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-(aryl)-2,2,2-trimethylacetamides (Gowda et al., 2007) and 4-chlorobenzenesulfonamide (Gowda et al., 2003). The packing diagram of N4CPSTMAA molecules showing the hydrogen bonds N—H···O (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003, 2007, 2008a,b).

Experimental top

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide with excess pivalyl chloride for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The N-bound H atom was located in a difference map and its positional parameters were refined, with Uiso(H) = 1.2Ueq(N). The refined N—H length is 0.82 (3) Å. The other H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(4-Chlorophenylsulfonyl)-2,2,2-trimethylacetamide top
Crystal data top
C11H14ClNO3SZ = 2
Mr = 275.74F(000) = 288
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.034 (2) ÅCell parameters from 2338 reflections
b = 10.695 (2) Åθ = 2.3–27.9°
c = 11.134 (2) ŵ = 0.45 mm1
α = 67.13 (2)°T = 299 K
β = 79.76 (2)°Long needle, colourless
γ = 88.46 (2)°0.50 × 0.24 × 0.12 mm
V = 650.8 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2595 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 67
Tmin = 0.807, Tmax = 0.948k = 1313
7016 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.5579P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C11H14ClNO3Sγ = 88.46 (2)°
Mr = 275.74V = 650.8 (3) Å3
Triclinic, P1Z = 2
a = 6.034 (2) ÅMo Kα radiation
b = 10.695 (2) ŵ = 0.45 mm1
c = 11.134 (2) ÅT = 299 K
α = 67.13 (2)°0.50 × 0.24 × 0.12 mm
β = 79.76 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2595 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1901 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.948Rint = 0.023
7016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.24 e Å3
2595 reflectionsΔρmin = 0.51 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3219 (4)0.2479 (2)0.6007 (2)0.0368 (5)
C20.2137 (4)0.3650 (2)0.5986 (2)0.0407 (6)
H20.08450.38890.56150.049*
C30.3008 (5)0.4452 (3)0.6522 (3)0.0477 (7)
H30.23150.52440.65090.057*
C40.4906 (5)0.4074 (3)0.7075 (3)0.0471 (6)
C50.5980 (5)0.2899 (3)0.7113 (3)0.0501 (7)
H50.72490.26500.75040.060*
C60.5129 (4)0.2108 (3)0.6559 (3)0.0461 (6)
H60.58410.13260.65580.055*
C70.0583 (4)0.0409 (3)0.7704 (2)0.0394 (6)
C80.0948 (5)0.1803 (3)0.8733 (2)0.0438 (6)
C90.0658 (8)0.2896 (3)0.8210 (4)0.0875 (13)
H9A0.17300.27180.74080.105*
H9B0.08420.28920.80320.105*
H9C0.09030.37680.88610.105*
C100.0751 (6)0.2068 (4)1.0003 (3)0.0711 (10)
H10A0.22520.20430.98210.085*
H10B0.05380.13821.03330.085*
H10C0.05350.29451.06540.085*
C110.3316 (6)0.1784 (4)0.9012 (3)0.0791 (11)
H11A0.34740.10920.93440.095*
H11B0.43900.15950.82090.095*
H11C0.35830.26520.96610.095*
N10.1921 (4)0.0075 (2)0.6461 (2)0.0408 (5)
H1N0.291 (5)0.055 (3)0.630 (3)0.049*
O10.0027 (3)0.1924 (2)0.49806 (19)0.0521 (5)
O20.3885 (4)0.13680 (19)0.42621 (17)0.0554 (5)
O30.0693 (3)0.0397 (2)0.79256 (19)0.0574 (5)
Cl10.60248 (18)0.50755 (8)0.77505 (9)0.0778 (3)
S10.21651 (11)0.14675 (6)0.52882 (6)0.0413 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0414 (13)0.0260 (11)0.0349 (12)0.0021 (10)0.0005 (10)0.0064 (9)
C20.0457 (14)0.0309 (12)0.0413 (13)0.0110 (10)0.0078 (11)0.0100 (10)
C30.0599 (17)0.0277 (12)0.0493 (15)0.0075 (11)0.0035 (13)0.0115 (11)
C40.0610 (17)0.0320 (12)0.0430 (14)0.0069 (12)0.0048 (12)0.0102 (11)
C50.0442 (15)0.0409 (14)0.0579 (16)0.0037 (12)0.0131 (13)0.0099 (12)
C60.0426 (14)0.0328 (13)0.0581 (16)0.0096 (11)0.0066 (12)0.0144 (12)
C70.0418 (13)0.0422 (13)0.0349 (12)0.0025 (11)0.0064 (10)0.0163 (11)
C80.0531 (15)0.0386 (13)0.0346 (12)0.0026 (11)0.0068 (11)0.0092 (11)
C90.163 (4)0.0344 (16)0.061 (2)0.001 (2)0.026 (2)0.0127 (15)
C100.072 (2)0.074 (2)0.0448 (16)0.0038 (18)0.0027 (15)0.0050 (15)
C110.066 (2)0.087 (3)0.060 (2)0.0057 (19)0.0204 (17)0.0012 (18)
N10.0554 (13)0.0292 (10)0.0359 (11)0.0087 (9)0.0031 (10)0.0133 (9)
O10.0609 (12)0.0500 (11)0.0493 (11)0.0138 (9)0.0197 (9)0.0200 (9)
O20.0754 (13)0.0433 (10)0.0366 (9)0.0141 (9)0.0048 (9)0.0110 (8)
O30.0613 (12)0.0543 (12)0.0489 (11)0.0205 (10)0.0008 (9)0.0175 (9)
Cl10.1118 (8)0.0485 (5)0.0812 (6)0.0064 (4)0.0330 (5)0.0266 (4)
S10.0536 (4)0.0328 (3)0.0340 (3)0.0090 (3)0.0047 (3)0.0110 (2)
Geometric parameters (Å, º) top
C1—C61.378 (4)C8—C91.520 (4)
C1—C21.391 (3)C8—C101.523 (4)
C1—S11.763 (3)C9—H9A0.9600
C2—C31.380 (4)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.374 (4)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.387 (4)C10—H10C0.9600
C4—Cl11.736 (3)C11—H11A0.9600
C5—C61.379 (4)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—S11.649 (2)
C7—O31.208 (3)N1—H1N0.82 (3)
C7—N11.389 (3)O1—S11.419 (2)
C7—C81.525 (3)O2—S11.4354 (19)
C8—C111.518 (4)
C6—C1—C2121.1 (2)C8—C9—H9A109.5
C6—C1—S1119.36 (19)C8—C9—H9B109.5
C2—C1—S1119.5 (2)H9A—C9—H9B109.5
C3—C2—C1119.0 (2)C8—C9—H9C109.5
C3—C2—H2120.5H9A—C9—H9C109.5
C1—C2—H2120.5H9B—C9—H9C109.5
C4—C3—C2119.5 (2)C8—C10—H10A109.5
C4—C3—H3120.2C8—C10—H10B109.5
C2—C3—H3120.2H10A—C10—H10B109.5
C3—C4—C5121.7 (3)C8—C10—H10C109.5
C3—C4—Cl1120.0 (2)H10A—C10—H10C109.5
C5—C4—Cl1118.2 (2)H10B—C10—H10C109.5
C6—C5—C4118.7 (3)C8—C11—H11A109.5
C6—C5—H5120.6C8—C11—H11B109.5
C4—C5—H5120.6H11A—C11—H11B109.5
C1—C6—C5119.8 (2)C8—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
O3—C7—N1120.3 (2)C7—N1—S1123.41 (18)
O3—C7—C8124.5 (2)C7—N1—H1N123 (2)
N1—C7—C8115.1 (2)S1—N1—H1N112 (2)
C11—C8—C9110.4 (3)O1—S1—O2118.95 (12)
C11—C8—C10109.3 (3)O1—S1—N1110.80 (12)
C9—C8—C10110.1 (3)O2—S1—N1103.81 (11)
C11—C8—C7108.0 (2)O1—S1—C1108.91 (12)
C9—C8—C7110.1 (2)O2—S1—C1109.30 (12)
C10—C8—C7109.0 (2)N1—S1—C1103.99 (11)
C6—C1—C2—C30.3 (4)O3—C7—C8—C107.1 (4)
S1—C1—C2—C3178.41 (19)N1—C7—C8—C10175.6 (2)
C1—C2—C3—C40.6 (4)O3—C7—N1—S19.2 (4)
C2—C3—C4—C50.1 (4)C8—C7—N1—S1168.17 (19)
C2—C3—C4—Cl1179.8 (2)C7—N1—S1—O157.7 (2)
C3—C4—C5—C61.0 (4)C7—N1—S1—O2173.5 (2)
Cl1—C4—C5—C6178.9 (2)C7—N1—S1—C159.2 (2)
C2—C1—C6—C50.6 (4)C6—C1—S1—O1170.94 (19)
S1—C1—C6—C5179.4 (2)C2—C1—S1—O110.3 (2)
C4—C5—C6—C11.3 (4)C6—C1—S1—O257.6 (2)
O3—C7—C8—C11111.5 (3)C2—C1—S1—O2121.2 (2)
N1—C7—C8—C1165.7 (3)C6—C1—S1—N152.8 (2)
O3—C7—C8—C9127.9 (3)C2—C1—S1—N1128.5 (2)
N1—C7—C8—C954.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (3)2.19 (3)2.986 (3)165 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H14ClNO3S
Mr275.74
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.034 (2), 10.695 (2), 11.134 (2)
α, β, γ (°)67.13 (2), 79.76 (2), 88.46 (2)
V3)650.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.50 × 0.24 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.807, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
7016, 2595, 1901
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.10
No. of reflections2595
No. of parameters157
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.51

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (3)2.19 (3)2.986 (3)165 (3)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64. Submitted.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64. Submitted. [Paper reference RK2096].  Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds