organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(3-phenyl-1H-pyrazol-5-yl)pyridine monohydrate

aDepartment of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*Correspondence e-mail: jianyud@mail.ustc.edu.cn

(Received 16 February 2008; accepted 31 March 2008; online 10 April 2008)

In the title compound, C23H17N5·H2O, the pyrazole rings are slightly twisted from the central pyridine ring, forming dihedral angles of 5.3 (2) and 3.5 (2)°. The pyrazole and phenyl rings on each side of the pyridine ring are also approximately coplanar, making dihedral angles of 6.0 (2) and 4.5 (2)°. In the crystal structure, 2,6-bis­(3-phenyl-1H-pyrazol-5-yl)pyridine and water mol­ecules are linked together via N—H⋯O and O—H⋯N hydrogen bonds, forming a column running parallel to the a axis.

Related literature

For general background, see: Dias & Gamage (2007[Dias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed. 46, 2192-2194.]); Zhou & Chen (2007a[Zhou, Y. B. & Chen, W. Z. (2007a). Dalton Trans. pp. 5123-5125.],b[Zhou, Y. B. & Chen, W. Z. (2007b). Organometallics, 26, 2742-2746.]); Zhang et al. (2007[Zhang, J.-P., Horike, S. & Kitagawa, S. (2007). Angew. Chem. Int. Ed. 46, 889-892.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N5·H2O

  • Mr = 381.43

  • Monoclinic, P 21 /n

  • a = 8.0581 (17) Å

  • b = 19.975 (2) Å

  • c = 12.451 (2) Å

  • β = 98.273 (3)°

  • V = 1983.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.42 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.994

  • 9869 measured reflections

  • 3513 independent reflections

  • 1796 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.159

  • S = 1.05

  • 3513 reflections

  • 271 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H22⋯N5i 0.84 (3) 2.13 (3) 2.878 (4) 148 (4)
O1—H23⋯N3ii 0.84 (4) 2.20 (2) 2.956 (4) 150 (4)
N2—H17⋯O1 0.86 2.07 2.918 (4) 167
N4—H5⋯O1 0.86 2.16 3.007 (4) 170
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazolyl ligands are a kind of mutifuntional organic ligands often displaying exo-bidentate coordination mode (Dias & Gamage, 2007; Zhou & Chen, 2007a; Zhang et al., 2007). The title compound, 2,6-bis(3-phenyl-1H-pyrazol-5-yl)pyridine (hereinafter abbreviated to bppp), is a pincer-like bispyrazolyl ligand. As a kind of anionic multidentate linker, it is a suitable candidate to connect transition metals into aggregate (Zhou & Chen, 2007b).

As shown in Fig. 1, the asymmetric unit contains one bppp molecule and one water molecule, and they are linked together via N—H···O hydrogen bonds. The pyrazole rings are slightly twisted from the central pyridine ring with the dihedral angles of 5.3 (2) and 3.5 (2)°. The pyrazole and phenyl rings on each side of the molecule are also approximately coplanar with the dihedral angles of 6.0 (2) and 4.5 (2)°. Furthermore, O—H···N hydrogen bonds extend it in a one-dimensional chains running parallel to the a axis (Fig. 2). All bond lengths and angles in the title compound are normal.

Related literature top

For general background, see: Dias & Gamage (2007); Zhou & Chen (2007a,b); Zhang et al. (2007).

Experimental top

All reagents were of analytical grade and used without further purification. Bppp was prepared by the general procedure of Zhou and Chen (2007a). Bppp (36 mg, 0.1 mmol) in 20 ml of water in a sealed stainless vial was heated at 170 °C for 48 h. Cooling the vial slowly (1 °C/h) afforded colorless crystals. Analysis found: C 72.64, H 4.90, N 18.25%; calculated for C23H19N5O: C 72.42, H 5.02, N 18.36%.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically with bond and distance restraints of O—H = 0.83 (1) and H···H = 1.45 (1) Å. Other H atoms were positioned geometrically and treated as riding, with C—H = 0.93 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A partial packing view, showing the hydrogen bonds (dashed lines).
2,6-Bis(3-phenyl-1H-pyrazol-5-yl)pyridine monohydrate top
Crystal data top
C23H17N5·H2OF(000) = 800
Mr = 381.43Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1722 reflections
a = 8.0581 (17) Åθ = 2.8–22.2°
b = 19.975 (2) ŵ = 0.08 mm1
c = 12.451 (2) ÅT = 298 K
β = 98.273 (3)°Needle, colorless
V = 1983.2 (6) Å30.42 × 0.11 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3513 independent reflections
Radiation source: fine-focus sealed tube1796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 89
Tmin = 0.966, Tmax = 0.994k = 2223
9869 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3513 reflectionsΔρmax = 0.18 e Å3
271 parametersΔρmin = 0.18 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (10)
Crystal data top
C23H17N5·H2OV = 1983.2 (6) Å3
Mr = 381.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0581 (17) ŵ = 0.08 mm1
b = 19.975 (2) ÅT = 298 K
c = 12.451 (2) Å0.42 × 0.11 × 0.07 mm
β = 98.273 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1796 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.994Rint = 0.077
9869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0633 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
3513 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1701 (3)0.11239 (13)0.7473 (2)0.0464 (7)
N20.4662 (3)0.11019 (14)0.8827 (2)0.0509 (7)
H170.39060.08250.89690.061*
N30.6177 (3)0.11540 (14)0.9425 (2)0.0510 (7)
N40.0667 (3)0.02481 (13)0.7985 (2)0.0489 (7)
H50.02720.02520.84130.059*
N50.1970 (3)0.01481 (14)0.8133 (2)0.0535 (8)
C10.0274 (4)0.10897 (16)0.6795 (3)0.0469 (8)
C20.0007 (5)0.14642 (18)0.5851 (3)0.0671 (11)
H20.10220.14360.53920.081*
C30.1241 (5)0.1876 (2)0.5611 (3)0.0800 (13)
H30.10810.21320.49810.096*
C40.2718 (5)0.19125 (18)0.6292 (3)0.0705 (11)
H40.35800.21880.61340.085*
C50.2900 (4)0.15272 (16)0.7226 (3)0.0485 (9)
C60.4445 (4)0.15273 (16)0.7981 (3)0.0464 (8)
C70.5920 (4)0.18745 (16)0.8030 (3)0.0491 (9)
H70.61730.22080.75580.059*
C80.6966 (4)0.16260 (15)0.8935 (3)0.0459 (8)
C90.8667 (4)0.18274 (17)0.9361 (3)0.0479 (9)
C100.9428 (5)0.2353 (2)0.8903 (3)0.0759 (12)
H100.88570.25760.83060.091*
C111.1031 (6)0.2547 (2)0.9324 (4)0.0936 (15)
H111.15330.29030.90130.112*
C121.1886 (5)0.2221 (2)1.0195 (4)0.0860 (14)
H121.29720.23501.04720.103*
C131.1139 (5)0.17056 (19)1.0656 (4)0.0744 (12)
H131.17040.14921.12650.089*
C140.9565 (4)0.15005 (17)1.0232 (3)0.0607 (10)
H140.90910.11341.05350.073*
C150.0992 (4)0.06365 (16)0.7095 (2)0.0454 (8)
C160.2579 (4)0.04886 (16)0.6641 (3)0.0506 (9)
H160.31660.06730.60130.061*
C170.3159 (4)0.00052 (17)0.7303 (3)0.0474 (8)
C180.4788 (4)0.03241 (18)0.7192 (3)0.0510 (9)
C190.6077 (4)0.01190 (19)0.6401 (3)0.0617 (10)
H190.58850.02250.59300.074*
C200.7635 (5)0.0415 (2)0.6298 (3)0.0717 (12)
H200.84800.02710.57590.086*
C210.7945 (5)0.0916 (2)0.6984 (4)0.0772 (13)
H210.90020.11120.69190.093*
C220.6695 (5)0.1130 (2)0.7767 (3)0.0756 (12)
H22A0.68940.14800.82250.091*
C230.5147 (5)0.0831 (2)0.7880 (3)0.0668 (11)
H23A0.43190.09730.84320.080*
O10.2448 (3)0.01202 (14)0.9621 (2)0.0566 (7)
H220.216 (6)0.028 (2)1.019 (2)0.15 (2)*
H230.298 (6)0.0242 (14)0.967 (3)0.15 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (17)0.0464 (17)0.0497 (16)0.0026 (14)0.0054 (14)0.0008 (13)
N20.0401 (18)0.0554 (18)0.0563 (17)0.0080 (14)0.0035 (14)0.0059 (15)
N30.0378 (17)0.0568 (18)0.0577 (17)0.0084 (14)0.0040 (14)0.0026 (14)
N40.0354 (17)0.0575 (18)0.0516 (17)0.0011 (14)0.0011 (13)0.0039 (14)
N50.0397 (17)0.0625 (19)0.0577 (18)0.0063 (15)0.0048 (15)0.0025 (15)
C10.050 (2)0.041 (2)0.049 (2)0.0068 (17)0.0032 (18)0.0019 (16)
C20.063 (3)0.059 (2)0.071 (3)0.005 (2)0.017 (2)0.020 (2)
C30.084 (3)0.076 (3)0.074 (3)0.014 (3)0.011 (3)0.035 (2)
C40.063 (3)0.067 (3)0.077 (3)0.016 (2)0.006 (2)0.026 (2)
C50.042 (2)0.044 (2)0.058 (2)0.0012 (17)0.0023 (18)0.0016 (17)
C60.046 (2)0.0412 (19)0.052 (2)0.0007 (17)0.0053 (17)0.0032 (17)
C70.052 (2)0.0403 (19)0.056 (2)0.0025 (17)0.0114 (18)0.0037 (17)
C80.043 (2)0.039 (2)0.057 (2)0.0035 (16)0.0130 (18)0.0073 (16)
C90.041 (2)0.044 (2)0.060 (2)0.0072 (16)0.0103 (18)0.0101 (17)
C100.071 (3)0.077 (3)0.078 (3)0.026 (2)0.004 (2)0.004 (2)
C110.085 (4)0.098 (4)0.097 (3)0.046 (3)0.010 (3)0.010 (3)
C120.056 (3)0.080 (3)0.121 (4)0.028 (2)0.009 (3)0.009 (3)
C130.049 (2)0.065 (3)0.107 (3)0.005 (2)0.001 (2)0.006 (2)
C140.044 (2)0.048 (2)0.087 (3)0.0069 (18)0.002 (2)0.002 (2)
C150.042 (2)0.050 (2)0.0436 (19)0.0046 (17)0.0033 (16)0.0001 (17)
C160.045 (2)0.057 (2)0.048 (2)0.0066 (18)0.0010 (17)0.0009 (18)
C170.038 (2)0.055 (2)0.049 (2)0.0046 (17)0.0073 (17)0.0090 (17)
C180.044 (2)0.058 (2)0.050 (2)0.0012 (18)0.0064 (17)0.0136 (18)
C190.044 (2)0.071 (3)0.068 (3)0.004 (2)0.001 (2)0.015 (2)
C200.045 (3)0.086 (3)0.080 (3)0.008 (2)0.006 (2)0.030 (3)
C210.048 (3)0.101 (4)0.085 (3)0.015 (2)0.019 (2)0.034 (3)
C220.058 (3)0.096 (3)0.073 (3)0.013 (2)0.011 (2)0.007 (2)
C230.043 (2)0.087 (3)0.070 (3)0.012 (2)0.006 (2)0.004 (2)
O10.0573 (17)0.0555 (17)0.0564 (16)0.0011 (14)0.0067 (13)0.0061 (13)
Geometric parameters (Å, º) top
N1—C51.327 (4)C10—H100.9300
N1—C11.327 (4)C11—C121.364 (6)
N2—N31.339 (3)C11—H110.9300
N2—C61.344 (4)C12—C131.360 (5)
N2—H170.8600C12—H120.9300
N3—C81.333 (4)C13—C141.365 (5)
N4—C151.348 (4)C13—H130.9300
N4—N51.348 (3)C14—H140.9300
N4—H50.8600C15—C161.354 (4)
N5—C171.340 (4)C16—C171.393 (4)
C1—C21.383 (4)C16—H160.9300
C1—C151.453 (4)C17—C181.457 (4)
C2—C31.365 (5)C18—C231.383 (5)
C2—H20.9300C18—C191.387 (4)
C3—C41.360 (5)C19—C201.376 (5)
C3—H30.9300C19—H190.9300
C4—C51.385 (4)C20—C211.362 (5)
C4—H40.9300C20—H200.9300
C5—C61.448 (4)C21—C221.366 (5)
C6—C71.370 (4)C21—H210.9300
C7—C81.397 (4)C22—C231.372 (5)
C7—H70.9300C22—H22A0.9300
C8—C91.454 (4)C23—H23A0.9300
C9—C141.378 (4)O1—H220.84 (3)
C9—C101.380 (5)O1—H230.84 (4)
C10—C111.378 (5)
C5—N1—C1118.5 (3)C12—C11—H11119.8
N3—N2—C6113.1 (3)C10—C11—H11119.8
N3—N2—H17123.5C13—C12—C11119.6 (4)
C6—N2—H17123.5C13—C12—H12120.2
C8—N3—N2104.9 (3)C11—C12—H12120.2
C15—N4—N5112.7 (3)C12—C13—C14120.4 (4)
C15—N4—H5123.6C12—C13—H13119.8
N5—N4—H5123.6C14—C13—H13119.8
C17—N5—N4104.2 (3)C13—C14—C9121.1 (4)
N1—C1—C2122.2 (3)C13—C14—H14119.5
N1—C1—C15116.4 (3)C9—C14—H14119.5
C2—C1—C15121.3 (3)N4—C15—C16106.1 (3)
C3—C2—C1118.4 (4)N4—C15—C1120.6 (3)
C3—C2—H2120.8C16—C15—C1133.2 (3)
C1—C2—H2120.8C15—C16—C17106.4 (3)
C4—C3—C2120.2 (4)C15—C16—H16126.8
C4—C3—H3119.9C17—C16—H16126.8
C2—C3—H3119.9N5—C17—C16110.5 (3)
C3—C4—C5118.1 (4)N5—C17—C18120.3 (3)
C3—C4—H4120.9C16—C17—C18129.2 (3)
C5—C4—H4120.9C23—C18—C19117.0 (3)
N1—C5—C4122.6 (3)C23—C18—C17122.5 (3)
N1—C5—C6115.9 (3)C19—C18—C17120.4 (3)
C4—C5—C6121.5 (3)C20—C19—C18121.2 (4)
N2—C6—C7105.7 (3)C20—C19—H19119.4
N2—C6—C5120.7 (3)C18—C19—H19119.4
C7—C6—C5133.5 (3)C21—C20—C19120.3 (4)
C6—C7—C8106.0 (3)C21—C20—H20119.8
C6—C7—H7127.0C19—C20—H20119.8
C8—C7—H7127.0C20—C21—C22119.7 (4)
N3—C8—C7110.3 (3)C20—C21—H21120.2
N3—C8—C9121.1 (3)C22—C21—H21120.2
C7—C8—C9128.6 (3)C21—C22—C23120.2 (4)
C14—C9—C10118.1 (3)C21—C22—H22A119.9
C14—C9—C8121.1 (3)C23—C22—H22A119.9
C10—C9—C8120.8 (3)C22—C23—C18121.5 (4)
C11—C10—C9120.3 (4)C22—C23—H23A119.2
C11—C10—H10119.8C18—C23—H23A119.2
C9—C10—H10119.8H22—O1—H23118 (2)
C12—C11—C10120.4 (4)
C6—N2—N3—C80.7 (4)C9—C10—C11—C120.3 (7)
C15—N4—N5—C170.5 (3)C10—C11—C12—C130.8 (7)
C5—N1—C1—C20.7 (5)C11—C12—C13—C142.1 (7)
C5—N1—C1—C15179.4 (3)C12—C13—C14—C93.0 (6)
N1—C1—C2—C30.7 (6)C10—C9—C14—C132.5 (5)
C15—C1—C2—C3179.4 (3)C8—C9—C14—C13177.6 (3)
C1—C2—C3—C40.1 (6)N5—N4—C15—C160.1 (4)
C2—C3—C4—C50.5 (6)N5—N4—C15—C1179.1 (3)
C1—N1—C5—C40.1 (5)N1—C1—C15—N43.8 (4)
C1—N1—C5—C6178.2 (3)C2—C1—C15—N4176.4 (3)
C3—C4—C5—N10.6 (6)N1—C1—C15—C16177.3 (3)
C3—C4—C5—C6178.7 (3)C2—C1—C15—C162.6 (6)
N3—N2—C6—C70.4 (4)N4—C15—C16—C170.3 (4)
N3—N2—C6—C5178.1 (3)C1—C15—C16—C17179.3 (3)
N1—C5—C6—N24.9 (4)N4—N5—C17—C160.7 (3)
C4—C5—C6—N2173.4 (3)N4—N5—C17—C18179.5 (3)
N1—C5—C6—C7178.1 (3)C15—C16—C17—N50.6 (4)
C4—C5—C6—C73.6 (6)C15—C16—C17—C18179.5 (3)
N2—C6—C7—C80.0 (3)N5—C17—C18—C234.3 (5)
C5—C6—C7—C8177.2 (3)C16—C17—C18—C23175.6 (3)
N2—N3—C8—C70.7 (4)N5—C17—C18—C19173.4 (3)
N2—N3—C8—C9179.6 (3)C16—C17—C18—C196.7 (5)
C6—C7—C8—N30.5 (4)C23—C18—C19—C200.8 (5)
C6—C7—C8—C9179.2 (3)C17—C18—C19—C20178.6 (3)
N3—C8—C9—C145.3 (5)C18—C19—C20—C210.4 (6)
C7—C8—C9—C14176.1 (3)C19—C20—C21—C220.8 (6)
N3—C8—C9—C10174.8 (3)C20—C21—C22—C231.6 (6)
C7—C8—C9—C103.9 (5)C21—C22—C23—C182.1 (6)
C14—C9—C10—C111.2 (6)C19—C18—C23—C221.6 (5)
C8—C9—C10—C11178.9 (4)C17—C18—C23—C22179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H22···N5i0.84 (3)2.13 (3)2.878 (4)148 (4)
O1—H23···N3ii0.84 (4)2.20 (2)2.956 (4)150 (4)
N2—H17···O10.862.072.918 (4)167
N4—H5···O10.862.163.007 (4)170
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC23H17N5·H2O
Mr381.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0581 (17), 19.975 (2), 12.451 (2)
β (°) 98.273 (3)
V3)1983.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.966, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9869, 3513, 1796
Rint0.077
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.159, 1.05
No. of reflections3513
No. of parameters271
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H22···N5i0.84 (3)2.13 (3)2.878 (4)148 (4)
O1—H23···N3ii0.84 (4)2.20 (2)2.956 (4)150 (4)
N2—H17···O10.862.072.918 (4)167
N4—H5···O10.862.163.007 (4)170
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed. 46, 2192–2194.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhang, J.-P., Horike, S. & Kitagawa, S. (2007). Angew. Chem. Int. Ed. 46, 889–892.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y. B. & Chen, W. Z. (2007a). Dalton Trans. pp. 5123-5125.  Web of Science CSD CrossRef Google Scholar
First citationZhou, Y. B. & Chen, W. Z. (2007b). Organometallics, 26, 2742–2746.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds