organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­propyl 4,8-dioxo-1H,5H-2,6-dioxa-3a,4a,7a,8a-tetra­aza­cyclo­penta­[def]fluorene-8b,8c-di­carboxyl­ate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: wsh2007@mails.ccnu.edu.cn

(Received 20 November 2007; accepted 6 December 2007; online 12 December 2007)

The title compound, C16H22N4O8, is a glycoluril derivative with two propoxycarbonyl substituents on the convex face of the glycoluril system. The dihedral angle between the five-membered rings in the glycoluril unit is 72.70 (2)°. The oxadiazinane six-membered ring displays a normal chair conformation. One of the propyl groups is disordered over two positions with site occupancies of 0.557 (7) and 0.443 (7). Inter­molecular C—H⋯O hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For related structures, see: Branda et al. (1995[Branda, N., Grotzfeld, R. M., Valdes, C. & Rebek, J. (1995). J. Am. Chem. Soc. 117, 85-88.]); Elemans et al. (1999[Elemans, J. A. A. W., Claase, M. B., Aarts, P. P. M., Rowan, A. E., Schenning, A. P. H. J. & Nolte, R. J. M. (1999). J. Org. Chem. 64, 7009-7016.]); Gao & Sun (2007[Gao, M. & Sun, J.-J. (2007). Acta Cryst. E63, o3480.]); Isaacs & Witt (2002[Isaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed. 41, 1905-1907.]); Isaacs et al. (1999[Isaacs, L., Witt, D. & Fettinger, J. C. (1999). Chem. Commun. pp. 2549-2550.]); Li et al. (2007[Li, Y.-T., Li, J. & Wen, L.-L. (2007). Acta Cryst. E63, o287-o288.]); Rebek (1999[Rebek, J. Jr (1999). Acc. Chem. Res. 32, 278-286.]); Rowan et al. (1999[Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.]); She & Xi (2007[She, N.-F. & Xi, H.-L. (2007). Acta Cryst. E63, o3495.]); Witt et al. (2000[Witt, D., Lagona, J., Damkaci, F., Fettinger, J. C. & Isaacs, L. (2000). Org. Lett. 2, 755-758.]); Wu et al. (2002[Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22N4O8

  • Mr = 398.38

  • Orthorhombic, P 21 21 21

  • a = 8.6399 (4) Å

  • b = 13.401 (7) Å

  • c = 16.0445 (8) Å

  • V = 1857.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 17272 measured reflections

  • 2315 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.123

  • S = 1.07

  • 2315 reflections

  • 263 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O2i 0.97 2.58 3.482 (5) 155
C9—H9B⋯O4ii 0.97 2.58 3.388 (4) 141
C5—H5B⋯O7iii 0.97 2.45 3.310 (4) 148
C9—H9A⋯O1iv 0.97 2.50 3.364 (4) 149
C2—H2A⋯O3iv 0.97 2.46 3.368 (4) 155
C1—H1B⋯O7v 0.97 2.55 3.231 (4) 128
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Glycolurils are a topic of numerous reports; these compounds are of use in supramolecular chemistry as building blocks for molecular clips (Rowan et al., 1999; Isaacs & Witt, 2002) and molecular capsules (Rebek, 1999). The derivatives of glycoluril have been employed in many applications, including polymer cross-linking, explosives and combinational chemistry (Witt et al., 2000). The widespread interest in glycolurils has led to a variety of crystal structures reported for a number of its derivatives. Here we report the structure of the title glycoluril derivative, (I) (Fig. 1), which is an important intermediate for the preparation glycoluril receptors (Wu et al., 2002) and in which the bond lengths and angles present no unusual features and are similar to those found in other similar compounds (Gao & Sun, 2007; She & Xi, 2007; Li et al., 2007).

The oxadiazinane six-membered ring displays a normal chair conformation. The weak intermolecular C—H···O hydrogen bonds cause the formation of a three-dimensional network structure (Fig. 2).

Related literature top

For related structures, see: Branda et al. (1995); Elemans et al. (1999); Gao & Sun (2007); Isaacs & Witt (2002); Isaacs et al. (1999); Li et al. (2007); Rebek (1999); Rowan et al. (1999); She & Xi (2007); Witt et al. (2000); Wu et al. (2002).

Experimental top

The title compound was synthesized according to the procedure reported (Isaacs et al., 1999). Crystals appropriate for X-ray data collection were obtained by slow evaporation of a dichloromethane solution at 283 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.97 and 0.96 Å for methylene and methyl groups, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). One of the propyl groups is disordered over two positions and the final occupancies refined to 0.557 (7) and 0.443 (7). C15—C16 and C15'-C16' bond lengths were restrained to be 1.54 (1) Å, and C14—C15 and C14'-C15' to be 1.45 (1) Å. Same displacement parameters were used for atoms C15 and C15', and for atoms C16 and C16'. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Structure description top

Glycolurils are a topic of numerous reports; these compounds are of use in supramolecular chemistry as building blocks for molecular clips (Rowan et al., 1999; Isaacs & Witt, 2002) and molecular capsules (Rebek, 1999). The derivatives of glycoluril have been employed in many applications, including polymer cross-linking, explosives and combinational chemistry (Witt et al., 2000). The widespread interest in glycolurils has led to a variety of crystal structures reported for a number of its derivatives. Here we report the structure of the title glycoluril derivative, (I) (Fig. 1), which is an important intermediate for the preparation glycoluril receptors (Wu et al., 2002) and in which the bond lengths and angles present no unusual features and are similar to those found in other similar compounds (Gao & Sun, 2007; She & Xi, 2007; Li et al., 2007).

The oxadiazinane six-membered ring displays a normal chair conformation. The weak intermolecular C—H···O hydrogen bonds cause the formation of a three-dimensional network structure (Fig. 2).

For related structures, see: Branda et al. (1995); Elemans et al. (1999); Gao & Sun (2007); Isaacs & Witt (2002); Isaacs et al. (1999); Li et al. (2007); Rebek (1999); Rowan et al. (1999); She & Xi (2007); Witt et al. (2000); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. C—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen-bonds have been omitted for clarity.
Dipropyl 4,8-dioxo-1H,5H-2,6-dioxa-3a,4a,7a,8a- tetraazacyclopenta[def]fluorene-8 b,8c-dicarboxylate top
Crystal data top
C16H22N4O8F(000) = 840
Mr = 398.38Dx = 1.424 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3466 reflections
a = 8.6399 (4) Åθ = 2.5–21.5°
b = 13.401 (7) ŵ = 0.12 mm1
c = 16.0445 (8) ÅT = 294 K
V = 1857.7 (10) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.0°, θmin = 2.5°
φ and ω scansh = 119
17272 measured reflectionsk = 1617
2315 independent reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.2494P]
where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max = 0.002
263 parametersΔρmax = 0.26 e Å3
4 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H22N4O8V = 1857.7 (10) Å3
Mr = 398.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.6399 (4) ŵ = 0.12 mm1
b = 13.401 (7) ÅT = 294 K
c = 16.0445 (8) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1967 reflections with I > 2σ(I)
17272 measured reflectionsRint = 0.041
2315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
2315 reflectionsΔρmin = 0.18 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4167 (4)0.2297 (2)0.2432 (2)0.0501 (8)
H1A0.36800.29060.22390.060*
H1B0.36510.17390.21650.060*
C20.4676 (4)0.1327 (2)0.3595 (2)0.0539 (9)
H2A0.41690.07600.33380.065*
H2B0.45320.12780.41930.065*
C30.6597 (3)0.31946 (18)0.22249 (17)0.0357 (6)
C40.7391 (4)0.1724 (2)0.3941 (2)0.0484 (8)
C50.9211 (4)0.3717 (2)0.2653 (3)0.0605 (10)
H5A1.02360.35990.24270.073*
H5B0.88840.43800.24870.073*
C60.9781 (5)0.2689 (3)0.3785 (3)0.0685 (11)
H6A0.98510.26620.43880.082*
H6B1.08040.25640.35590.082*
C70.6721 (3)0.14966 (18)0.25409 (16)0.0325 (6)
C80.6681 (3)0.05026 (18)0.20526 (17)0.0356 (6)
C90.5560 (5)0.0444 (2)0.0969 (2)0.0569 (9)
H9A0.54470.10000.13520.068*
H9B0.64900.05490.06420.068*
C100.4189 (6)0.0385 (3)0.0411 (3)0.0821 (13)
H10A0.39950.10450.01870.098*
H10B0.32990.02020.07460.098*
C110.4299 (8)0.0317 (5)0.0287 (4)0.116 (2)
H11A0.42630.09880.00800.174*
H11B0.34480.02090.06620.174*
H11C0.52560.02120.05780.174*
C120.8373 (3)0.19597 (19)0.26092 (18)0.0350 (6)
C130.9645 (4)0.1474 (2)0.2084 (2)0.0426 (7)
C141.0282 (6)0.1060 (3)0.0683 (3)0.0803 (14)
H14A1.07580.04550.08930.096*0.557 (7)
H14B1.10910.15410.05660.096*0.557 (7)
H14C1.01860.03390.06640.096*0.443 (7)
H14D1.13370.12220.08380.096*0.443 (7)
C150.9389 (12)0.0845 (6)0.0080 (5)0.094 (3)0.557 (7)
H15A0.86910.02940.00330.113*0.557 (7)
H15B1.01010.06300.05110.113*0.557 (7)
C160.844 (2)0.1729 (11)0.0413 (12)0.130 (5)0.557 (7)
H16A0.75470.18280.00650.194*0.557 (7)
H16B0.81090.15890.09730.194*0.557 (7)
H16C0.90640.23200.04100.194*0.557 (7)
C15'0.9949 (14)0.1470 (8)0.0134 (5)0.094 (3)0.443 (7)
H15C1.07050.12370.05370.113*0.443 (7)
H15D0.99840.21930.01170.113*0.443 (7)
C16'0.833 (2)0.1113 (16)0.0377 (16)0.130 (5)0.443 (7)
H16D0.82190.04180.02450.194*0.443 (7)
H16E0.81730.12090.09640.194*0.443 (7)
H16F0.75660.14900.00740.194*0.443 (7)
N10.5792 (3)0.23013 (15)0.21957 (15)0.0347 (5)
N20.6315 (3)0.13036 (17)0.34032 (15)0.0426 (6)
N30.8136 (3)0.29806 (16)0.23239 (16)0.0390 (6)
N40.8717 (3)0.1929 (2)0.34926 (16)0.0471 (6)
O10.3994 (3)0.22198 (15)0.33015 (16)0.0533 (6)
O20.9261 (3)0.36549 (18)0.35326 (18)0.0682 (7)
O30.6044 (3)0.40152 (14)0.21303 (15)0.0511 (6)
O40.7212 (4)0.1841 (2)0.46809 (15)0.0726 (8)
O50.7493 (3)0.01743 (15)0.22604 (17)0.0561 (6)
O60.5676 (3)0.05015 (13)0.14370 (13)0.0442 (5)
O71.0852 (3)0.11865 (18)0.23472 (19)0.0643 (7)
O80.9201 (3)0.14622 (19)0.12965 (14)0.0631 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0357 (17)0.0445 (16)0.070 (2)0.0030 (13)0.0040 (16)0.0090 (14)
C20.058 (2)0.0406 (15)0.063 (2)0.0100 (15)0.0269 (18)0.0051 (14)
C30.0426 (17)0.0291 (12)0.0355 (14)0.0015 (11)0.0017 (13)0.0004 (10)
C40.066 (2)0.0432 (16)0.0356 (17)0.0154 (15)0.0011 (16)0.0018 (12)
C50.046 (2)0.0427 (16)0.093 (3)0.0112 (14)0.003 (2)0.0124 (17)
C60.054 (2)0.075 (2)0.076 (3)0.0048 (19)0.026 (2)0.023 (2)
C70.0319 (15)0.0294 (12)0.0362 (14)0.0018 (10)0.0036 (12)0.0029 (10)
C80.0348 (15)0.0306 (12)0.0413 (16)0.0015 (11)0.0051 (13)0.0027 (11)
C90.076 (3)0.0388 (15)0.056 (2)0.0057 (17)0.0001 (19)0.0154 (14)
C100.076 (3)0.081 (3)0.089 (3)0.009 (2)0.007 (3)0.036 (2)
C110.133 (5)0.117 (4)0.099 (4)0.021 (4)0.035 (4)0.004 (3)
C120.0306 (15)0.0321 (12)0.0421 (15)0.0002 (11)0.0016 (12)0.0021 (11)
C130.0306 (16)0.0367 (13)0.060 (2)0.0026 (12)0.0053 (14)0.0013 (13)
C140.085 (3)0.081 (3)0.075 (3)0.026 (2)0.043 (3)0.002 (2)
C150.126 (7)0.078 (5)0.079 (5)0.022 (4)0.064 (5)0.015 (4)
C160.151 (8)0.170 (15)0.068 (4)0.011 (13)0.023 (5)0.002 (12)
C15'0.126 (7)0.078 (5)0.079 (5)0.022 (4)0.064 (5)0.015 (4)
C16'0.151 (8)0.170 (15)0.068 (4)0.011 (13)0.023 (5)0.002 (12)
N10.0300 (12)0.0312 (10)0.0429 (13)0.0033 (9)0.0012 (11)0.0021 (9)
N20.0523 (16)0.0358 (11)0.0397 (13)0.0004 (11)0.0086 (12)0.0027 (10)
N30.0336 (13)0.0293 (10)0.0542 (14)0.0028 (9)0.0012 (11)0.0011 (10)
N40.0431 (15)0.0521 (14)0.0461 (15)0.0096 (12)0.0126 (13)0.0050 (12)
O10.0414 (13)0.0464 (11)0.0721 (16)0.0010 (10)0.0205 (11)0.0158 (10)
O20.0538 (16)0.0610 (14)0.0899 (19)0.0064 (12)0.0132 (15)0.0325 (13)
O30.0548 (15)0.0308 (9)0.0676 (14)0.0080 (9)0.0019 (12)0.0057 (9)
O40.098 (2)0.0832 (17)0.0361 (13)0.0226 (17)0.0014 (14)0.0007 (12)
O50.0535 (13)0.0359 (10)0.0788 (16)0.0124 (10)0.0078 (13)0.0107 (10)
O60.0537 (13)0.0353 (9)0.0435 (11)0.0003 (9)0.0031 (11)0.0082 (8)
O70.0360 (14)0.0604 (14)0.0966 (19)0.0096 (11)0.0057 (14)0.0154 (13)
O80.0587 (16)0.0793 (16)0.0515 (14)0.0268 (13)0.0173 (13)0.0024 (12)
Geometric parameters (Å, º) top
C1—O11.407 (4)C9—H9B0.9700
C1—N11.454 (4)C10—C111.467 (7)
C1—H1A0.9700C10—H10A0.9700
C1—H1B0.9700C10—H10B0.9700
C2—O11.414 (4)C11—H11A0.9600
C2—N21.449 (4)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C12—N41.449 (4)
C3—O31.209 (3)C12—N31.457 (3)
C3—N31.369 (4)C12—C131.530 (4)
C3—N11.385 (3)C13—O71.189 (4)
C4—O41.207 (4)C13—O81.321 (4)
C4—N41.381 (5)C14—C15'1.450 (8)
C4—N21.388 (4)C14—O81.460 (4)
C5—O21.414 (5)C14—C151.475 (8)
C5—N31.455 (4)C14—H14A0.9700
C5—H5A0.9700C14—H14B0.9700
C5—H5B0.9700C14—H14C0.9700
C6—O21.429 (5)C14—H14D0.9700
C6—N41.450 (4)C15—C161.538 (9)
C6—H6A0.9700C15—H15A0.9700
C6—H6B0.9700C15—H15B0.9700
C7—N21.451 (4)C16—H16A0.9600
C7—N11.454 (3)C16—H16B0.9600
C7—C81.546 (3)C16—H16C0.9600
C7—C121.561 (4)C15'—C16'1.532 (10)
C8—O51.194 (3)C15'—H15C0.9700
C8—O61.315 (3)C15'—H15D0.9700
C9—O61.477 (3)C16'—H16D0.9600
C9—C101.486 (6)C16'—H16E0.9600
C9—H9A0.9700C16'—H16F0.9600
O1—C1—N1111.2 (3)N3—C12—C13109.1 (2)
O1—C1—H1A109.4N4—C12—C7104.2 (2)
N1—C1—H1A109.4N3—C12—C7102.9 (2)
O1—C1—H1B109.4C13—C12—C7116.7 (2)
N1—C1—H1B109.4O7—C13—O8126.1 (3)
H1A—C1—H1B108.0O7—C13—C12124.9 (3)
O1—C2—N2110.8 (3)O8—C13—C12108.9 (3)
O1—C2—H2A109.5C15'—C14—O8110.1 (5)
N2—C2—H2A109.5O8—C14—C15107.3 (5)
O1—C2—H2B109.5C15'—C14—H14A135.6
N2—C2—H2B109.5O8—C14—H14A110.3
H2A—C2—H2B108.1C15—C14—H14A110.3
O3—C3—N3126.1 (3)C15'—C14—H14B73.5
O3—C3—N1125.7 (3)O8—C14—H14B110.3
N3—C3—N1108.1 (2)C15—C14—H14B110.3
O4—C4—N4126.4 (4)H14A—C14—H14B108.5
O4—C4—N2125.3 (4)C15'—C14—H14C109.4
N4—C4—N2108.2 (3)O8—C14—H14C109.5
O2—C5—N3110.0 (3)C15'—C14—H14D109.4
O2—C5—H5A109.7O8—C14—H14D110.2
N3—C5—H5A109.7H14C—C14—H14D108.1
O2—C5—H5B109.7C14—C15—C16114.7 (9)
N3—C5—H5B109.7C16—C15—H14C148.2
H5A—C5—H5B108.2C14—C15—H15A108.6
O2—C6—N4110.2 (3)C16—C15—H15A108.6
O2—C6—H6A109.6H14C—C15—H15A78.3
N4—C6—H6A109.6C14—C15—H15B108.6
O2—C6—H6B109.6C16—C15—H15B108.6
N4—C6—H6B109.6H14C—C15—H15B98.0
H6A—C6—H6B108.1H15A—C15—H15B107.6
N2—C7—N1111.2 (2)C14—C15'—C16'107.1 (12)
N2—C7—C8108.9 (2)C14—C15'—H15C110.3
N1—C7—C8115.7 (2)C16'—C15'—H15C110.3
N2—C7—C12103.0 (2)C14—C15'—H15D110.3
N1—C7—C12103.7 (2)C16'—C15'—H15D110.3
C8—C7—C12113.5 (2)H15C—C15'—H15D108.6
O5—C8—O6126.6 (2)C15'—C16'—H16D109.5
O5—C8—C7120.0 (3)C15'—C16'—H16E109.5
O6—C8—C7113.3 (2)H16D—C16'—H16E109.5
O6—C9—C10108.3 (3)C15'—C16'—H16F109.5
O6—C9—H9A110.0H16D—C16'—H16F109.5
C10—C9—H9A110.0H16E—C16'—H16F109.5
O6—C9—H9B110.0C3—N1—C1118.7 (2)
C10—C9—H9B110.0C3—N1—C7110.5 (2)
H9A—C9—H9B108.4C1—N1—C7115.5 (2)
C11—C10—C9116.3 (4)C4—N2—C2120.9 (3)
C11—C10—H10A108.2C4—N2—C7111.0 (2)
C9—C10—H10A108.2C2—N2—C7115.8 (3)
C11—C10—H10B108.2C3—N3—C5121.3 (2)
C9—C10—H10B108.2C3—N3—C12111.7 (2)
H10A—C10—H10B107.4C5—N3—C12115.7 (2)
C10—C11—H11A109.5C4—N4—C12110.2 (3)
C10—C11—H11B109.5C4—N4—C6119.8 (3)
H11A—C11—H11B109.5C12—N4—C6115.3 (3)
C10—C11—H11C109.5C1—O1—C2110.4 (2)
H11A—C11—H11C109.5C5—O2—C6110.2 (3)
H11B—C11—H11C109.5C8—O6—C9115.3 (2)
N4—C12—N3111.3 (2)C13—O8—C14117.6 (3)
N4—C12—C13112.3 (2)
N2—C7—C8—O559.0 (4)O1—C2—N2—C751.7 (3)
N1—C7—C8—O5174.8 (3)N1—C7—N2—C4101.6 (3)
C12—C7—C8—O555.1 (4)C8—C7—N2—C4129.7 (2)
N2—C7—C8—O6119.5 (3)C12—C7—N2—C48.9 (3)
N1—C7—C8—O66.6 (3)N1—C7—N2—C241.1 (3)
C12—C7—C8—O6126.4 (3)C8—C7—N2—C287.6 (3)
O6—C9—C10—C1169.0 (5)C12—C7—N2—C2151.7 (2)
N2—C7—C12—N42.4 (2)O3—C3—N3—C525.0 (5)
N1—C7—C12—N4118.5 (2)N1—C3—N3—C5158.9 (3)
C8—C7—C12—N4115.2 (2)O3—C3—N3—C12167.0 (3)
N2—C7—C12—N3113.8 (2)N1—C3—N3—C1217.0 (3)
N1—C7—C12—N32.3 (3)O2—C5—N3—C388.6 (3)
C8—C7—C12—N3128.6 (2)O2—C5—N3—C1252.0 (4)
N2—C7—C12—C13126.8 (2)N4—C12—N3—C3102.3 (3)
N1—C7—C12—C13117.1 (2)C13—C12—N3—C3133.3 (3)
C8—C7—C12—C139.2 (3)C7—C12—N3—C38.7 (3)
N4—C12—C13—O76.8 (4)N4—C12—N3—C542.0 (4)
N3—C12—C13—O7117.0 (3)C13—C12—N3—C582.4 (3)
C7—C12—C13—O7127.0 (3)C7—C12—N3—C5153.0 (3)
N4—C12—C13—O8175.3 (2)O4—C4—N4—C12164.3 (3)
N3—C12—C13—O860.8 (3)N2—C4—N4—C1219.2 (3)
C7—C12—C13—O855.1 (3)O4—C4—N4—C627.0 (5)
C15'—C14—C15—C1647.2 (12)N2—C4—N4—C6156.5 (3)
O8—C14—C15—C1653.5 (10)N3—C12—N4—C497.1 (3)
O8—C14—C15'—C16'63.6 (12)C13—C12—N4—C4140.3 (2)
C15—C14—C15'—C16'29.3 (12)C7—C12—N4—C413.1 (3)
O3—C3—N1—C128.7 (4)N3—C12—N4—C642.3 (4)
N3—C3—N1—C1155.2 (3)C13—C12—N4—C680.3 (3)
O3—C3—N1—C7165.5 (3)C7—C12—N4—C6152.5 (3)
N3—C3—N1—C718.4 (3)O2—C6—N4—C482.6 (4)
O1—C1—N1—C383.7 (3)O2—C6—N4—C1252.7 (4)
O1—C1—N1—C751.1 (3)N1—C1—O1—C260.0 (3)
N2—C7—N1—C397.6 (3)N2—C2—O1—C160.1 (4)
C8—C7—N1—C3137.4 (2)N3—C5—O2—C660.9 (4)
C12—C7—N1—C312.4 (3)N4—C6—O2—C561.5 (4)
N2—C7—N1—C140.6 (3)O5—C8—O6—C90.3 (4)
C8—C7—N1—C184.4 (3)C7—C8—O6—C9178.1 (3)
C12—C7—N1—C1150.7 (2)C10—C9—O6—C8169.5 (3)
O4—C4—N2—C225.2 (5)O7—C13—O8—C140.0 (5)
N4—C4—N2—C2158.2 (3)C12—C13—O8—C14177.8 (3)
O4—C4—N2—C7165.8 (3)C15'—C14—O8—C13155.8 (6)
N4—C4—N2—C717.6 (3)C15—C14—O8—C13163.3 (4)
O1—C2—N2—C487.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.972.583.482 (5)155
C9—H9B···O4ii0.972.583.388 (4)141
C5—H5B···O7iii0.972.453.310 (4)148
C9—H9A···O1iv0.972.503.364 (4)149
C2—H2A···O3iv0.972.463.368 (4)155
C1—H1B···O7v0.972.553.231 (4)128
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+3/2, y, z1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H22N4O8
Mr398.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)8.6399 (4), 13.401 (7), 16.0445 (8)
V3)1857.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17272, 2315, 1967
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.123, 1.07
No. of reflections2315
No. of parameters263
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O2i0.972.583.482 (5)155
C9—H9B···O4ii0.972.583.388 (4)141
C5—H5B···O7iii0.972.453.310 (4)148
C9—H9A···O1iv0.972.503.364 (4)149
C2—H2A···O3iv0.972.463.368 (4)155
C1—H1B···O7v0.972.553.231 (4)128
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+3/2, y, z1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y, z.
 

Acknowledgements

The authors thank Dr She Neng-Fang and Meng Xiang-Gao for the data collection.

References

First citationBranda, N., Grotzfeld, R. M., Valdes, C. & Rebek, J. (1995). J. Am. Chem. Soc. 117, 85–88.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElemans, J. A. A. W., Claase, M. B., Aarts, P. P. M., Rowan, A. E., Schenning, A. P. H. J. & Nolte, R. J. M. (1999). J. Org. Chem. 64, 7009–7016.  Web of Science CrossRef CAS Google Scholar
First citationGao, M. & Sun, J.-J. (2007). Acta Cryst. E63, o3480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsaacs, L. & Witt, D. (2002). Angew. Chem. Int. Ed. 41, 1905–1907.  CrossRef CAS Google Scholar
First citationIsaacs, L., Witt, D. & Fettinger, J. C. (1999). Chem. Commun. pp. 2549–2550.  Web of Science CSD CrossRef Google Scholar
First citationLi, Y.-T., Li, J. & Wen, L.-L. (2007). Acta Cryst. E63, o287–o288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRebek, J. Jr (1999). Acc. Chem. Res. 32, 278–286.  Web of Science CrossRef CAS Google Scholar
First citationRowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995–1006.  Web of Science CrossRef CAS Google Scholar
First citationShe, N.-F. & Xi, H.-L. (2007). Acta Cryst. E63, o3495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitt, D., Lagona, J., Damkaci, F., Fettinger, J. C. & Isaacs, L. (2000). Org. Lett. 2, 755–758.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817–5830.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds