Download citation
Download citation
link to html
In the title compound, C17H19N3O3, the three fused rings of the benzofuro[3,2-d]pyrimidine system are almost coplanar. The morpholine ring exhibits a distorted chair conformation. Intra­molecular C—H...O and C—H...N hydrogen bonds stabilize the mol­ecular structure. The packing of the mol­ecules is mainly governed by a π–π inter­action between benzofuro[3,2-d]pyrimidine units; the inter­planar separation is ca 3.7 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057662/is2240sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057662/is2240Isup2.hkl
Contains datablock I

CCDC reference: 672959

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.050
  • wR factor = 0.132
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrimidine derivatives are attracting increasing attention in the synthetic chemistry community because of the important role played by such systems in many natural products, antibiotics and drugs (Hayakawa et al., 2007; Aly, 2005). In recent years, we have been engaged in the preparation of derivatives of heterocycles using the aza-Wittig reaction (Ding et al., 2004). Some X-ray crystal structures of fused pyrimidinone derivatives have been reported (Hu et al., 2005, 2006, 2007). In this paper, we present X-ray crystallographic analysis of the compound, (I), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule, the bond lengths and angles are unexceptional. All ring atoms in the benzofuro[3,2-d]pyrimidine system are essentially coplanar (Fig. 1). The morpholino ring shows a distorted chair conformation [ϕ = 203 (2)° and θ = 5.75 (2)°, puckering amplitude = 0.574 (2) Å]. Intramolecular C—H···O and C—H···N hydrogen bonds stabilize the conformation of the molecule (Table 1). Further stability of the crystal structure is provided by offset ππ stacking interactions (Janiak, 2000) involving the fused benzofuro[3,2-d]pyrimidine system (Fig. 2). The interplanar distance is 3.355 (1)–3.376 (1) Å, with distances of 3.497 (1)–3.584 (1) Å between adjacent ring centroids (symmetry code relating the adjacent ring: 1 - x, 1 - y, 1 - z).

Related literature top

Related preparation and biological activity were described by Hayakawa et al. (2007) and Aly (2005). For related literature, see: Ding et al. (2004); Janiak (2000). For crystal structures of other fused pyrimidinone derivatives, see: Hu et al. (2005, 2006, 2007)

Experimental top

To a solution of the ethyl 3-[(isopropylimino)methyleneamino]benzofuran-2-carboxylate (3 mmol) in dichloromethane (5 ml) was added morpholine (3 mmol). After stirring the reaction mixture for 4 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 4 h at room temperature. The solution was concentrated under reduced pressure and purification was accomplished by column chromatography on silica gel to give the title compound in a yield of 84%. Crystals suitable for single-crystal X-ray diffraction were obtained by vapour diffusion a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H-atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the ππ stacking interactions.
3-Isopropyl-2-morpholinobenzofuro[3,2-d]pyrimidin-4(3H)-one top
Crystal data top
C17H19N3O3F(000) = 664
Mr = 313.35Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3120 reflections
a = 14.6943 (8) Åθ = 2.8–25.0°
b = 8.7163 (6) ŵ = 0.09 mm1
c = 12.8126 (10) ÅT = 295 K
β = 107.656 (1)°Block, colourless
V = 1563.73 (18) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3056 independent reflections
Radiation source: fine-focus sealed tube2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1718
Tmin = 0.973, Tmax = 0.982k = 1010
10348 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0749P)2]
where P = (Fo2 + 2Fc2)/3
3056 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H19N3O3V = 1563.73 (18) Å3
Mr = 313.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6943 (8) ŵ = 0.09 mm1
b = 8.7163 (6) ÅT = 295 K
c = 12.8126 (10) Å0.30 × 0.20 × 0.20 mm
β = 107.656 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2351 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.055
10348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
3056 reflectionsΔρmin = 0.20 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16216 (18)0.5943 (2)0.03191 (15)0.0677 (6)
H1A0.18470.54850.08850.081*
H1B0.09990.55100.03820.081*
C20.22977 (15)0.5537 (2)0.07802 (14)0.0536 (5)
H2A0.23150.44330.08780.064*
H2B0.29370.58840.08290.064*
C30.19492 (14)0.7938 (2)0.14628 (14)0.0486 (5)
H3A0.25790.83150.15000.058*
H3B0.17430.84480.20260.058*
C40.12570 (15)0.8262 (2)0.03509 (15)0.0557 (5)
H4A0.06270.79060.03330.067*
H4B0.12200.93620.02280.067*
C50.24703 (11)0.58098 (18)0.27059 (13)0.0346 (4)
C60.25432 (11)0.39190 (18)0.41491 (13)0.0380 (4)
C70.33065 (11)0.48739 (18)0.47503 (13)0.0367 (4)
C80.35964 (11)0.61393 (18)0.43272 (13)0.0352 (4)
C90.43885 (11)0.67559 (18)0.51855 (13)0.0388 (4)
C100.44830 (11)0.57894 (19)0.60791 (13)0.0392 (4)
C110.51631 (13)0.5987 (2)0.70796 (14)0.0489 (5)
H110.52110.53270.76640.059*
C120.57683 (13)0.7216 (2)0.71648 (16)0.0544 (5)
H120.62320.74030.78300.065*
C130.57051 (13)0.8188 (2)0.62820 (17)0.0554 (5)
H130.61340.89970.63680.066*
C140.50233 (13)0.7976 (2)0.52880 (16)0.0478 (5)
H140.49860.86260.47010.057*
C150.12556 (12)0.3688 (2)0.23733 (14)0.0427 (4)
H150.10300.42730.16900.051*
C160.04567 (13)0.3724 (3)0.28998 (17)0.0638 (6)
H16A0.06370.31200.35570.096*
H16B0.01160.33120.23990.096*
H16C0.03450.47640.30760.096*
C170.14822 (15)0.2078 (2)0.20649 (17)0.0598 (5)
H17A0.19750.21290.17160.090*
H17B0.09180.16300.15710.090*
H17C0.16960.14590.27130.090*
N10.19776 (9)0.62709 (15)0.16330 (11)0.0378 (3)
N20.21314 (9)0.44906 (14)0.30752 (10)0.0355 (3)
N30.31837 (9)0.66373 (15)0.32785 (11)0.0369 (3)
O10.15263 (10)0.75437 (16)0.04967 (10)0.0588 (4)
O20.22487 (9)0.27625 (14)0.44809 (10)0.0539 (4)
O30.38168 (8)0.46168 (14)0.58250 (9)0.0431 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1010 (17)0.0613 (13)0.0350 (11)0.0039 (12)0.0117 (11)0.0025 (10)
C20.0752 (13)0.0481 (11)0.0393 (11)0.0116 (9)0.0200 (10)0.0001 (8)
C30.0659 (12)0.0399 (10)0.0391 (10)0.0046 (8)0.0146 (9)0.0044 (8)
C40.0674 (13)0.0540 (11)0.0440 (11)0.0124 (9)0.0141 (10)0.0119 (9)
C50.0393 (9)0.0324 (8)0.0332 (9)0.0022 (7)0.0126 (7)0.0010 (7)
C60.0428 (9)0.0354 (9)0.0371 (9)0.0008 (7)0.0141 (8)0.0033 (7)
C70.0419 (9)0.0385 (9)0.0291 (9)0.0040 (7)0.0097 (7)0.0032 (7)
C80.0374 (8)0.0330 (8)0.0345 (9)0.0033 (7)0.0102 (7)0.0011 (7)
C90.0419 (9)0.0350 (9)0.0388 (10)0.0045 (7)0.0110 (8)0.0058 (7)
C100.0407 (9)0.0417 (9)0.0358 (9)0.0055 (7)0.0124 (8)0.0043 (7)
C110.0499 (10)0.0587 (12)0.0363 (10)0.0064 (9)0.0105 (8)0.0050 (9)
C120.0487 (11)0.0624 (13)0.0439 (11)0.0080 (9)0.0017 (9)0.0188 (10)
C130.0490 (11)0.0461 (11)0.0650 (14)0.0027 (8)0.0081 (10)0.0155 (10)
C140.0472 (10)0.0409 (10)0.0522 (12)0.0001 (8)0.0104 (9)0.0052 (8)
C150.0439 (10)0.0461 (10)0.0343 (9)0.0095 (7)0.0062 (8)0.0005 (8)
C160.0426 (11)0.0864 (15)0.0617 (13)0.0057 (10)0.0150 (10)0.0009 (12)
C170.0696 (13)0.0501 (11)0.0589 (13)0.0179 (10)0.0181 (11)0.0119 (10)
N10.0454 (8)0.0365 (8)0.0308 (7)0.0003 (6)0.0107 (6)0.0026 (6)
N20.0386 (7)0.0332 (7)0.0347 (8)0.0017 (6)0.0112 (6)0.0009 (6)
N30.0404 (8)0.0348 (7)0.0349 (8)0.0021 (6)0.0105 (6)0.0019 (6)
O10.0795 (9)0.0604 (9)0.0360 (7)0.0025 (7)0.0170 (7)0.0114 (6)
O20.0622 (8)0.0488 (7)0.0486 (8)0.0137 (6)0.0135 (7)0.0134 (6)
O30.0480 (7)0.0470 (7)0.0316 (7)0.0015 (5)0.0079 (5)0.0041 (5)
Geometric parameters (Å, º) top
C1—O11.414 (2)C8—C91.441 (2)
C1—C21.499 (3)C9—C141.394 (2)
C1—H1A0.9700C9—C101.394 (2)
C1—H1B0.9700C10—C111.376 (2)
C2—N11.461 (2)C10—O31.384 (2)
C2—H2A0.9700C11—C121.375 (3)
C2—H2B0.9700C11—H110.9300
C3—N11.468 (2)C12—C131.394 (3)
C3—C41.505 (2)C12—H120.9300
C3—H3A0.9700C13—C141.373 (3)
C3—H3B0.9700C13—H130.9300
C4—O11.410 (2)C14—H140.9300
C4—H4A0.9700C15—N21.5007 (19)
C4—H4B0.9700C15—C161.521 (3)
C5—N31.300 (2)C15—C171.522 (3)
C5—N21.392 (2)C15—H150.9800
C5—N11.404 (2)C16—H16A0.9600
C6—O21.2230 (19)C16—H16B0.9600
C6—N21.415 (2)C16—H16C0.9600
C6—C71.421 (2)C17—H17A0.9600
C7—C81.353 (2)C17—H17B0.9600
C7—O31.3719 (18)C17—H17C0.9600
C8—N31.3664 (19)
O1—C1—C2112.91 (16)O3—C10—C9111.46 (14)
O1—C1—H1A109.0C12—C11—C10116.14 (18)
C2—C1—H1A109.0C12—C11—H11121.9
O1—C1—H1B109.0C10—C11—H11121.9
C2—C1—H1B109.0C11—C12—C13121.79 (18)
H1A—C1—H1B107.8C11—C12—H12119.1
N1—C2—C1109.10 (16)C13—C12—H12119.1
N1—C2—H2A109.9C14—C13—C12121.41 (18)
C1—C2—H2A109.9C14—C13—H13119.3
N1—C2—H2B109.9C12—C13—H13119.3
C1—C2—H2B109.9C13—C14—C9117.98 (18)
H2A—C2—H2B108.3C13—C14—H14121.0
N1—C3—C4107.88 (14)C9—C14—H14121.0
N1—C3—H3A110.1N2—C15—C16111.19 (14)
C4—C3—H3A110.1N2—C15—C17111.71 (14)
N1—C3—H3B110.1C16—C15—C17113.16 (16)
C4—C3—H3B110.1N2—C15—H15106.8
H3A—C3—H3B108.4C16—C15—H15106.8
O1—C4—C3112.25 (15)C17—C15—H15106.8
O1—C4—H4A109.2C15—C16—H16A109.5
C3—C4—H4A109.2C15—C16—H16B109.5
O1—C4—H4B109.2H16A—C16—H16B109.5
C3—C4—H4B109.2C15—C16—H16C109.5
H4A—C4—H4B107.9H16A—C16—H16C109.5
N3—C5—N2125.23 (14)H16B—C16—H16C109.5
N3—C5—N1118.79 (14)C15—C17—H17A109.5
N2—C5—N1115.97 (13)C15—C17—H17B109.5
O2—C6—N2122.42 (14)H17A—C17—H17B109.5
O2—C6—C7126.76 (15)C15—C17—H17C109.5
N2—C6—C7110.81 (14)H17A—C17—H17C109.5
C8—C7—O3113.12 (14)H17B—C17—H17C109.5
C8—C7—C6123.54 (15)C5—N1—C2114.79 (13)
O3—C7—C6123.34 (14)C5—N1—C3114.31 (13)
C7—C8—N3123.58 (14)C2—N1—C3108.86 (14)
C7—C8—C9106.12 (14)C5—N2—C6121.99 (13)
N3—C8—C9130.30 (15)C5—N2—C15120.77 (13)
C14—C9—C10119.10 (16)C6—N2—C15117.04 (13)
C14—C9—C8135.96 (16)C5—N3—C8114.83 (14)
C10—C9—C8104.93 (15)C4—O1—C1110.59 (15)
C11—C10—O3124.98 (16)C7—O3—C10104.34 (12)
C11—C10—C9123.56 (17)
O1—C1—C2—N156.7 (2)N2—C5—N1—C3147.50 (15)
N1—C3—C4—O159.8 (2)C1—C2—N1—C5171.39 (15)
O2—C6—C7—C8179.81 (16)C1—C2—N1—C359.0 (2)
N2—C6—C7—C81.0 (2)C4—C3—N1—C5169.89 (14)
O2—C6—C7—O31.1 (3)C4—C3—N1—C260.28 (19)
N2—C6—C7—O3178.09 (13)N3—C5—N2—C60.6 (2)
O3—C7—C8—N3178.91 (13)N1—C5—N2—C6178.25 (13)
C6—C7—C8—N30.3 (3)N3—C5—N2—C15175.37 (15)
O3—C7—C8—C91.80 (18)N1—C5—N2—C153.4 (2)
C6—C7—C8—C9179.00 (15)O2—C6—N2—C5179.85 (15)
C7—C8—C9—C14177.12 (19)C7—C6—N2—C50.6 (2)
N3—C8—C9—C142.1 (3)O2—C6—N2—C154.9 (2)
C7—C8—C9—C101.57 (17)C7—C6—N2—C15174.36 (13)
N3—C8—C9—C10179.21 (16)C16—C15—N2—C5116.10 (17)
C14—C9—C10—C111.4 (2)C17—C15—N2—C5116.43 (16)
C8—C9—C10—C11179.65 (15)C16—C15—N2—C658.96 (19)
C14—C9—C10—O3178.08 (14)C17—C15—N2—C668.51 (18)
C8—C9—C10—O30.88 (17)N2—C5—N3—C81.3 (2)
O3—C10—C11—C12179.25 (15)N1—C5—N3—C8177.44 (13)
C9—C10—C11—C120.2 (2)C7—C8—N3—C50.9 (2)
C10—C11—C12—C131.1 (3)C9—C8—N3—C5179.98 (15)
C11—C12—C13—C141.1 (3)C3—C4—O1—C156.7 (2)
C12—C13—C14—C90.2 (3)C2—C1—O1—C455.0 (2)
C10—C9—C14—C131.4 (2)C8—C7—O3—C101.25 (17)
C8—C9—C14—C13179.94 (17)C6—C7—O3—C10179.55 (15)
N3—C5—N1—C295.44 (18)C11—C10—O3—C7179.31 (15)
N2—C5—N1—C285.67 (18)C9—C10—O3—C70.16 (17)
N3—C5—N1—C331.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O20.962.443.015 (2)118
C16—H16A···O20.962.332.916 (2)119
C15—H15···N10.982.242.776 (2)113

Experimental details

Crystal data
Chemical formulaC17H19N3O3
Mr313.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.6943 (8), 8.7163 (6), 12.8126 (10)
β (°) 107.656 (1)
V3)1563.73 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10348, 3056, 2351
Rint0.055
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.02
No. of reflections3056
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···O20.962.443.015 (2)118
C16—H16A···O20.962.332.916 (2)119
C15—H15···N10.982.242.776 (2)113
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds