Download citation
Download citation
link to html
The title compound, C26H18Cl2O4, has two 4-chloro­benzoyl groups that are in an anti orientation and are approximately parallel. The inter­planar angle between the mean planes of the two benzene rings is 7.99 (8)°. These 4-chloro­benzoyl groups are twisted away from the attached naphthalene ring. The two inter­planar angles between the mean planes of the chloro­phenyl groups and the naphthalene ring system are 71.55 (7) and 71.98 (7)°. The torsion angles between the carbonyl groups and the naphthalene ring are 64.9 (2) and 64.4 (2)°, which are far larger than those between the 4-chloro­phenyl groups and the carbonyl groups of 0.0 (2) and -3.8 (3)°. The chloro­phenyl and carbonyl groups are almost coplanar. Inter­molecular hydrogen bonds exist between aromatic H and carbonyl O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045114/is2207sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045114/is2207Isup2.hkl
Contains datablock I

CCDC reference: 664209

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.075
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 68.18 From the CIF: _reflns_number_total 3800 Count of symmetry unique reflns 2100 Completeness (_total/calc) 180.95% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1700 Fraction of Friedel pairs measured 0.810 Are heavy atom types Z>Si present yes
Author Response: The number of Friedel pairs was checked and added to the _refine_ls_abs_structure_details line.
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints .......          3
Author Response: The restraints used in the refinement were explained in _publ_section_exptl_refinement section.

0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Naphthalene derivatives, such as 1,5-disubstituted and 2,6-disubstituted naphthalenes, have been used widely as key building blocks of functional organic compounds such as liquid crystals and electric materials (Su et al., 2004; Ahn et al., 2003; Lorenzetti et al., 2005; Chen et al., 2005). Recently, 1,8-disubstituted naphthalenes have received much attention as unique structured aromatic core compounds, exemplified by dendron cores, supramolecular building blocks, and so on (Wang & Guen, 1995; Allen et al., 1998; Crasto & Stevens, 1998, 2002). In this paper, the crystallographical structural characteristics of a 1,8-diaroylated naphthalene derivative having two methoxy groups at the 2,7-positions are described.

The molecular structure of the title molecule is displayed in Fig. 1. The two 4-chlorobenzoyl groups are situated in anti orientation and approximately parallel. Furthermore, these 4-chlorobenzoyl groups are twisted away from the attached naphthalene ring. The interplanar angle between the best planes of two benzene rings is 7.99 (8)°. On the other hand, the two interplanar angles between the best planes of the peri-chlorophenyl rings and the naphthalene ring are 71.55 (7) and 71.98 (7)°.

The torsion angles between the carbonyl groups and the naphthalene ring are relatively large [C10—C1—C11—O1 = 64.9 (2)° and C10—C9—C18—O2 64.4 (2)°] and those between 4-chlorophenyl groups and carbonyl groups are rather small [O1—C11—C12—C17 = 0.0 (2)° and O2—C18—C19—C20 = -3.8 (3)°].

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Ahn et al. (2003); Allen et al. (1998); Burnett & Johnson (1996); Chen et al. (2005); Crasto & Stevens (1998, 2002); Lorenzetti et al. (2005); Su et al. (2004); Wang & Guen (1995).

Experimental top

The title compound was prepared by electrophilic aromatic diaroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol and ethyl acetate.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.94 (aromatic) and 0.97 (methyl) Å, and with Uiso(H) = 1.2Ueq(C). Floating origin restrains generated automatically by SHELXL and two rigid-bond restraints to Uij-values of bonded atoms (C3—C4 and O4—C8) were applied during the refinement.

Structure description top

Naphthalene derivatives, such as 1,5-disubstituted and 2,6-disubstituted naphthalenes, have been used widely as key building blocks of functional organic compounds such as liquid crystals and electric materials (Su et al., 2004; Ahn et al., 2003; Lorenzetti et al., 2005; Chen et al., 2005). Recently, 1,8-disubstituted naphthalenes have received much attention as unique structured aromatic core compounds, exemplified by dendron cores, supramolecular building blocks, and so on (Wang & Guen, 1995; Allen et al., 1998; Crasto & Stevens, 1998, 2002). In this paper, the crystallographical structural characteristics of a 1,8-diaroylated naphthalene derivative having two methoxy groups at the 2,7-positions are described.

The molecular structure of the title molecule is displayed in Fig. 1. The two 4-chlorobenzoyl groups are situated in anti orientation and approximately parallel. Furthermore, these 4-chlorobenzoyl groups are twisted away from the attached naphthalene ring. The interplanar angle between the best planes of two benzene rings is 7.99 (8)°. On the other hand, the two interplanar angles between the best planes of the peri-chlorophenyl rings and the naphthalene ring are 71.55 (7) and 71.98 (7)°.

The torsion angles between the carbonyl groups and the naphthalene ring are relatively large [C10—C1—C11—O1 = 64.9 (2)° and C10—C9—C18—O2 64.4 (2)°] and those between 4-chlorophenyl groups and carbonyl groups are rather small [O1—C11—C12—C17 = 0.0 (2)° and O2—C18—C19—C20 = -3.8 (3)°].

The crystal packing is stabilized by C—H···O hydrogen bonds (Table 1).

For related literature, see: Ahn et al. (2003); Allen et al. (1998); Burnett & Johnson (1996); Chen et al. (2005); Crasto & Stevens (1998, 2002); Lorenzetti et al. (2005); Su et al. (2004); Wang & Guen (1995).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at 50% probability level.
1,8-Bis(4-chlorobenzoyl)-2,7-dimethoxynaphthalene top
Crystal data top
C26H18Cl2O4Dx = 1.459 Mg m3
Mr = 465.30Melting point = 489–490 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2c -2nCell parameters from 31902 reflections
a = 20.3750 (12) Åθ = 3.3–68.2°
b = 13.3513 (8) ŵ = 3.03 mm1
c = 7.7876 (5) ÅT = 223 K
V = 2118.5 (2) Å3Platelet, colorless
Z = 40.40 × 0.20 × 0.10 mm
F(000) = 960
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3800 independent reflections
Radiation source: rotating anode3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.0°
ω scansh = 2424
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1616
Tmin = 0.469, Tmax = 0.739l = 99
32358 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0953P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3800 reflectionsΔρmax = 0.12 e Å3
291 parametersΔρmin = 0.20 e Å3
3 restraintsAbsolute structure: Flack (1983), 1700 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (10)
Crystal data top
C26H18Cl2O4V = 2118.5 (2) Å3
Mr = 465.30Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 20.3750 (12) ŵ = 3.03 mm1
b = 13.3513 (8) ÅT = 223 K
c = 7.7876 (5) Å0.40 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3800 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3554 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.739Rint = 0.039
32358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.12 e Å3
S = 1.08Δρmin = 0.20 e Å3
3800 reflectionsAbsolute structure: Flack (1983), 1700 Friedel pairs
291 parametersAbsolute structure parameter: 0.006 (10)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32552 (2)0.90210 (4)1.19556 (7)0.05618 (15)
Cl20.29868 (3)0.63123 (4)0.00821 (7)0.05820 (15)
O10.14460 (6)0.88124 (9)0.48055 (16)0.0385 (3)
O20.13748 (6)0.67260 (10)0.75073 (16)0.0441 (3)
O30.06248 (6)1.04973 (10)0.73866 (19)0.0556 (4)
O40.03508 (6)0.53236 (10)0.4943 (2)0.0584 (4)
C10.05413 (8)0.88005 (13)0.6674 (2)0.0378 (4)
C20.02311 (9)0.96871 (15)0.7127 (2)0.0453 (4)
C30.04597 (10)0.97323 (18)0.7289 (3)0.0558 (5)
H30.06651.03250.76590.067*
C40.08219 (9)0.89153 (18)0.6905 (3)0.0584 (6)
H40.12810.89560.69870.070*
C50.05357 (9)0.80051 (17)0.6387 (3)0.0486 (5)
C60.09200 (10)0.7168 (2)0.5924 (3)0.0604 (6)
H60.13800.72230.59730.073*
C70.06547 (10)0.62956 (19)0.5416 (3)0.0589 (6)
H70.09270.57580.50960.071*
C80.00361 (10)0.61901 (15)0.5364 (3)0.0466 (5)
C90.04402 (8)0.69843 (14)0.5811 (2)0.0385 (4)
C100.01669 (8)0.79240 (15)0.6304 (2)0.0390 (4)
C110.12709 (8)0.88543 (12)0.6302 (2)0.0338 (4)
C120.17524 (8)0.89343 (12)0.7723 (2)0.0320 (4)
C130.15574 (9)0.89425 (13)0.9437 (2)0.0382 (4)
H130.11080.89250.97080.046*
C140.20150 (9)0.89768 (14)1.0747 (3)0.0399 (4)
H140.18820.89851.19030.048*
C150.26734 (9)0.89991 (12)1.0318 (2)0.0374 (4)
C160.28802 (8)0.89981 (14)0.8630 (3)0.0399 (4)
H160.33300.90220.83680.048*
C170.24226 (8)0.89622 (12)0.7340 (2)0.0357 (4)
H170.25610.89560.61880.043*
C180.11656 (8)0.67558 (13)0.6044 (2)0.0342 (4)
C190.16038 (8)0.66156 (12)0.4552 (2)0.0337 (4)
C200.22786 (8)0.65045 (12)0.4826 (2)0.0364 (4)
H200.24430.64900.59530.044*
C210.27030 (9)0.64168 (13)0.3462 (2)0.0401 (4)
H210.31570.63500.36500.048*
C220.24542 (9)0.64286 (12)0.1807 (3)0.0398 (4)
C230.17872 (10)0.65289 (15)0.1491 (2)0.0443 (5)
H230.16250.65280.03610.053*
C240.13658 (9)0.66302 (13)0.2872 (2)0.0389 (4)
H240.09140.67100.26770.047*
C250.03606 (12)1.14600 (16)0.6982 (3)0.0600 (6)
H25A0.07031.19610.70740.072*
H25B0.00101.16190.77790.072*
H25C0.01891.14540.58200.072*
C260.00149 (13)0.44196 (19)0.4806 (4)0.0782 (8)
H26A0.02820.38650.45950.094*
H26B0.03240.44740.38620.094*
H26C0.02530.43030.58660.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0528 (3)0.0702 (3)0.0456 (3)0.0039 (2)0.0186 (2)0.0032 (3)
Cl20.0695 (3)0.0640 (3)0.0411 (3)0.0090 (2)0.0195 (3)0.0026 (3)
O10.0395 (6)0.0506 (6)0.0256 (7)0.0026 (5)0.0037 (5)0.0014 (5)
O20.0432 (7)0.0629 (8)0.0260 (7)0.0035 (6)0.0068 (5)0.0030 (6)
O30.0524 (8)0.0560 (8)0.0583 (10)0.0180 (6)0.0112 (7)0.0095 (7)
O40.0549 (8)0.0568 (8)0.0636 (10)0.0224 (6)0.0059 (8)0.0039 (8)
C10.0316 (8)0.0564 (11)0.0253 (10)0.0059 (7)0.0008 (7)0.0034 (7)
C20.0426 (9)0.0664 (11)0.0270 (10)0.0166 (8)0.0010 (8)0.0001 (9)
C30.0446 (10)0.0867 (15)0.0360 (12)0.0263 (10)0.0044 (8)0.0029 (11)
C40.0332 (9)0.1042 (17)0.0378 (12)0.0172 (10)0.0088 (9)0.0211 (11)
C50.0307 (9)0.0822 (15)0.0330 (11)0.0017 (9)0.0014 (7)0.0184 (9)
C60.0313 (9)0.0977 (18)0.0523 (13)0.0086 (10)0.0022 (8)0.0281 (13)
C70.0421 (11)0.0840 (15)0.0505 (15)0.0237 (11)0.0108 (10)0.0214 (11)
C80.0436 (10)0.0599 (11)0.0361 (11)0.0137 (8)0.0064 (8)0.0097 (8)
C90.0333 (8)0.0566 (11)0.0256 (9)0.0070 (7)0.0017 (7)0.0093 (8)
C100.0294 (8)0.0633 (12)0.0243 (9)0.0014 (7)0.0003 (7)0.0105 (8)
C110.0345 (8)0.0383 (9)0.0286 (10)0.0053 (7)0.0016 (7)0.0012 (7)
C120.0315 (8)0.0365 (8)0.0280 (9)0.0034 (6)0.0007 (7)0.0006 (7)
C130.0343 (9)0.0507 (10)0.0298 (10)0.0009 (7)0.0036 (7)0.0012 (7)
C140.0451 (10)0.0483 (11)0.0264 (10)0.0009 (7)0.0020 (8)0.0011 (7)
C150.0402 (9)0.0378 (9)0.0341 (11)0.0017 (6)0.0076 (8)0.0013 (7)
C160.0317 (8)0.0456 (10)0.0423 (12)0.0035 (7)0.0003 (8)0.0002 (8)
C170.0356 (8)0.0412 (9)0.0302 (11)0.0021 (7)0.0032 (7)0.0013 (7)
C180.0361 (9)0.0386 (9)0.0280 (9)0.0065 (7)0.0015 (7)0.0025 (7)
C190.0378 (8)0.0344 (8)0.0287 (9)0.0026 (6)0.0035 (7)0.0003 (7)
C200.0380 (8)0.0418 (9)0.0293 (10)0.0015 (6)0.0054 (8)0.0003 (8)
C210.0399 (9)0.0425 (9)0.0378 (11)0.0017 (7)0.0017 (8)0.0018 (8)
C220.0511 (10)0.0364 (8)0.0318 (10)0.0019 (7)0.0090 (8)0.0010 (8)
C230.0586 (12)0.0486 (11)0.0256 (11)0.0006 (8)0.0022 (8)0.0035 (8)
C240.0398 (9)0.0481 (10)0.0286 (10)0.0017 (7)0.0062 (7)0.0028 (8)
C250.0707 (14)0.0596 (11)0.0498 (14)0.0249 (10)0.0082 (12)0.0090 (11)
C260.0898 (17)0.0750 (16)0.0698 (19)0.0461 (14)0.0188 (15)0.0207 (14)
Geometric parameters (Å, º) top
Cl1—C151.7412 (18)C12—C171.398 (2)
Cl2—C221.734 (2)C13—C141.383 (3)
O1—C111.220 (2)C13—H130.9400
O2—C181.217 (2)C14—C151.383 (3)
O3—C21.362 (2)C14—H140.9400
O3—C251.429 (2)C15—C161.380 (3)
O4—C81.363 (3)C16—C171.372 (3)
O4—C261.423 (2)C16—H160.9400
C1—C21.388 (2)C17—H170.9400
C1—C101.426 (3)C18—C191.477 (2)
C1—C111.516 (2)C19—C241.395 (2)
C2—C31.414 (3)C19—C201.399 (2)
C3—C41.350 (3)C20—C211.375 (2)
C3—H30.9400C20—H200.9400
C4—C51.407 (3)C21—C221.385 (3)
C4—H40.9400C21—H210.9400
C5—C61.412 (3)C22—C231.387 (3)
C5—C101.437 (2)C23—C241.383 (3)
C6—C71.343 (3)C23—H230.9400
C6—H60.9400C24—H240.9400
C7—C81.415 (3)C25—H25A0.9700
C7—H70.9400C25—H25B0.9700
C8—C91.387 (2)C25—H25C0.9700
C9—C101.425 (3)C26—H26A0.9700
C9—C181.520 (2)C26—H26B0.9700
C11—C121.482 (2)C26—H26C0.9700
C12—C131.393 (3)
C2—O3—C25117.40 (15)C13—C14—H14120.8
C8—O4—C26119.47 (17)C16—C15—C14121.74 (17)
C2—C1—C10120.50 (16)C16—C15—Cl1119.31 (14)
C2—C1—C11117.05 (16)C14—C15—Cl1118.96 (15)
C10—C1—C11121.65 (15)C17—C16—C15119.36 (16)
O3—C2—C1116.56 (15)C17—C16—H16120.3
O3—C2—C3122.62 (18)C15—C16—H16120.3
C1—C2—C3120.8 (2)C16—C17—C12120.55 (17)
C4—C3—C2119.31 (19)C16—C17—H17119.7
C4—C3—H3120.3C12—C17—H17119.7
C2—C3—H3120.3O2—C18—C19121.37 (15)
C3—C4—C5122.32 (18)O2—C18—C9117.32 (16)
C3—C4—H4118.8C19—C18—C9121.27 (15)
C5—C4—H4118.8C24—C19—C20119.07 (16)
C4—C5—C6121.82 (18)C24—C19—C18121.70 (16)
C4—C5—C10119.40 (19)C20—C19—C18119.17 (15)
C6—C5—C10118.8 (2)C21—C20—C19120.62 (17)
C7—C6—C5122.58 (18)C21—C20—H20119.7
C7—C6—H6118.7C19—C20—H20119.7
C5—C6—H6118.7C20—C21—C22119.20 (17)
C6—C7—C8119.7 (2)C20—C21—H21120.4
C6—C7—H7120.2C22—C21—H21120.4
C8—C7—H7120.2C21—C22—C23121.61 (18)
O4—C8—C9115.48 (16)C21—C22—Cl2119.40 (15)
O4—C8—C7124.01 (18)C23—C22—Cl2118.99 (16)
C9—C8—C7120.5 (2)C24—C23—C22118.69 (17)
C8—C9—C10120.58 (17)C24—C23—H23120.7
C8—C9—C18116.99 (17)C22—C23—H23120.7
C10—C9—C18121.61 (15)C23—C24—C19120.79 (17)
C9—C10—C1124.59 (15)C23—C24—H24119.6
C9—C10—C5117.88 (17)C19—C24—H24119.6
C1—C10—C5117.51 (17)O3—C25—H25A109.5
O1—C11—C12121.52 (15)O3—C25—H25B109.5
O1—C11—C1117.82 (15)H25A—C25—H25B109.5
C12—C11—C1120.65 (15)O3—C25—H25C109.5
C13—C12—C17118.88 (17)H25A—C25—H25C109.5
C13—C12—C11121.81 (15)H25B—C25—H25C109.5
C17—C12—C11119.27 (16)O4—C26—H26A109.5
C14—C13—C12121.00 (17)O4—C26—H26B109.5
C14—C13—H13119.5H26A—C26—H26B109.5
C12—C13—H13119.5O4—C26—H26C109.5
C15—C14—C13118.47 (18)H26A—C26—H26C109.5
C15—C14—H14120.8H26B—C26—H26C109.5
C25—O3—C2—C1148.54 (19)C10—C1—C11—O164.9 (2)
C25—O3—C2—C330.9 (3)C2—C1—C11—C1276.3 (2)
C10—C1—C2—O3177.28 (16)C10—C1—C11—C12113.86 (19)
C11—C1—C2—O37.3 (3)O1—C11—C12—C13177.41 (16)
C10—C1—C2—C32.2 (3)C1—C11—C12—C131.3 (2)
C11—C1—C2—C3172.14 (17)O1—C11—C12—C170.0 (2)
O3—C2—C3—C4175.8 (2)C1—C11—C12—C17178.72 (15)
C1—C2—C3—C43.6 (3)C17—C12—C13—C140.1 (2)
C2—C3—C4—C51.6 (3)C11—C12—C13—C14177.36 (16)
C3—C4—C5—C6177.4 (2)C12—C13—C14—C150.2 (3)
C3—C4—C5—C101.8 (3)C13—C14—C15—C160.7 (3)
C4—C5—C6—C7179.5 (2)C13—C14—C15—Cl1178.93 (14)
C10—C5—C6—C70.3 (3)C14—C15—C16—C170.8 (3)
C5—C6—C7—C81.2 (3)Cl1—C15—C16—C17178.81 (13)
C26—O4—C8—C9167.4 (2)C15—C16—C17—C120.5 (2)
C26—O4—C8—C710.5 (3)C13—C12—C17—C160.1 (2)
C6—C7—C8—O4176.9 (2)C11—C12—C17—C16177.54 (15)
C6—C7—C8—C90.9 (3)C8—C9—C18—O2105.3 (2)
O4—C8—C9—C10178.93 (17)C10—C9—C18—O264.4 (2)
C7—C8—C9—C100.9 (3)C8—C9—C18—C1977.0 (2)
O4—C8—C9—C189.1 (3)C10—C9—C18—C19113.28 (19)
C7—C8—C9—C18168.87 (18)O2—C18—C19—C24178.79 (17)
C8—C9—C10—C1175.68 (19)C9—C18—C19—C243.7 (2)
C18—C9—C10—C115.0 (3)O2—C18—C19—C203.8 (3)
C8—C9—C10—C52.4 (3)C9—C18—C19—C20173.77 (15)
C18—C9—C10—C5166.91 (16)C24—C19—C20—C210.4 (2)
C2—C1—C10—C9179.28 (17)C18—C19—C20—C21177.12 (16)
C11—C1—C10—C99.8 (3)C19—C20—C21—C220.7 (3)
C2—C1—C10—C51.2 (3)C20—C21—C22—C230.1 (3)
C11—C1—C10—C5168.31 (16)C20—C21—C22—Cl2179.69 (13)
C4—C5—C10—C9178.65 (17)C21—C22—C23—C240.7 (3)
C6—C5—C10—C92.1 (3)Cl2—C22—C23—C24179.44 (15)
C4—C5—C10—C13.1 (3)C22—C23—C24—C191.0 (3)
C6—C5—C10—C1176.11 (17)C20—C19—C24—C230.5 (3)
C2—C1—C11—O1104.9 (2)C18—C19—C24—C23177.95 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.942.583.414 (3)148
C14—H14···O1ii0.942.443.374 (3)172
C23—H23···O2iii0.942.303.225 (3)170
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y, z+1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC26H18Cl2O4
Mr465.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)223
a, b, c (Å)20.3750 (12), 13.3513 (8), 7.7876 (5)
V3)2118.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)3.03
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.469, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
32358, 3800, 3554
Rint0.039
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.08
No. of reflections3800
No. of parameters291
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.20
Absolute structureFlack (1983), 1700 Friedel pairs
Absolute structure parameter0.006 (10)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.942.583.414 (3)148
C14—H14···O1ii0.942.443.374 (3)172
C23—H23···O2iii0.942.303.225 (3)170
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y, z+1; (iii) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds