Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title copper complex, [CuBr(C15H22BN6)(C5H8N2)], the CuII atom is coordinated by one Br atom, three N atoms from the hydro­tris(3,5-dimethyl­pyrazol­yl)borate ligand and one N atom from the 3,5-dimethyl­pyrazole ligand, forming a distorted trigonal–bipyramidal geometry. The equatorial positions are occupied by the Br atom and the N atoms of the hydro­tris(3,5-dimethyl­pyrazol­yl)borate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046491/is2205sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046491/is2205Isup2.hkl
Contains datablock I

CCDC reference: 659184

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.050
  • wR factor = 0.136
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.41 Ratio
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Br1 - Cu .. 9.02 su PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C13 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C15 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C17 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C20
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu (2) 1.97
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Since Trofimenko discovered poly(pyrazolyl)borate (Trofimenko, 1972), these ligands have been proven to be extremely popular for coordination chemists in a wide range of applications because of their ease of synthesis, ease of functionalization, and the steric protection which they afford to transition metal centers. So poly(pyrazolyl)borate ligands have been used for a number of different purposes, including modeling of metalloprotein active site (Trofimenko, 1993, 2004), mimicking metalloenzyme systems in bioinorganic chemistry (Puerta & Cohen, 2002), polymerization catalysts (Blosch et al., 1991) and C—H activation (Ghosh et al., 1988; Fernandez et al., 1989). The donor N atoms of pyrazole (or modified pyrazole) and poly(pyrazolyl)borate can coordinate to metal atoms together to form half sandwich structure. Based on these findings, we attempted to determine the structure of the title complex, (I).

The structure of (I) shows a distorting trigonal bipyramidal geometry of CuII, which is coordinated to one Br atom and four N atoms: three from tris(3,5-dimethylpyrazolyl)borate ligand [Cu—N(N2, N4, N6)] with bond lengths of 2.019 (3), 2.035 (3), 2.176 (3) Å and one from 3,5-dimethylpyrazole ligand (Cu—N8) with the bond distance of 2.067 (4) Å. In the structure, the atoms Br, N2 and N6 are in the triangle plane, and N4 and N8 are at the axial positions. The copper atom is in the center of the triangle double pyramide geometry (Fig. 1). Selected bond lengths and angles are listed in Table 1. It can be found that the Cu—N distances (from tris(pyrazolyl)borate ligand) are shorter than those of bis(hydrotris(3,5-dimethylpyrazolyl) borato-κ3N,N',N'')copper(II) (Kitajima et al., 1988) [2.034 (13), 2.085 (12), 2.296 (12) Å], longer than those of chloro(hydrotris(3-adamantyl-5-isopropyl-1-pyrazolyl) borato-κ3N,N',N'')copper(II) (Fujisawa et al., 2004) [2.125 (3), 2.005 (2), 1.961 (2) Å]. For the bond angles, the range of N—Cu—N (from tris(pyrazolyl)borate ligand) in the title complex is from 85.28 (13) to 95.06 (13)°, but in bis(hydrotris(3,5-dimethylpyrazolyl)borato-κ3N,N',N'')copper(II) (Kitajima et al., 1988) complex, the range of N—Cu—N (from tris(pyrazolyl)borate ligand) is from 86.7 (4) to 88.1 (4)°.

Related literature top

For related literature, see: Badura & Vahrenkamp (2002); Blosch et al. (1991); Fernandez et al. (1989); Fujisawa et al. (2004); Ghosh et al. (1988); Kitajima et al. (1988); Puerta et al. (2002); Trofimenko (1972, 1993, 2004).

Experimental top

All chemicals purchased were of reagent grade or better and were used without further purification. A methanol solution of K[HB(C5H7N2)3] (2 mmol) and 3,5-dimethylpyrazole (1 mmol) was added to an methanol solution of CuBr (1 mmol). The mixture was stirred for 4 h at room temperature, yielding a blue solution. This was set aside to crystallize, yielding analytically pure (I) as single crystals suitable for X-ray structure determination. Yield: 0.494 g, ca 72% (based on Cu). Anal. Calcd for C20H30N8BBrCu (FW: 536.78): C 44.69, H 5.63, N 20.86%. Found: C 44.71, H 5.59, N 20.87. IR (KBr, µ, cm-1): 3190, 2979, 2507, 2364, 1567, 1541, 1448, 1414, 1383, 1348, 1269, 1195, 1183, 1127, 1067, 1047, 1022, 984, 944, 911, 852, 808, 787, 693, 664, 644, 611, 593, 465, 436, 352, 303.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H = 0.93–0.96, N—H = 0.86 and B—H = 0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C, B, N) or 1.5Ueq(methyl C).

Structure description top

Since Trofimenko discovered poly(pyrazolyl)borate (Trofimenko, 1972), these ligands have been proven to be extremely popular for coordination chemists in a wide range of applications because of their ease of synthesis, ease of functionalization, and the steric protection which they afford to transition metal centers. So poly(pyrazolyl)borate ligands have been used for a number of different purposes, including modeling of metalloprotein active site (Trofimenko, 1993, 2004), mimicking metalloenzyme systems in bioinorganic chemistry (Puerta & Cohen, 2002), polymerization catalysts (Blosch et al., 1991) and C—H activation (Ghosh et al., 1988; Fernandez et al., 1989). The donor N atoms of pyrazole (or modified pyrazole) and poly(pyrazolyl)borate can coordinate to metal atoms together to form half sandwich structure. Based on these findings, we attempted to determine the structure of the title complex, (I).

The structure of (I) shows a distorting trigonal bipyramidal geometry of CuII, which is coordinated to one Br atom and four N atoms: three from tris(3,5-dimethylpyrazolyl)borate ligand [Cu—N(N2, N4, N6)] with bond lengths of 2.019 (3), 2.035 (3), 2.176 (3) Å and one from 3,5-dimethylpyrazole ligand (Cu—N8) with the bond distance of 2.067 (4) Å. In the structure, the atoms Br, N2 and N6 are in the triangle plane, and N4 and N8 are at the axial positions. The copper atom is in the center of the triangle double pyramide geometry (Fig. 1). Selected bond lengths and angles are listed in Table 1. It can be found that the Cu—N distances (from tris(pyrazolyl)borate ligand) are shorter than those of bis(hydrotris(3,5-dimethylpyrazolyl) borato-κ3N,N',N'')copper(II) (Kitajima et al., 1988) [2.034 (13), 2.085 (12), 2.296 (12) Å], longer than those of chloro(hydrotris(3-adamantyl-5-isopropyl-1-pyrazolyl) borato-κ3N,N',N'')copper(II) (Fujisawa et al., 2004) [2.125 (3), 2.005 (2), 1.961 (2) Å]. For the bond angles, the range of N—Cu—N (from tris(pyrazolyl)borate ligand) in the title complex is from 85.28 (13) to 95.06 (13)°, but in bis(hydrotris(3,5-dimethylpyrazolyl)borato-κ3N,N',N'')copper(II) (Kitajima et al., 1988) complex, the range of N—Cu—N (from tris(pyrazolyl)borate ligand) is from 86.7 (4) to 88.1 (4)°.

For related literature, see: Badura & Vahrenkamp (2002); Blosch et al. (1991); Fernandez et al. (1989); Fujisawa et al. (2004); Ghosh et al. (1988); Kitajima et al. (1988); Puerta et al. (2002); Trofimenko (1972, 1993, 2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
Bromido(3,5-dimethylpyrazole-κN)[hydrotris(3,5-dimethylpyrazolyl)βorato-κ3N,N',N'']copper(II) top
Crystal data top
[CuBr(C15H22BN6)(C5H8N2)]F(000) = 1100
Mr = 536.78Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 4917 reflections
a = 17.223 (4) Åθ = 2.2–26.0°
b = 7.9231 (18) ŵ = 2.49 mm1
c = 19.236 (4) ÅT = 293 K
β = 107.618 (3)°Plate, green
V = 2501.7 (10) Å30.21 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker P4
diffractometer
4917 independent reflections
Radiation source: fine-focus sealed tube3349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1321
Tmin = 0.626, Tmax = 0.723k = 99
4917 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0625P)2]
where P = (Fo2 + 2Fc2)/3
4917 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[CuBr(C15H22BN6)(C5H8N2)]V = 2501.7 (10) Å3
Mr = 536.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.223 (4) ŵ = 2.49 mm1
b = 7.9231 (18) ÅT = 293 K
c = 19.236 (4) Å0.21 × 0.16 × 0.13 mm
β = 107.618 (3)°
Data collection top
Bruker P4
diffractometer
4917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3349 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.723Rint = 0.055
4917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.75 e Å3
4917 reflectionsΔρmin = 0.65 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.23841 (3)0.86990 (6)0.30904 (3)0.03100 (17)
Br10.26691 (3)1.02181 (7)0.20786 (3)0.0571 (2)
C10.1549 (3)0.5592 (6)0.4415 (2)0.0433 (11)
C20.1719 (3)0.4300 (6)0.4000 (3)0.0491 (13)
H2A0.16810.31490.40790.059*
C30.1953 (3)0.5040 (6)0.3447 (2)0.0424 (11)
C40.0315 (3)1.0552 (6)0.3462 (2)0.0410 (11)
C50.0068 (3)1.1021 (6)0.2754 (3)0.0460 (12)
H5A0.04121.15810.25130.055*
C60.0667 (3)1.0510 (6)0.2457 (2)0.0390 (11)
C70.2787 (3)1.0521 (6)0.5238 (2)0.0469 (12)
C80.3505 (3)1.1191 (7)0.5189 (3)0.0557 (14)
H8A0.39021.17450.55550.067*
C90.3520 (3)1.0874 (6)0.4479 (3)0.0454 (12)
C100.4449 (3)0.6283 (8)0.2855 (4)0.0704 (17)
C110.4591 (3)0.5844 (7)0.3563 (4)0.0702 (17)
H11A0.50260.52040.38440.084*
C120.3964 (3)0.6531 (6)0.3791 (3)0.0490 (12)
C130.1268 (4)0.5499 (7)0.5069 (3)0.0633 (16)
H13A0.12040.66190.52330.095*
H13B0.16620.48970.54480.095*
H13C0.07540.49190.49480.095*
C140.2180 (3)0.4232 (7)0.2831 (3)0.0636 (15)
H14A0.23130.50920.25340.095*
H14B0.17290.35780.25400.095*
H14C0.26420.35100.30240.095*
C150.0100 (3)1.0777 (8)0.4035 (3)0.0680 (16)
H15A0.02311.03010.44860.102*
H15B0.06181.02170.38860.102*
H15C0.01801.19590.41010.102*
C160.0640 (3)1.0668 (8)0.1676 (2)0.0608 (15)
H16A0.11291.02050.16130.091*
H16B0.05961.18370.15380.091*
H16C0.01771.00630.13740.091*
C170.2459 (4)1.0483 (8)0.5871 (3)0.0795 (19)
H17A0.19420.99190.57330.119*
H17B0.23921.16170.60200.119*
H17C0.28320.98890.62690.119*
C180.4151 (3)1.1289 (8)0.4123 (3)0.0637 (16)
H18A0.39771.08940.36280.096*
H18B0.46541.07510.43830.096*
H18C0.42281.24890.41280.096*
C190.4902 (4)0.5946 (10)0.2306 (5)0.121 (3)
H19A0.46100.64470.18470.181*
H19B0.49440.47510.22450.181*
H19C0.54380.64280.24780.181*
C200.3829 (3)0.6372 (7)0.4518 (3)0.0665 (16)
H20A0.33450.69780.45150.100*
H20B0.42880.68340.48860.100*
H20C0.37670.52030.46210.100*
N10.1701 (2)0.7062 (4)0.41197 (17)0.0336 (8)
N20.1952 (2)0.6716 (4)0.35195 (17)0.0331 (8)
N30.1048 (2)0.9768 (4)0.35979 (17)0.0322 (8)
N40.1276 (2)0.9762 (4)0.29746 (17)0.0329 (8)
N50.2399 (2)0.9827 (4)0.45886 (17)0.0352 (9)
N60.2847 (2)1.0044 (4)0.41192 (17)0.0356 (9)
N70.3765 (2)0.7205 (5)0.2677 (2)0.0506 (10)
H7A0.35440.76280.22510.061*
N80.3461 (2)0.7391 (5)0.32409 (19)0.0407 (9)
B10.1575 (3)0.8903 (6)0.4308 (3)0.0339 (11)
H10.12910.89420.46790.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0280 (3)0.0343 (3)0.0322 (3)0.0016 (2)0.0114 (2)0.0010 (2)
Br10.0572 (4)0.0688 (4)0.0551 (3)0.0191 (3)0.0319 (3)0.0230 (3)
C10.040 (3)0.041 (3)0.048 (3)0.003 (2)0.012 (2)0.010 (2)
C20.054 (3)0.027 (3)0.062 (3)0.006 (2)0.011 (3)0.014 (2)
C30.034 (3)0.038 (3)0.051 (3)0.003 (2)0.006 (2)0.005 (2)
C40.030 (2)0.045 (3)0.050 (3)0.003 (2)0.015 (2)0.006 (2)
C50.028 (2)0.050 (3)0.056 (3)0.012 (2)0.007 (2)0.006 (2)
C60.030 (2)0.043 (3)0.040 (2)0.002 (2)0.003 (2)0.006 (2)
C70.055 (3)0.049 (3)0.033 (2)0.003 (3)0.007 (2)0.011 (2)
C80.052 (3)0.060 (4)0.045 (3)0.020 (3)0.001 (2)0.019 (2)
C90.041 (3)0.038 (3)0.053 (3)0.010 (2)0.009 (2)0.002 (2)
C100.049 (3)0.061 (4)0.115 (5)0.016 (3)0.047 (4)0.016 (4)
C110.037 (3)0.060 (4)0.112 (5)0.017 (3)0.021 (3)0.025 (4)
C120.032 (3)0.045 (3)0.065 (3)0.003 (2)0.008 (2)0.014 (2)
C130.078 (4)0.061 (4)0.056 (3)0.016 (3)0.028 (3)0.017 (3)
C140.069 (4)0.043 (3)0.082 (4)0.005 (3)0.028 (3)0.024 (3)
C150.057 (4)0.086 (5)0.071 (4)0.024 (3)0.035 (3)0.002 (3)
C160.045 (3)0.089 (4)0.041 (3)0.006 (3)0.002 (2)0.014 (3)
C170.090 (5)0.109 (5)0.040 (3)0.020 (4)0.021 (3)0.028 (3)
C180.041 (3)0.078 (4)0.070 (3)0.021 (3)0.014 (3)0.002 (3)
C190.104 (6)0.118 (7)0.179 (8)0.062 (5)0.101 (6)0.037 (6)
C200.048 (3)0.074 (4)0.061 (3)0.005 (3)0.009 (3)0.014 (3)
N10.0305 (19)0.035 (2)0.0337 (18)0.0037 (16)0.0079 (15)0.0022 (16)
N20.033 (2)0.033 (2)0.0360 (18)0.0016 (16)0.0138 (16)0.0001 (15)
N30.030 (2)0.035 (2)0.0342 (18)0.0026 (16)0.0135 (16)0.0002 (15)
N40.030 (2)0.037 (2)0.0340 (18)0.0004 (16)0.0130 (16)0.0008 (15)
N50.039 (2)0.038 (2)0.0291 (18)0.0030 (17)0.0106 (16)0.0055 (15)
N60.034 (2)0.037 (2)0.0339 (19)0.0065 (16)0.0083 (16)0.0034 (16)
N70.040 (2)0.050 (3)0.071 (3)0.010 (2)0.030 (2)0.007 (2)
N80.032 (2)0.043 (2)0.048 (2)0.0019 (18)0.0134 (18)0.0019 (18)
B10.032 (3)0.041 (3)0.032 (2)0.001 (2)0.014 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu—N22.019 (3)C13—H13A0.9600
Cu—N42.035 (3)C13—H13B0.9600
Cu—N82.067 (4)C13—H13C0.9600
Cu—N62.176 (3)C14—H14A0.9600
Cu—Br12.4607 (8)C14—H14B0.9600
C1—N11.355 (5)C14—H14C0.9600
C1—C21.383 (7)C15—H15A0.9600
C1—C131.480 (6)C15—H15B0.9600
C2—C31.378 (7)C15—H15C0.9600
C2—H2A0.9300C16—H16A0.9600
C3—N21.335 (5)C16—H16B0.9600
C3—C141.499 (7)C16—H16C0.9600
C4—C51.350 (6)C17—H17A0.9600
C4—N31.360 (5)C17—H17B0.9600
C4—C151.495 (6)C17—H17C0.9600
C5—C61.382 (6)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—N41.346 (5)C18—H18C0.9600
C6—C161.494 (6)C19—H19A0.9600
C7—N51.343 (5)C19—H19B0.9600
C7—C81.374 (7)C19—H19C0.9600
C7—C171.491 (6)C20—H20A0.9600
C8—C91.396 (6)C20—H20B0.9600
C8—H8A0.9300C20—H20C0.9600
C9—N61.331 (5)N1—N21.378 (4)
C9—C181.485 (6)N1—B11.534 (6)
C10—N71.340 (6)N3—N41.370 (4)
C10—C111.353 (8)N3—B11.552 (6)
C10—C191.514 (8)N5—N61.364 (4)
C11—C121.394 (7)N5—B11.542 (6)
C11—H11A0.9300N7—N81.348 (5)
C12—N81.333 (5)N7—H7A0.8600
C12—C201.491 (7)B1—H10.9800
N2—Cu—N485.28 (13)H15A—C15—H15C109.5
N2—Cu—N888.77 (14)H15B—C15—H15C109.5
N4—Cu—N8174.01 (14)C6—C16—H16A109.5
N2—Cu—N695.06 (13)C6—C16—H16B109.5
N4—Cu—N688.27 (13)H16A—C16—H16B109.5
N8—Cu—N692.99 (14)C6—C16—H16C109.5
N2—Cu—Br1152.93 (10)H16A—C16—H16C109.5
N4—Cu—Br196.65 (9)H16B—C16—H16C109.5
N8—Cu—Br188.31 (10)C7—C17—H17A109.5
N6—Cu—Br1111.97 (10)C7—C17—H17B109.5
N1—C1—C2107.1 (4)H17A—C17—H17B109.5
N1—C1—C13123.6 (4)C7—C17—H17C109.5
C2—C1—C13129.3 (5)H17A—C17—H17C109.5
C3—C2—C1107.0 (4)H17B—C17—H17C109.5
C3—C2—H2A126.5C9—C18—H18A109.5
C1—C2—H2A126.5C9—C18—H18B109.5
N2—C3—C2109.4 (4)H18A—C18—H18B109.5
N2—C3—C14121.1 (4)C9—C18—H18C109.5
C2—C3—C14129.5 (5)H18A—C18—H18C109.5
C5—C4—N3108.0 (4)H18B—C18—H18C109.5
C5—C4—C15129.5 (4)C10—C19—H19A109.5
N3—C4—C15122.5 (4)C10—C19—H19B109.5
C4—C5—C6106.9 (4)H19A—C19—H19B109.5
C4—C5—H5A126.5C10—C19—H19C109.5
C6—C5—H5A126.5H19A—C19—H19C109.5
N4—C6—C5109.5 (4)H19B—C19—H19C109.5
N4—C6—C16124.1 (4)C12—C20—H20A109.5
C5—C6—C16126.3 (4)C12—C20—H20B109.5
N5—C7—C8107.5 (4)H20A—C20—H20B109.5
N5—C7—C17123.1 (5)C12—C20—H20C109.5
C8—C7—C17129.4 (4)H20A—C20—H20C109.5
C7—C8—C9106.3 (4)H20B—C20—H20C109.5
C7—C8—H8A126.8C1—N1—N2109.2 (3)
C9—C8—H8A126.8C1—N1—B1131.2 (4)
N6—C9—C8109.0 (4)N2—N1—B1119.3 (3)
N6—C9—C18120.9 (4)C3—N2—N1107.2 (3)
C8—C9—C18130.1 (4)C3—N2—Cu136.0 (3)
N7—C10—C11106.0 (5)N1—N2—Cu115.8 (2)
N7—C10—C19121.1 (6)C4—N3—N4109.2 (3)
C11—C10—C19133.0 (6)C4—N3—B1129.2 (4)
C10—C11—C12107.1 (5)N4—N3—B1121.5 (3)
C10—C11—H11A126.4C6—N4—N3106.3 (3)
C12—C11—H11A126.4C6—N4—Cu139.3 (3)
N8—C12—C11109.2 (5)N3—N4—Cu114.4 (2)
N8—C12—C20122.6 (4)C7—N5—N6109.9 (4)
C11—C12—C20128.2 (5)C7—N5—B1131.8 (4)
C1—C13—H13A109.5N6—N5—B1118.2 (3)
C1—C13—H13B109.5C9—N6—N5107.3 (3)
H13A—C13—H13B109.5C9—N6—Cu137.4 (3)
C1—C13—H13C109.5N5—N6—Cu114.6 (2)
H13A—C13—H13C109.5C10—N7—N8112.3 (4)
H13B—C13—H13C109.5C10—N7—H7A123.9
C3—C14—H14A109.5N8—N7—H7A123.9
C3—C14—H14B109.5C12—N8—N7105.4 (4)
H14A—C14—H14B109.5C12—N8—Cu135.0 (3)
C3—C14—H14C109.5N7—N8—Cu119.5 (3)
H14A—C14—H14C109.5N1—B1—N5110.7 (4)
H14B—C14—H14C109.5N1—B1—N3107.4 (3)
C4—C15—H15A109.5N5—B1—N3109.2 (4)
C4—C15—H15B109.5N1—B1—H1109.8
H15A—C15—H15B109.5N5—B1—H1109.8
C4—C15—H15C109.5N3—B1—H1109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···Br10.862.513.045 (4)121

Experimental details

Crystal data
Chemical formula[CuBr(C15H22BN6)(C5H8N2)]
Mr536.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.223 (4), 7.9231 (18), 19.236 (4)
β (°) 107.618 (3)
V3)2501.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.21 × 0.16 × 0.13
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.626, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
4917, 4917, 3349
Rint0.055
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.03
No. of reflections4917
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.65

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cu—N22.019 (3)Cu—N62.176 (3)
Cu—N42.035 (3)Cu—Br12.4607 (8)
Cu—N82.067 (4)
N2—Cu—N485.28 (13)N8—Cu—N692.99 (14)
N2—Cu—N888.77 (14)N2—Cu—Br1152.93 (10)
N4—Cu—N8174.01 (14)N4—Cu—Br196.65 (9)
N2—Cu—N695.06 (13)N8—Cu—Br188.31 (10)
N4—Cu—N688.27 (13)N6—Cu—Br1111.97 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7A···Br10.8602.5083.045 (4)121
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds