Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Cu2(C9H10N4O3)2(H2O)2]·2H2O, there are one and a half dicopper complexes in the asymmetric unit. One dicopper complex is located on a twofold rotation axis, while the other is in a general position. Each ligand bridges a pair CuII atoms, rendering the complex circular in form. Each CuII atom has a square-pyramidal coordination geometry. The basal positions are occupied by two N atoms and one O atom from one ligand and one N atom from another ligand, while the apical position is occupied by a coordinated water mol­ecule. All chiral C atoms have an S configuration. In the crystal structure, there are uncoordinated water mol­ecules that bridge neighboring complex mol­ecules by hydrogen bonds, forming a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704473X/is2204sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704473X/is2204Isup2.hkl
Contains datablock I

CCDC reference: 663624

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.055
  • wR factor = 0.109
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.99 From the CIF: _reflns_number_total 6743 Count of symmetry unique reflns 4046 Completeness (_total/calc) 166.66% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2697 Fraction of Friedel pairs measured 0.667 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C20 = . S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.18 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.28 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu3 (2) 2.46 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 8 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

It has been reported that organic copper complexes can induce apoptosis in tumor tissues (Pang & Chau, 1999). Carnosine has been extensively investigated as a physiological buffer, an antioxidant, a metal chelator and a radical scavenger (Hobart et al., 2004; Babizhayev et al., 1994). To study the antioxidant activity and the copper-chelating capability of carnosine, the title compound was synthesized and characterized.

There are one and half dicopper complex molecules in the asymmetric unit (Fig. 1). The dicopper complex consists of two copper atoms, two ligand molecules and two coordinated water molecules. Two ligands bridge and form a circular configuration with two copper atoms. Each copper atom adopts a square pyramidal coordination with the copper atom in the center of the square. The square is formed by two N atoms and one O atom from one ligand and one N atom from another ligand, while the axial position is occupied by a coordinated water molecule. There are three chiral carbon atoms, C2, C11 and C20 in the molecules, which are in S configuration. In the crystal packing there are uncoordinated water molecules that bridge neighboring complex molecules by hydrogen bonds and are important for the 3-D structure (Fig. 2).

Related literature top

For related literature, see: Pang & Chau (1999); Hobart et al. (2004); Babizhayev et al. (1994).

Experimental top

Carnosine (67.8 mg, 0.3 mmol) dissolved in 10 ml deionized water and Cu(Ac)2.H20 (0.3 mmol) dissolved in 1 ml deionized water were mixed. To the solution ethanol (4.2 ml) was added. The purple block crystal was formed after one week.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and their positional parameters were refined, with Uiso(H) = 1.2Ueq(N,O). The refined distances are O—H = 0.83 (8)–0.96 (7) Å and N—H = 0.85 (8)–0.87 (7) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

It has been reported that organic copper complexes can induce apoptosis in tumor tissues (Pang & Chau, 1999). Carnosine has been extensively investigated as a physiological buffer, an antioxidant, a metal chelator and a radical scavenger (Hobart et al., 2004; Babizhayev et al., 1994). To study the antioxidant activity and the copper-chelating capability of carnosine, the title compound was synthesized and characterized.

There are one and half dicopper complex molecules in the asymmetric unit (Fig. 1). The dicopper complex consists of two copper atoms, two ligand molecules and two coordinated water molecules. Two ligands bridge and form a circular configuration with two copper atoms. Each copper atom adopts a square pyramidal coordination with the copper atom in the center of the square. The square is formed by two N atoms and one O atom from one ligand and one N atom from another ligand, while the axial position is occupied by a coordinated water molecule. There are three chiral carbon atoms, C2, C11 and C20 in the molecules, which are in S configuration. In the crystal packing there are uncoordinated water molecules that bridge neighboring complex molecules by hydrogen bonds and are important for the 3-D structure (Fig. 2).

For related literature, see: Pang & Chau (1999); Hobart et al. (2004); Babizhayev et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the dicopper complex, showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms and free water molecules have been omitted for clarity [symmetry code: (i) 2 - x, y, -z].
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis. Dashed lines indicate hydrogen bounds.
Diaquabis[µ2–3-(1H-imidazol-5-yl)-2-(3-iminopropionamido)propionato- κ4 N:N',N'',O]dicopper(II) dihydrate top
Crystal data top
[Cu2(C9H10N4O3)2(H2O)2]·2H2OF(000) = 1980
Mr = 643.56Dx = 1.669 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2360 reflections
a = 14.598 (9) Åθ = 2.7–24.8°
b = 8.627 (5) ŵ = 1.73 mm1
c = 30.508 (19) ÅT = 291 K
β = 90.322 (3)°Block, purple
V = 3842 (4) Å30.30 × 0.26 × 0.24 mm
Z = 6
Data collection top
Bruker SMART APEX CCD
diffractometer
6743 independent reflections
Radiation source: sealed tube5342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1815
Tmin = 0.61, Tmax = 0.67k = 710
10436 measured reflectionsl = 3637
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0545P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
6743 reflectionsΔρmax = 0.42 e Å3
568 parametersΔρmin = 0.77 e Å3
1 restraintAbsolute structure: Flack (1983), 2717 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (15)
Crystal data top
[Cu2(C9H10N4O3)2(H2O)2]·2H2OV = 3842 (4) Å3
Mr = 643.56Z = 6
Monoclinic, C2Mo Kα radiation
a = 14.598 (9) ŵ = 1.73 mm1
b = 8.627 (5) ÅT = 291 K
c = 30.508 (19) Å0.30 × 0.26 × 0.24 mm
β = 90.322 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6743 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5342 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.67Rint = 0.030
10436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.77 e Å3
6743 reflectionsAbsolute structure: Flack (1983), 2717 Friedel pairs
568 parametersAbsolute structure parameter: 0.020 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5715 (4)0.2703 (7)0.40534 (19)0.0465 (15)
C20.6209 (4)0.3479 (8)0.4437 (2)0.0526 (16)
H2A0.61380.28170.46960.063*
C30.7769 (5)0.3748 (9)0.4668 (2)0.0620 (19)
C40.8756 (4)0.4282 (9)0.4619 (2)0.0590 (18)
H4A0.87960.53770.46880.071*
H4C0.91400.37220.48250.071*
C50.9097 (5)0.4023 (9)0.4170 (2)0.0614 (19)
H5A0.96650.35440.41440.074*
C60.5815 (4)0.5047 (7)0.45415 (15)0.0374 (13)
H6A0.51620.49400.45910.045*
H6B0.60910.54260.48110.045*
C70.5963 (4)0.6198 (7)0.41921 (17)0.0403 (13)
C80.5681 (4)0.6289 (6)0.37706 (16)0.0357 (12)
H8A0.52980.55690.36360.043*
C90.6537 (4)0.8302 (8)0.38718 (17)0.0483 (14)
H9A0.68530.92270.38300.058*
C100.4564 (4)0.6099 (8)0.26138 (19)0.0459 (14)
C110.5162 (4)0.6449 (7)0.22274 (18)0.0429 (14)
H11A0.47750.66790.19720.051*
C120.6075 (4)0.8534 (8)0.19779 (19)0.0484 (15)
C130.6801 (4)0.9761 (8)0.20578 (18)0.0460 (14)
H13A0.73940.93110.19930.055*
H13C0.67001.05990.18510.055*
C140.6843 (4)1.0421 (9)0.24954 (19)0.0532 (17)
H14A0.68281.14950.25200.064*
C150.5762 (4)0.5020 (7)0.21278 (17)0.0412 (13)
H15A0.53670.41250.20920.049*
H15B0.60730.51890.18520.049*
C160.6435 (4)0.4680 (7)0.24593 (17)0.0379 (12)
C170.6350 (4)0.4175 (6)0.28876 (18)0.0364 (12)
H17A0.57950.39580.30230.044*
C180.7772 (4)0.4421 (8)0.27869 (18)0.0461 (15)
H18A0.84030.43900.28310.055*
C190.8858 (3)0.8743 (7)0.06998 (18)0.0393 (13)
C200.8977 (4)0.7637 (7)0.1103 (2)0.0421 (14)
H20A0.86760.80990.13580.051*
C210.8262 (4)0.5350 (8)0.13383 (19)0.0507 (16)
C220.7617 (5)0.4025 (9)0.1221 (2)0.065 (2)
H22A0.75560.33650.14760.078*
H22B0.70180.44610.11580.078*
C230.7884 (4)0.3043 (8)0.08456 (19)0.0517 (14)
H23A0.78580.19700.08710.062*
C240.9974 (4)0.7407 (7)0.12051 (19)0.0417 (13)
H24A1.00300.68020.14720.050*
H24B1.02520.84110.12600.050*
C251.0500 (4)0.6603 (7)0.0845 (2)0.0428 (13)
C261.0739 (4)0.6996 (8)0.0440 (2)0.0532 (16)
H26A1.06080.79510.03130.064*
C271.1294 (5)0.4756 (8)0.0539 (2)0.0515 (16)
H27A1.16040.38280.04950.062*
Cu10.73812 (5)0.34830 (9)0.37106 (3)0.0537 (2)
Cu20.58071 (5)0.81489 (9)0.29434 (2)0.0490 (2)
Cu30.84047 (5)0.58662 (8)0.03755 (2)0.04530 (19)
N10.7178 (3)0.3560 (7)0.43345 (17)0.0523 (14)
N20.8651 (4)0.4428 (8)0.37829 (19)0.0587 (16)
H2B0.889 (5)0.502 (10)0.359 (3)0.070*
N30.6032 (4)0.7577 (6)0.35642 (17)0.0517 (13)
N40.6521 (4)0.7493 (7)0.42513 (19)0.0541 (14)
H4B0.681 (5)0.774 (9)0.449 (2)0.065*
N50.5722 (4)0.7789 (6)0.23280 (16)0.0516 (14)
N60.6904 (4)0.9567 (7)0.28788 (18)0.0533 (14)
H6C0.735 (5)0.962 (9)0.307 (2)0.064*
N70.7169 (3)0.4038 (6)0.30806 (17)0.0467 (12)
N80.7368 (4)0.4864 (7)0.24148 (18)0.0527 (14)
H8B0.764 (5)0.520 (9)0.219 (2)0.063*
N90.8545 (3)0.6177 (6)0.10018 (16)0.0500 (14)
N100.8176 (4)0.3722 (7)0.04501 (18)0.0611 (16)
H10A0.826 (5)0.311 (10)0.023 (3)0.073*
N111.1189 (4)0.5860 (8)0.02374 (18)0.0619 (15)
N121.0886 (4)0.5171 (7)0.09179 (17)0.0522 (14)
H12E1.087 (5)0.465 (9)0.116 (2)0.063*
O10.6181 (3)0.2441 (5)0.37014 (15)0.0526 (11)
O20.4888 (3)0.2400 (5)0.40683 (14)0.0533 (11)
O30.7501 (3)0.3606 (6)0.50674 (16)0.0597 (13)
O40.4667 (3)0.6957 (6)0.29549 (15)0.0547 (11)
O50.3989 (3)0.5042 (5)0.25906 (13)0.0527 (11)
O60.5853 (3)0.8218 (7)0.15888 (15)0.0660 (13)
O70.8104 (3)0.1061 (7)0.35354 (17)0.0590 (13)
H7B0.860 (5)0.126 (9)0.339 (3)0.071*
H7A0.824 (5)0.050 (10)0.375 (3)0.071*
O80.4985 (3)1.0486 (5)0.31269 (14)0.0478 (10)
H8C0.493 (4)1.112 (9)0.287 (2)0.057*
H8D0.531 (4)1.104 (8)0.335 (2)0.057*
O90.8477 (2)0.8128 (5)0.03590 (13)0.0486 (10)
O100.9102 (3)1.0069 (5)0.07319 (15)0.0545 (11)
O110.8329 (3)0.5820 (7)0.17319 (12)0.0581 (12)
O120.6810 (3)0.6007 (6)0.01956 (18)0.0618 (13)
H12C0.670 (5)0.569 (10)0.006 (3)0.074*
H12B0.653 (6)0.550 (10)0.039 (3)0.074*
O130.5775 (4)0.6092 (6)0.09253 (17)0.0668 (15)
H13B0.522 (6)0.616 (11)0.086 (3)0.080*
H13D0.592 (6)0.687 (11)0.108 (3)0.080*
O140.4370 (4)0.2051 (7)0.24037 (17)0.0623 (14)
H14B0.409 (5)0.286 (10)0.249 (3)0.075*
H14D0.401 (5)0.149 (10)0.226 (3)0.075*
O150.8596 (3)0.9559 (6)0.42679 (14)0.0502 (11)
H15C0.885 (5)0.871 (9)0.419 (2)0.060*
H15E0.813 (5)0.936 (9)0.442 (2)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (3)0.061 (4)0.036 (3)0.016 (3)0.002 (2)0.007 (3)
C20.038 (3)0.060 (4)0.059 (4)0.018 (3)0.003 (3)0.000 (3)
C30.057 (4)0.081 (5)0.048 (4)0.023 (4)0.011 (3)0.016 (3)
C40.045 (4)0.076 (5)0.056 (4)0.017 (3)0.004 (3)0.013 (3)
C50.067 (4)0.068 (5)0.049 (4)0.031 (4)0.005 (3)0.008 (3)
C60.036 (3)0.058 (4)0.019 (2)0.021 (2)0.0077 (19)0.000 (2)
C70.044 (3)0.046 (4)0.030 (3)0.008 (2)0.005 (2)0.002 (2)
C80.038 (3)0.036 (3)0.033 (3)0.003 (2)0.001 (2)0.002 (2)
C90.056 (3)0.060 (4)0.029 (3)0.012 (3)0.000 (2)0.001 (3)
C100.042 (3)0.051 (4)0.044 (3)0.010 (3)0.009 (2)0.015 (3)
C110.046 (3)0.058 (4)0.024 (3)0.006 (3)0.008 (2)0.019 (2)
C120.045 (3)0.061 (4)0.039 (3)0.011 (3)0.009 (2)0.005 (3)
C130.039 (3)0.063 (4)0.036 (3)0.006 (3)0.011 (2)0.010 (3)
C140.057 (4)0.068 (5)0.035 (3)0.016 (3)0.004 (3)0.006 (3)
C150.045 (3)0.047 (4)0.032 (3)0.004 (3)0.007 (2)0.018 (2)
C160.039 (3)0.044 (3)0.031 (3)0.006 (2)0.001 (2)0.006 (2)
C170.030 (3)0.042 (3)0.037 (3)0.007 (2)0.006 (2)0.004 (2)
C180.035 (3)0.072 (5)0.031 (3)0.010 (3)0.003 (2)0.015 (3)
C190.034 (3)0.042 (3)0.041 (3)0.010 (2)0.007 (2)0.011 (2)
C200.045 (3)0.038 (3)0.044 (3)0.004 (2)0.003 (2)0.017 (2)
C210.040 (3)0.070 (5)0.043 (3)0.015 (3)0.014 (3)0.014 (3)
C220.076 (5)0.088 (6)0.032 (3)0.052 (4)0.026 (3)0.017 (3)
C230.057 (3)0.055 (4)0.044 (3)0.009 (3)0.001 (2)0.001 (3)
C240.034 (3)0.046 (3)0.045 (3)0.003 (2)0.001 (2)0.010 (3)
C250.033 (3)0.040 (3)0.055 (4)0.001 (2)0.010 (2)0.001 (3)
C260.052 (4)0.062 (4)0.046 (3)0.023 (3)0.021 (3)0.010 (3)
C270.060 (4)0.040 (3)0.055 (4)0.003 (3)0.023 (3)0.008 (3)
Cu10.0456 (4)0.0658 (6)0.0497 (4)0.0228 (4)0.0038 (3)0.0082 (4)
Cu20.0527 (4)0.0620 (5)0.0323 (3)0.0025 (4)0.0052 (3)0.0086 (3)
Cu30.0475 (4)0.0476 (4)0.0409 (4)0.0152 (3)0.0141 (3)0.0183 (3)
N10.026 (2)0.071 (4)0.061 (3)0.022 (2)0.009 (2)0.016 (3)
N20.064 (4)0.068 (4)0.044 (3)0.007 (3)0.003 (3)0.024 (3)
N30.062 (3)0.054 (3)0.039 (3)0.008 (2)0.003 (2)0.009 (2)
N40.052 (3)0.066 (4)0.045 (3)0.009 (3)0.001 (2)0.001 (3)
N50.071 (3)0.050 (4)0.034 (3)0.002 (3)0.009 (2)0.007 (2)
N60.066 (4)0.053 (3)0.041 (3)0.005 (3)0.026 (2)0.010 (2)
N70.032 (2)0.064 (4)0.044 (3)0.003 (2)0.003 (2)0.008 (2)
N80.044 (3)0.070 (4)0.044 (3)0.010 (3)0.009 (2)0.015 (3)
N90.053 (3)0.051 (3)0.046 (3)0.029 (2)0.020 (2)0.020 (2)
N100.078 (4)0.064 (4)0.042 (3)0.025 (3)0.017 (3)0.007 (3)
N110.055 (3)0.072 (4)0.058 (3)0.027 (3)0.016 (2)0.023 (3)
N120.064 (4)0.055 (3)0.037 (3)0.021 (3)0.010 (2)0.023 (2)
O10.055 (3)0.058 (3)0.045 (2)0.012 (2)0.0050 (19)0.006 (2)
O20.053 (3)0.066 (3)0.041 (2)0.010 (2)0.0113 (18)0.014 (2)
O30.049 (2)0.066 (3)0.064 (3)0.033 (2)0.007 (2)0.002 (2)
O40.053 (2)0.056 (3)0.055 (3)0.017 (2)0.006 (2)0.000 (2)
O50.068 (3)0.053 (3)0.037 (2)0.016 (2)0.017 (2)0.0008 (19)
O60.083 (3)0.058 (3)0.057 (3)0.027 (3)0.018 (2)0.010 (3)
O70.047 (2)0.075 (4)0.056 (3)0.028 (2)0.008 (2)0.001 (3)
O80.053 (2)0.055 (3)0.034 (2)0.010 (2)0.0091 (18)0.0044 (19)
O90.042 (2)0.053 (3)0.051 (2)0.001 (2)0.0033 (17)0.018 (2)
O100.060 (3)0.041 (3)0.062 (3)0.009 (2)0.031 (2)0.009 (2)
O110.073 (3)0.076 (3)0.026 (2)0.031 (3)0.0172 (18)0.016 (2)
O120.064 (3)0.064 (3)0.058 (3)0.036 (3)0.004 (2)0.022 (3)
O130.081 (3)0.056 (3)0.064 (3)0.035 (3)0.028 (3)0.029 (3)
O140.067 (3)0.068 (4)0.052 (3)0.027 (3)0.031 (2)0.022 (3)
O150.042 (2)0.070 (3)0.038 (2)0.008 (2)0.0117 (18)0.002 (2)
Geometric parameters (Å, º) top
C1—O21.237 (7)C20—H20A0.9800
C1—O11.294 (7)C21—O111.271 (7)
C1—C21.526 (9)C21—N91.319 (8)
C2—N11.452 (7)C21—C221.522 (9)
C2—C61.505 (8)C22—C231.478 (9)
C2—H2A0.9800C22—H22A0.9700
C3—O31.289 (8)C22—H22B0.9700
C3—N11.339 (9)C23—N101.410 (8)
C3—C41.519 (10)C23—H23A0.9300
C4—C51.476 (10)C24—C251.511 (8)
C4—H4A0.9700C24—H24A0.9700
C4—H4C0.9700C24—H24B0.9700
C5—N21.390 (9)C25—C261.331 (8)
C5—H5A0.9300C25—N121.375 (8)
C6—C71.474 (8)C26—N111.334 (8)
C6—H6A0.9700C26—H26A0.9300
C6—H6B0.9700C27—N111.333 (8)
C7—C81.350 (7)C27—N121.352 (8)
C7—N41.393 (8)C27—H27A0.9300
C8—N31.377 (7)Cu1—N11.929 (5)
C8—H8A0.9300Cu1—O11.970 (5)
C9—N31.345 (8)Cu1—N72.003 (5)
C9—N41.352 (8)Cu1—N22.036 (6)
C9—H9A0.9300Cu1—O72.402 (5)
C10—O51.242 (7)Cu2—N51.906 (5)
C10—O41.285 (8)Cu2—O41.956 (5)
C10—C111.501 (8)Cu2—N31.983 (5)
C11—N51.448 (8)Cu2—N62.026 (6)
C11—C151.544 (9)Cu2—O82.414 (5)
C11—H11A0.9800Cu3—N101.893 (6)
C12—O61.258 (7)Cu3—N91.939 (5)
C12—N51.351 (8)Cu3—O91.955 (5)
C12—C131.517 (8)Cu3—N11i1.965 (5)
C13—C141.452 (8)Cu3—O122.392 (5)
C13—H13A0.9700N2—H2B0.85 (8)
C13—H13C0.9700N4—H4B0.86 (7)
C14—N61.385 (8)N6—H6C0.87 (7)
C14—H14A0.9300N8—H8B0.85 (7)
C15—C161.436 (7)N10—H10A0.87 (8)
C15—H15A0.9700N11—Cu3i1.965 (5)
C15—H15B0.9700N12—H12E0.86 (7)
C16—N81.379 (7)O7—H7B0.86 (8)
C16—C171.383 (7)O7—H7A0.83 (8)
C17—N71.335 (7)O8—H8C0.96 (7)
C17—H17A0.9300O8—H8D0.95 (7)
C18—N71.303 (8)O12—H12C0.85 (8)
C18—N81.332 (8)O12—H12B0.85 (8)
C18—H18A0.9300O13—H13B0.84 (8)
C19—O101.202 (7)O13—H13D0.85 (9)
C19—O91.290 (7)O14—H14B0.85 (8)
C19—C201.565 (9)O14—H14D0.84 (8)
C20—N91.441 (7)O15—H15C0.86 (7)
C20—C241.500 (8)O15—H15E0.85 (8)
O2—C1—O1120.7 (6)C25—C24—H24A108.8
O2—C1—C2121.5 (5)C20—C24—H24B108.8
O1—C1—C2117.7 (5)C25—C24—H24B108.8
N1—C2—C6112.1 (6)H24A—C24—H24B107.7
N1—C2—C1108.2 (5)C26—C25—N12105.6 (5)
C6—C2—C1112.1 (5)C26—C25—C24134.0 (6)
N1—C2—H2A108.1N12—C25—C24120.3 (5)
C6—C2—H2A108.1C25—C26—N11112.1 (6)
C1—C2—H2A108.1C25—C26—H26A124.0
O3—C3—N1120.5 (6)N11—C26—H26A124.0
O3—C3—C4114.5 (6)N11—C27—N12110.6 (6)
N1—C3—C4124.7 (6)N11—C27—H27A124.7
C5—C4—C3111.7 (6)N12—C27—H27A124.7
C5—C4—H4A109.3N1—Cu1—O183.6 (2)
C3—C4—H4A109.3N1—Cu1—N7156.1 (2)
C5—C4—H4C109.3O1—Cu1—N787.86 (19)
C3—C4—H4C109.3N1—Cu1—N291.4 (2)
H4A—C4—H4C107.9O1—Cu1—N2173.6 (2)
N2—C5—C4126.2 (7)N7—Cu1—N298.3 (2)
N2—C5—H5A116.9N1—Cu1—O7108.6 (2)
C4—C5—H5A116.9O1—Cu1—O789.52 (19)
C7—C6—C2113.3 (4)N7—Cu1—O793.47 (19)
C7—C6—H6A108.9N2—Cu1—O788.4 (2)
C2—C6—H6A108.9N5—Cu2—O483.2 (2)
C7—C6—H6B108.9N5—Cu2—N3155.5 (2)
C2—C6—H6B108.9O4—Cu2—N389.3 (2)
H6A—C6—H6B107.7N5—Cu2—N692.8 (2)
C8—C7—N4104.6 (5)O4—Cu2—N6172.8 (2)
C8—C7—C6133.1 (5)N3—Cu2—N696.7 (2)
N4—C7—C6122.3 (5)N5—Cu2—O8109.57 (19)
C7—C8—N3111.7 (5)O4—Cu2—O890.63 (18)
C7—C8—H8A124.1N3—Cu2—O893.8 (2)
N3—C8—H8A124.1N6—Cu2—O885.0 (2)
N3—C9—N4110.1 (6)N10—Cu3—N992.0 (2)
N3—C9—H9A124.9N10—Cu3—O9171.0 (2)
N4—C9—H9A124.9N9—Cu3—O983.2 (2)
O5—C10—O4123.0 (6)N10—Cu3—N11i99.6 (3)
O5—C10—C11119.9 (6)N9—Cu3—N11i155.1 (2)
O4—C10—C11117.0 (6)O9—Cu3—N11i87.8 (2)
N5—C11—C10108.9 (5)N10—Cu3—O1284.6 (2)
N5—C11—C15111.0 (5)N9—Cu3—O12108.4 (2)
C10—C11—C15109.1 (4)O9—Cu3—O1289.78 (17)
N5—C11—H11A109.3N11i—Cu3—O1294.6 (2)
C10—C11—H11A109.3C3—N1—C2117.8 (5)
C15—C11—H11A109.3C3—N1—Cu1130.6 (4)
O6—C12—N5123.1 (6)C2—N1—Cu1111.5 (4)
O6—C12—C13118.6 (5)C5—N2—Cu1114.4 (4)
N5—C12—C13118.3 (5)C5—N2—H2B123 (5)
C14—C13—C12116.6 (5)Cu1—N2—H2B123 (5)
C14—C13—H13A108.2C9—N3—C8105.1 (5)
C12—C13—H13A108.2C9—N3—Cu2129.6 (4)
C14—C13—H13C108.2C8—N3—Cu2125.3 (4)
C12—C13—H13C108.2C9—N4—C7108.5 (5)
H13A—C13—H13C107.3C9—N4—H4B126 (5)
N6—C14—C13124.7 (6)C7—N4—H4B126 (5)
N6—C14—H14A117.6C12—N5—C11115.4 (5)
C13—C14—H14A117.6C12—N5—Cu2132.7 (4)
C16—C15—C11114.3 (5)C11—N5—Cu2111.8 (4)
C16—C15—H15A108.7C14—N6—Cu2110.9 (4)
C11—C15—H15A108.7C14—N6—H6C125 (5)
C16—C15—H15B108.7Cu2—N6—H6C124 (5)
C11—C15—H15B108.7C18—N7—C17106.4 (5)
H15A—C15—H15B107.6C18—N7—Cu1128.2 (4)
N8—C16—C17102.9 (5)C17—N7—Cu1125.3 (4)
N8—C16—C15125.4 (5)C18—N8—C16108.4 (5)
C17—C16—C15131.7 (5)C18—N8—H8B126 (5)
N7—C17—C16111.1 (5)C16—N8—H8B125 (5)
N7—C17—H17A124.5C21—N9—C20116.4 (5)
C16—C17—H17A124.5C21—N9—Cu3131.3 (4)
N7—C18—N8111.1 (5)C20—N9—Cu3112.1 (4)
N7—C18—H18A124.4C23—N10—Cu3124.3 (5)
N8—C18—H18A124.4C23—N10—H10A117 (5)
O10—C19—O9125.6 (6)Cu3—N10—H10A118 (5)
O10—C19—C20119.0 (5)C27—N11—C26105.1 (5)
O9—C19—C20115.3 (5)C27—N11—Cu3i128.7 (5)
N9—C20—C24110.6 (5)C26—N11—Cu3i126.2 (5)
N9—C20—C19108.6 (5)C27—N12—C25106.4 (5)
C24—C20—C19110.3 (5)C27—N12—H12E127 (5)
N9—C20—H20A109.1C25—N12—H12E126 (5)
C24—C20—H20A109.1C1—O1—Cu1112.3 (4)
C19—C20—H20A109.1C10—O4—Cu2112.6 (4)
O11—C21—N9122.7 (6)Cu1—O7—H7B108 (5)
O11—C21—C22120.4 (5)Cu1—O7—H7A116 (6)
N9—C21—C22114.8 (5)H7B—O7—H7A108 (7)
C23—C22—C21116.6 (5)Cu2—O8—H8C109 (4)
C23—C22—H22A108.1Cu2—O8—H8D109 (4)
C21—C22—H22A108.1H8C—O8—H8D110 (6)
C23—C22—H22B108.1C19—O9—Cu3114.4 (4)
C21—C22—H22B108.1Cu3—O12—H12C112 (5)
H22A—C22—H22B107.3Cu3—O12—H12B107 (5)
N10—C23—C22120.5 (6)H12C—O12—H12B113 (7)
N10—C23—H23A119.8H13B—O13—H13D109 (9)
C22—C23—H23A119.8H14B—O14—H14D109 (8)
C20—C24—C25113.9 (5)H15C—O15—H15E110 (7)
C20—C24—H24A108.8
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O8ii0.85 (8)2.18 (8)2.945 (7)149 (7)
N4—H4B···O3iii0.86 (7)1.84 (7)2.692 (8)168 (7)
N6—H6C···O7iv0.87 (7)2.19 (7)2.950 (8)147 (7)
N8—H8B···O110.85 (7)1.80 (7)2.650 (6)173 (7)
N10—H10A···O12v0.87 (8)2.23 (8)3.061 (9)160 (7)
N12—H12E···O6ii0.86 (7)1.80 (8)2.652 (7)168 (7)
O7—H7B···O4ii0.86 (8)2.15 (8)2.998 (7)170 (7)
O7—H7A···O15vi0.83 (8)1.85 (8)2.678 (7)170 (8)
O8—H8C···O14iv0.96 (7)1.83 (7)2.734 (6)158 (6)
O8—H8D···O1iv0.95 (7)2.05 (7)2.988 (6)166 (6)
O8—H8D···O2iv0.95 (7)2.57 (7)3.317 (6)135 (5)
O12—H12C···O9v0.85 (8)2.40 (8)3.032 (7)131 (7)
O12—H12C···O10v0.85 (8)2.40 (8)3.223 (6)162 (7)
O12—H12B···O130.85 (8)2.03 (8)2.698 (7)134 (7)
O13—H13B···O10vii0.84 (8)1.92 (9)2.661 (7)147 (9)
O13—H13D···O60.85 (9)1.94 (9)2.734 (7)155 (8)
O14—H14B···O50.85 (8)1.92 (9)2.701 (8)153 (8)
O14—H14D···O11vii0.84 (8)1.97 (8)2.757 (7)155 (8)
O15—H15C···O2viii0.86 (7)1.92 (7)2.722 (7)154 (7)
O15—H15E···O3iii0.85 (8)1.93 (8)2.718 (6)155 (7)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z+1; (iv) x, y+1, z; (v) x+3/2, y1/2, z; (vi) x, y1, z; (vii) x1/2, y1/2, z; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C9H10N4O3)2(H2O)2]·2H2O
Mr643.56
Crystal system, space groupMonoclinic, C2
Temperature (K)291
a, b, c (Å)14.598 (9), 8.627 (5), 30.508 (19)
β (°) 90.322 (3)
V3)3842 (4)
Z6
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.61, 0.67
No. of measured, independent and
observed [I > 2σ(I)] reflections
10436, 6743, 5342
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 1.07
No. of reflections6743
No. of parameters568
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.77
Absolute structureFlack (1983), 2717 Friedel pairs
Absolute structure parameter0.020 (15)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O8i0.85 (8)2.18 (8)2.945 (7)149 (7)
N4—H4B···O3ii0.86 (7)1.84 (7)2.692 (8)168 (7)
N6—H6C···O7iii0.87 (7)2.19 (7)2.950 (8)147 (7)
N8—H8B···O110.85 (7)1.80 (7)2.650 (6)173 (7)
N10—H10A···O12iv0.87 (8)2.23 (8)3.061 (9)160 (7)
N12—H12E···O6i0.86 (7)1.80 (8)2.652 (7)168 (7)
O7—H7B···O4i0.86 (8)2.15 (8)2.998 (7)170 (7)
O7—H7A···O15v0.83 (8)1.85 (8)2.678 (7)170 (8)
O8—H8C···O14iii0.96 (7)1.83 (7)2.734 (6)158 (6)
O8—H8D···O1iii0.95 (7)2.05 (7)2.988 (6)166 (6)
O8—H8D···O2iii0.95 (7)2.57 (7)3.317 (6)135 (5)
O12—H12C···O9iv0.85 (8)2.40 (8)3.032 (7)131 (7)
O12—H12C···O10iv0.85 (8)2.40 (8)3.223 (6)162 (7)
O12—H12B···O130.85 (8)2.03 (8)2.698 (7)134 (7)
O13—H13B···O10vi0.84 (8)1.92 (9)2.661 (7)147 (9)
O13—H13D···O60.85 (9)1.94 (9)2.734 (7)155 (8)
O14—H14B···O50.85 (8)1.92 (9)2.701 (8)153 (8)
O14—H14D···O11vi0.84 (8)1.97 (8)2.757 (7)155 (8)
O15—H15C···O2vii0.86 (7)1.92 (7)2.722 (7)154 (7)
O15—H15E···O3ii0.85 (8)1.93 (8)2.718 (6)155 (7)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y+1/2, z+1; (iii) x, y+1, z; (iv) x+3/2, y1/2, z; (v) x, y1, z; (vi) x1/2, y1/2, z; (vii) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds