Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the polymeric title compound, [Co(μ-C8H4O4)(CH3OH)2(H2O)2]n, two independent CoII atoms both occupy special positions with \overline{1} site symmetry. Each CoII atom assumes a distorted octa­hedral coordination geometry. The phthalate anion acts as a bridging ligand and leads to the formation of a zigzag chain running along the c axis. O—H...O and C—H...O hydrogen bonds connect the chains and result in the formation of a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038573/is2201sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038573/is2201Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.076
  • wR factor = 0.133
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.19 Ratio
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.06 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O7 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (9) 1.53 PLAT794_ALERT_5_G Check Predicted Bond Valency for Co2 (9) 1.45 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 8
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Phthalate anion is a versatile ligand and a large number of multi-nuclear complexes with it as a bridging ligand have been reported (Baca et al., 2003, 2006). Here we report the crystal structure of a novel coordination polymer dealing with phthalate anion, (I).

Fig. 1 shows the asymmetric unit and the symmetry-related fragment of (I). Atoms Co1 and Co2 lie in an inversion centre and are in a distorted octahedral CoO6 coordination geometry (Table 1). Each phthalate anion as a µ2-bridging ligand joins two adjacent CoII atoms with separation of 6.6367 (6) Å and it results in the formation of a zigzag one-dimensional chain along the c axis. The overall crystal structure of (I) is a super-molecular three-dimensional network, which attributes to the connection between chains by the O—H···O and C—H···O hydrogen bonds (Table 2 and Fig. 2).

Related literature top

For related crystal structures, see: Baca et al. (2003, 2006).

Experimental top

A methanol solution (50 ml) containing phthalic acid (3.32 g, 0.02 mol) and cobalt acetate (1.77 g, 0.01 mol) was refluxed for 50 min and the reaction solid was separated and dried. The dried solid (0.2 g) was dissolved in H2O (20 ml) and pink single crystals were obtained after the solution had been allowed to stand at room temperature for about a month.

Refinement top

H atoms of water molecules and hydroxyl groups were located in a difference Fourier map and were refined with distance restraints of O—H = 0.85 (2) Å for water molecules and 0.82 (2) Å for hydroxyl groups, and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Phthalate anion is a versatile ligand and a large number of multi-nuclear complexes with it as a bridging ligand have been reported (Baca et al., 2003, 2006). Here we report the crystal structure of a novel coordination polymer dealing with phthalate anion, (I).

Fig. 1 shows the asymmetric unit and the symmetry-related fragment of (I). Atoms Co1 and Co2 lie in an inversion centre and are in a distorted octahedral CoO6 coordination geometry (Table 1). Each phthalate anion as a µ2-bridging ligand joins two adjacent CoII atoms with separation of 6.6367 (6) Å and it results in the formation of a zigzag one-dimensional chain along the c axis. The overall crystal structure of (I) is a super-molecular three-dimensional network, which attributes to the connection between chains by the O—H···O and C—H···O hydrogen bonds (Table 2 and Fig. 2).

For related crystal structures, see: Baca et al. (2003, 2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The coordination structure of (I), with the atom numbering scheme and thermal ellipsoids drawn at the 30% probability level [symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1].
[Figure 2] Fig. 2. A packing diagram of (I), showing hydrogen bonds (dashed lines).
catena-Poly[[diaquabis(methanol)cobalt(II)]-µ-phthalato] top
Crystal data top
[Co(C8H4O4)(CH4O)2(H2O)2]F(000) = 668
Mr = 323.16Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2648 reflections
a = 10.0810 (9) Åθ = 2.6–27.6°
b = 9.9429 (9) ŵ = 1.32 mm1
c = 13.2735 (12) ÅT = 293 K
β = 90.300 (2)°Prism, pink
V = 1330.4 (2) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2351 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 612
Tmin = 0.778, Tmax = 0.826k = 1111
5378 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.27 w = 1/[σ2(Fo2) + (0.0199P)2 + 5.7387P]
where P = (Fo2 + 2Fc2)/3
2351 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.49 e Å3
8 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C8H4O4)(CH4O)2(H2O)2]V = 1330.4 (2) Å3
Mr = 323.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0810 (9) ŵ = 1.32 mm1
b = 9.9429 (9) ÅT = 293 K
c = 13.2735 (12) Å0.20 × 0.20 × 0.15 mm
β = 90.300 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2172 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.826Rint = 0.026
5378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0778 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.27Δρmax = 0.49 e Å3
2351 reflectionsΔρmin = 0.30 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00001.00000.0270 (3)
Co20.50000.00000.50000.0291 (3)
O10.3636 (3)0.1108 (3)0.9162 (3)0.0247 (8)
O20.1792 (4)0.0057 (4)0.9467 (3)0.0421 (10)
O30.4035 (4)0.1133 (4)0.6087 (3)0.0316 (9)
O40.3505 (4)0.0417 (3)0.7224 (3)0.0304 (9)
O50.6557 (4)0.1154 (4)0.9317 (3)0.0352 (9)
H20.717 (5)0.087 (7)0.966 (4)0.053*
O60.5027 (5)0.1347 (4)1.1156 (3)0.0374 (10)
H6C0.553 (5)0.120 (6)1.166 (3)0.056*
H6D0.471 (6)0.214 (3)1.117 (4)0.056*
O70.6667 (4)0.1246 (4)0.5157 (4)0.0459 (11)
H10.661 (8)0.198 (4)0.488 (5)0.069*
O80.4320 (4)0.1280 (4)0.3867 (3)0.0343 (10)
H8A0.412 (6)0.210 (3)0.388 (5)0.051*
H8B0.499 (4)0.115 (5)0.349 (4)0.051*
C10.2433 (5)0.0782 (5)0.8981 (4)0.0250 (12)
C20.1755 (5)0.1554 (5)0.8149 (4)0.0273 (12)
C30.0660 (6)0.2309 (6)0.8391 (5)0.0417 (15)
H3A0.03140.22500.90370.050*
C40.0059 (6)0.3155 (7)0.7695 (5)0.0482 (18)
H4A0.06820.36580.78710.058*
C50.0578 (6)0.3241 (6)0.6739 (5)0.0460 (17)
H5A0.02000.38220.62700.055*
C60.1661 (6)0.2462 (6)0.6475 (5)0.0400 (14)
H6B0.19960.25120.58250.048*
C70.2251 (5)0.1606 (5)0.7175 (4)0.0267 (12)
C80.3358 (5)0.0702 (5)0.6825 (4)0.0236 (12)
C90.6831 (7)0.1107 (7)0.8252 (5)0.0537 (18)
H9A0.75660.16870.81040.080*
H9B0.60640.14000.78820.080*
H9C0.70470.02020.80620.080*
C100.7954 (9)0.0949 (10)0.5518 (8)0.098 (4)
H10A0.84930.17430.54890.147*
H10B0.83410.02590.51080.147*
H10C0.79020.06420.62020.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0288 (6)0.0185 (5)0.0336 (6)0.0006 (5)0.0035 (4)0.0013 (5)
Co20.0353 (6)0.0198 (5)0.0321 (6)0.0021 (5)0.0001 (5)0.0005 (5)
O10.0189 (19)0.0197 (18)0.035 (2)0.0017 (15)0.0050 (15)0.0037 (16)
O20.037 (2)0.043 (2)0.045 (2)0.012 (2)0.0051 (19)0.015 (2)
O30.044 (2)0.0190 (19)0.032 (2)0.0042 (18)0.0052 (18)0.0024 (16)
O40.051 (3)0.0164 (19)0.0236 (19)0.0067 (17)0.0021 (18)0.0000 (15)
O50.032 (2)0.034 (2)0.040 (2)0.0033 (19)0.0020 (18)0.0073 (19)
O60.055 (3)0.022 (2)0.035 (2)0.011 (2)0.011 (2)0.0040 (18)
O70.039 (3)0.022 (2)0.076 (3)0.002 (2)0.011 (2)0.005 (2)
O80.041 (3)0.023 (2)0.038 (2)0.0115 (19)0.0017 (19)0.0029 (18)
C10.029 (3)0.021 (3)0.025 (3)0.002 (2)0.002 (2)0.004 (2)
C20.023 (3)0.024 (3)0.035 (3)0.000 (2)0.003 (2)0.003 (2)
C30.032 (3)0.046 (4)0.046 (4)0.013 (3)0.003 (3)0.002 (3)
C40.032 (3)0.050 (4)0.063 (5)0.021 (3)0.002 (3)0.005 (3)
C50.043 (4)0.038 (4)0.057 (4)0.011 (3)0.012 (3)0.010 (3)
C60.042 (4)0.034 (3)0.043 (3)0.002 (3)0.005 (3)0.009 (3)
C70.026 (3)0.017 (3)0.037 (3)0.001 (2)0.002 (2)0.002 (2)
C80.037 (3)0.019 (3)0.014 (2)0.001 (2)0.007 (2)0.004 (2)
C90.057 (5)0.037 (4)0.067 (5)0.002 (3)0.008 (4)0.009 (4)
C100.074 (6)0.102 (8)0.118 (8)0.039 (6)0.034 (6)0.048 (7)
Geometric parameters (Å, º) top
Co1—O1i2.080 (3)O7—H10.82 (5)
Co1—O12.080 (3)O8—H8A0.84 (3)
Co1—O5i2.148 (4)O8—H8B0.85 (4)
Co1—O52.148 (4)C1—C21.506 (7)
Co1—O62.037 (4)C2—C31.374 (8)
Co1—O6i2.037 (4)C2—C71.389 (8)
Co2—O32.077 (4)C3—C41.386 (9)
Co2—O3ii2.077 (4)C3—H3A0.9300
Co2—O72.098 (4)C4—C51.377 (9)
Co2—O7ii2.098 (4)C4—H4A0.9300
Co2—O8ii2.083 (4)C5—C61.385 (9)
Co2—O82.083 (4)C5—H5A0.9300
O1—C11.277 (6)C6—C71.392 (8)
O2—C11.239 (6)C6—H6B0.9300
O3—C81.271 (6)C7—C81.508 (7)
O4—C81.240 (6)C9—H9A0.9600
O5—C91.443 (8)C9—H9B0.9600
O5—H20.82 (5)C9—H9C0.9600
O6—H6C0.85 (4)C10—H10A0.9600
O6—H6D0.85 (5)C10—H10B0.9600
O7—C101.411 (9)C10—H10C0.9600
O6—Co1—O6i180.000 (1)Co2—O7—H1115 (5)
O6—Co1—O1i86.52 (15)Co2—O8—H8A131 (4)
O6i—Co1—O1i93.48 (15)Co2—O8—H8B94 (4)
O6—Co1—O193.48 (15)H8A—O8—H8B110 (3)
O6i—Co1—O186.52 (15)O2—C1—O1124.8 (5)
O1i—Co1—O1180.000 (1)O2—C1—C2119.3 (5)
O6—Co1—O5i92.29 (17)O1—C1—C2115.8 (5)
O6i—Co1—O5i87.71 (17)C3—C2—C7119.4 (5)
O1i—Co1—O5i88.50 (14)C3—C2—C1118.0 (5)
O1—Co1—O5i91.50 (14)C7—C2—C1122.4 (5)
O6—Co1—O587.71 (17)C2—C3—C4121.6 (6)
O6i—Co1—O592.29 (17)C2—C3—H3A119.2
O1i—Co1—O591.50 (14)C4—C3—H3A119.2
O1—Co1—O588.50 (14)C5—C4—C3119.0 (6)
O5i—Co1—O5180.0C5—C4—H4A120.5
O3—Co2—O3ii180.00 (14)C3—C4—H4A120.5
O3—Co2—O8ii89.05 (15)C4—C5—C6120.2 (6)
O3ii—Co2—O8ii90.95 (15)C4—C5—H5A119.9
O3—Co2—O890.95 (15)C6—C5—H5A119.9
O3ii—Co2—O889.05 (15)C5—C6—C7120.5 (6)
O8ii—Co2—O8180.00 (15)C5—C6—H6B119.8
O3—Co2—O789.33 (17)C7—C6—H6B119.8
O3ii—Co2—O790.67 (17)C2—C7—C6119.3 (5)
O8ii—Co2—O791.63 (17)C2—C7—C8122.4 (5)
O8—Co2—O788.37 (17)C6—C7—C8118.2 (5)
O3—Co2—O7ii90.67 (17)O4—C8—O3124.6 (5)
O3ii—Co2—O7ii89.33 (17)O4—C8—C7119.3 (5)
O8ii—Co2—O7ii88.37 (17)O3—C8—C7115.9 (4)
O8—Co2—O7ii91.63 (17)O5—C9—H9A109.5
O7—Co2—O7ii180.00 (18)O5—C9—H9B109.5
C1—O1—Co1126.2 (3)H9A—C9—H9B109.5
C8—O3—Co2127.4 (3)O5—C9—H9C109.5
C9—O5—Co1122.7 (4)H9A—C9—H9C109.5
C9—O5—H2113 (5)H9B—C9—H9C109.5
Co1—O5—H298 (5)O7—C10—H10A109.5
Co1—O6—H6C119 (4)O7—C10—H10B109.5
Co1—O6—H6D128 (4)H10A—C10—H10B109.5
H6C—O6—H6D112 (3)O7—C10—H10C109.5
C10—O7—Co2130.1 (5)H10A—C10—H10C109.5
C10—O7—H1114 (6)H10B—C10—H10C109.5
O6—Co1—O1—C1110.5 (4)O2—C1—C2—C7126.5 (6)
O6i—Co1—O1—C169.5 (4)O1—C1—C2—C756.9 (7)
O5i—Co1—O1—C118.1 (4)C7—C2—C3—C42.0 (9)
O5—Co1—O1—C1161.9 (4)C1—C2—C3—C4173.3 (6)
O8ii—Co2—O3—C843.5 (4)C2—C3—C4—C50.1 (10)
O8—Co2—O3—C8136.5 (4)C3—C4—C5—C61.7 (10)
O7—Co2—O3—C8135.1 (4)C4—C5—C6—C71.2 (10)
O7ii—Co2—O3—C844.9 (4)C3—C2—C7—C62.6 (8)
O6—Co1—O5—C9158.0 (4)C1—C2—C7—C6172.6 (5)
O6i—Co1—O5—C922.0 (4)C3—C2—C7—C8173.6 (5)
O1i—Co1—O5—C9115.6 (4)C1—C2—C7—C811.3 (8)
O1—Co1—O5—C964.4 (4)C5—C6—C7—C21.0 (9)
O3—Co2—O7—C10114.6 (7)C5—C6—C7—C8175.3 (5)
O3ii—Co2—O7—C1065.4 (7)Co2—O3—C8—O425.4 (7)
O8ii—Co2—O7—C1025.6 (7)Co2—O3—C8—C7150.5 (4)
O8—Co2—O7—C10154.4 (7)C2—C7—C8—O428.2 (8)
Co1—O1—C1—O218.8 (8)C6—C7—C8—O4148.0 (5)
Co1—O1—C1—C2164.9 (3)C2—C7—C8—O3155.7 (5)
O2—C1—C2—C358.3 (7)C6—C7—C8—O328.1 (7)
O1—C1—C2—C3118.3 (6)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O2i0.82 (5)1.75 (6)2.557 (5)167 (7)
O7—H1···O5iii0.82 (5)2.00 (5)2.817 (6)175 (8)
O6—H6C···O4i0.85 (5)1.93 (5)2.764 (5)165 (6)
O6—H6D···O3iv0.85 (4)1.85 (4)2.699 (5)176 (6)
O8—H8A···O1iii0.84 (3)1.88 (3)2.716 (5)170 (6)
O8—H8B···O4ii0.85 (4)1.94 (5)2.770 (5)166 (5)
C5—H5A···O2v0.932.493.331 (7)150
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C8H4O4)(CH4O)2(H2O)2]
Mr323.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0810 (9), 9.9429 (9), 13.2735 (12)
β (°) 90.300 (2)
V3)1330.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.778, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
5378, 2351, 2172
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.133, 1.27
No. of reflections2351
No. of parameters193
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Selected bond lengths (Å) top
Co1—O12.080 (3)Co2—O32.077 (4)
Co1—O52.148 (4)Co2—O72.098 (4)
Co1—O62.037 (4)Co2—O82.083 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H2···O2i0.82 (5)1.75 (6)2.557 (5)167 (7)
O7—H1···O5ii0.82 (5)2.00 (5)2.817 (6)175 (8)
O6—H6C···O4i0.85 (5)1.93 (5)2.764 (5)165 (6)
O6—H6D···O3iii0.85 (4)1.85 (4)2.699 (5)176 (6)
O8—H8A···O1ii0.84 (3)1.88 (3)2.716 (5)170 (6)
O8—H8B···O4iv0.85 (4)1.94 (5)2.770 (5)166 (5)
C5—H5A···O2v0.932.493.331 (7)150
Symmetry codes: (i) x+1, y, z+2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds