Download citation
Download citation
link to html
The title complex, [Fe2(C18H18N4)2O(SO4)](ClO4)2·0.75C2H3N·0.25H2O, consists of two perchlorate ions, a solvent cavity with acetonitrile and water (disordered 3/1), and an Fe complex dication. The dication is a diiron(III) unit containing an oxo bridge and a sulfato bridge. The iron(III) centers are pseudo-octa­hedral, six-coordinate, with tris­(2-pyridylmeth­yl) amine (TPA) providing four N atoms. The distances and angles are typical for bent μ-oxo-bridged TPA complexes. The complex was the unexpected result of a reaction designed to produce a μ-sulfido–μ-carboxyl­ato–diiron center.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042857/is2197sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042857/is2197Isup2.hkl
Contains datablock I

CCDC reference: 663565

Key indicators

  • Single-crystal X-ray study
  • T = 90 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.054
  • wR factor = 0.093
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT223_ALERT_4_A Large Solvent/Anion H Ueq(max)/Ueq(min) ... 5.11 Ratio
Author Response: There is a solvent cavity. In the original stages of solution and refinement, this was modelled with a single acetonitrile molecule in the asymmetric unit with full occupancy. The thermal parameters continued to grow and there was a persistent peak of electron density near the nitrile carbon atom. This feature was assigned to an oxygen atom of a water molecule, and apparent hydrogen atom positions were found. The populations of the acetonitrile and water were fixed at 0.75 and 0.25 respectively which produced a model with relatively reasonable thermal parameters. I was asked to reconsider the occupancies and place the hydrogen atoms of the water molecule in chemically more reasonable positions. When the occupancies were refined, they all increased as did the thermal parameters. In particular N1 increased from a B~iso~ of 8.8506 to 10.092. R and wR did not improve significantly. The occupancies were returned to their original values, and the hydrogen atoms placed in chemically more reasonable positions. This resulted in an increase of the O6 U~eq~ from 0.111(6) to 0.119(6) which generated this alert.

Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 18.00 Perc. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 FE1 -O1 -FE2 -N21 -144.70 0.40 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 FE2 -O1 -FE1 -N14 -163.80 0.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 57 O1 -FE1 -N14 -C116 -18.80 0.90 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 58 O1 -FE1 -N14 -C126 -141.20 0.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 59 O1 -FE1 -N14 -C136 100.20 0.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 60 O1 -FE2 -N21 -C211 127.20 0.40 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 61 O1 -FE2 -N21 -C215 -40.20 0.60 1.555 1.555 1.555 1.555
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As the result of an attempt to synthesize a new class of diiron complexes with a µ-sulfido-µ-carboxylato diiron core using tris-(2-pyridylmethyl)amine (TPA), the title complex, (I), was prepared and structurally characterized. Since the replacement of a µ-oxo ligand by a µ-sulfido ligand has been little studied (Mukherjee et al., 1988), we were not entirely sure what spectroscopic changes would accompany this replacement. To determine whether we had synthesized the desired sulfido-bridged species, we determined the structure. Surprisingly, instead of a µ-sulfido-µ-acetato diiron TPA species we had produced a µ-oxo-µ-sulfato diiron(III) TPA species. The sulfate must have been formed by oxidation of sulfide as no sulfate was added. The source of oxidant is undetermined, but presumably is either perchlorate or atmospheric oxygen. Similarly, a µ-oxo-µ-formato diiron(III) TPA species was produced by aerobic oxidation of a methanol solution of Fe(III) and TPA (Norman et al., 1998).

The structures and spectral properties of several µ-oxo diiron(III) complexes with the TPA ligand have been previously reported (see for example, Norman et al., 1997, or Norman et al., 1998 and references therein). The title complex displays the typical pattern of inequivalent iron sites (Fe1 has the tertiary amine nitrogen atom of TPA trans to the oxo bridge, while Fe2 has the tertiary amine nitrogen atom of TPA cis to the oxo bridge) and a distinctly asymmetric oxo bridge [Fe1—O1 is 1.788 (2) Å and Fe2—O1 is 1.807 (2) Å], with pronounced lengthening of the bonds trans to the oxo bridge (Fig. 1).

Figure 2 is provided to indicate the numbering of atoms in the TPA ligands. Nxy provides the identifiers where x refers to the Fe number and the y identifies the ring. For both TPA ligands, Nx1 is in the Fe1—O1—Fe2 plane. Nx4 is the tertiary amine nitrogen atom.

The preparation of [Fe2(TPA)2O(SO4)](ClO4)2 has been reported at least twice previously (Holz et al., 1993; Hazell et al., 1994), but its structure was not determined. Interestingly, the Fe—O—Fe angle was predicted, based on electronic spectroscopy, to be 134° (Holz et al., 1993) which agrees well with the 133.0 (1)° reported here.

Related literature top

The compound has been reported previously (Holz et al., 1993; Hazell et al., 1994). The structure is typical of a bent µ-oxo–diiron(III) complex with TPA (Norman et al., 1997). The sulfate bridge was produced by oxidation of sulfide, a result similar to the oxidation of methanol to formate in an FeIII TPA system (Norman et al., 1998).

For related literature, see: Mukherjee et al. (1988).

Experimental top

Tris[(2-pyridinium)methyl]amine perchlorate (0.6017 g, 1.017 mmol), triethylamine (0.63 ml, 4.5 mmol) and sodium acetate (0.0417 g, 1.023 mmol) were dissolved in 40 ml MeOH. Fe(ClO4)3.10H2O (0.5465 g, 1.023 mmol) was dissolved in 2 ml MeOH and this solution was added to the ligand solution. Na2S.9H2O (0.1482 g, 0.6170 mmol) was then added. The mixture was stirred for approximately 20 minutes and then allowed to sit for 20 minutes until a yellow precipitate formed, which was removed by filtration. The resultant filtrate turned bright green and was allowed to sit for four days. Small green rectangular plates formed which were isolated with cold MeOH, dried and dissolved in CH3CN. The solution was placed in a sealed vessel containing ethyl acetate. Yellow-green rectangular plates formed after two days, one of which was selected for structure determination.

Refinement top

Initially the structure was modeled with a single acetonitrile in the asymmetric unit with full occupancy. During refinement, the thermal parameters for this acetontrile grew larger and there was a persistent peak of electron density near the nitrile carbon atom (C1). Since this feature was not in a chemically reasonable position, it was assigned as an oxygen atom (O6) of a water molecule at 25% occupancy and the occupancy of the acetonitrile atoms was fixed at 75%. This produces an apparent close contact between O6 and C1 of 1.15 (2) Å.

The populations of C1, C2, N1 and O6 were refined to evaluate the 3:1 acetonitrile:water ratio. All of the populations increased as did the thermal parameters for the acetonitrile atoms. At the same time R and wR decreased, but not significantly. This model was rejected and the populations were fixed to preserve the 3:1 ratio.

With the exception of the disordered water, the hydrogen atoms were placed in calculated positions and assigned thermal parameters 1.2 times larger than the atoms to which theyµ-Sulfato-1κO:2κO-µ-oxo-bis[tris(2-pyridylmethyl)amine-κ4 N,N',N",N'"]diiron(III) diperchlorate acetonitrile/water (0.75/0.25) solvate are bound. The hydrogen atoms for the water were located in difference maps, and were also assigned thermal parameters 1.2 times larger than the oxygen atom to which they are bound.

Structure description top

As the result of an attempt to synthesize a new class of diiron complexes with a µ-sulfido-µ-carboxylato diiron core using tris-(2-pyridylmethyl)amine (TPA), the title complex, (I), was prepared and structurally characterized. Since the replacement of a µ-oxo ligand by a µ-sulfido ligand has been little studied (Mukherjee et al., 1988), we were not entirely sure what spectroscopic changes would accompany this replacement. To determine whether we had synthesized the desired sulfido-bridged species, we determined the structure. Surprisingly, instead of a µ-sulfido-µ-acetato diiron TPA species we had produced a µ-oxo-µ-sulfato diiron(III) TPA species. The sulfate must have been formed by oxidation of sulfide as no sulfate was added. The source of oxidant is undetermined, but presumably is either perchlorate or atmospheric oxygen. Similarly, a µ-oxo-µ-formato diiron(III) TPA species was produced by aerobic oxidation of a methanol solution of Fe(III) and TPA (Norman et al., 1998).

The structures and spectral properties of several µ-oxo diiron(III) complexes with the TPA ligand have been previously reported (see for example, Norman et al., 1997, or Norman et al., 1998 and references therein). The title complex displays the typical pattern of inequivalent iron sites (Fe1 has the tertiary amine nitrogen atom of TPA trans to the oxo bridge, while Fe2 has the tertiary amine nitrogen atom of TPA cis to the oxo bridge) and a distinctly asymmetric oxo bridge [Fe1—O1 is 1.788 (2) Å and Fe2—O1 is 1.807 (2) Å], with pronounced lengthening of the bonds trans to the oxo bridge (Fig. 1).

Figure 2 is provided to indicate the numbering of atoms in the TPA ligands. Nxy provides the identifiers where x refers to the Fe number and the y identifies the ring. For both TPA ligands, Nx1 is in the Fe1—O1—Fe2 plane. Nx4 is the tertiary amine nitrogen atom.

The preparation of [Fe2(TPA)2O(SO4)](ClO4)2 has been reported at least twice previously (Holz et al., 1993; Hazell et al., 1994), but its structure was not determined. Interestingly, the Fe—O—Fe angle was predicted, based on electronic spectroscopy, to be 134° (Holz et al., 1993) which agrees well with the 133.0 (1)° reported here.

The compound has been reported previously (Holz et al., 1993; Hazell et al., 1994). The structure is typical of a bent µ-oxo–diiron(III) complex with TPA (Norman et al., 1997). The sulfate bridge was produced by oxidation of sulfide, a result similar to the oxidation of methanol to formate in an FeIII TPA system (Norman et al., 1998).

For related literature, see: Mukherjee et al. (1988).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN for Windows (Molecular Structure Corporation, 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 1999.

Figures top
[Figure 1] Fig. 1. Perspective drawing of the [Fe2(TPA)2O(SO4)]2+ cation with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.
[Figure 2] Fig. 2. The numbering of atoms in the TPA ligands.
µ-Sulfato-1κO:2κO-µ-oxo-bis[tris(2-pyridylmethyl)amine-κ4 N,N',N",N'"]diiron(III) diperchlorate acetonitrile/water (0.75/0.25) solvate top
Crystal data top
[Fe2(C18H18N4)2O(SO4)]4(ClO4)8·3C2H3N·H2OF(000) = 2132.00
Mr = 4154.72Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 14215 reflections
a = 12.7031 (10) Åθ = 2.5–32.0°
b = 24.477 (3) ŵ = 0.96 mm1
c = 13.6165 (11) ÅT = 90 K
β = 103.357 (5)°Lath, yellow-green
V = 4119.3 (6) Å30.30 × 0.17 × 0.05 mm
Z = 1
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
14279 independent reflections
Radiation source: fine-focus sealed tube8172 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.042
ω scans with κ offsetsθmax = 32.0°, θmin = 2.5°
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
h = 1818
Tmin = 0.728, Tmax = 0.946k = 3636
81911 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.093Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo) + 0.000841|Fo|2]
S = 0.90(Δ/σ)max = 0.001
8172 reflectionsΔρmax = 0.78 e Å3
595 parametersΔρmin = 0.71 e Å3
Crystal data top
[Fe2(C18H18N4)2O(SO4)]4(ClO4)8·3C2H3N·H2OV = 4119.3 (6) Å3
Mr = 4154.72Z = 1
Monoclinic, P21/nMo Kα radiation
a = 12.7031 (10) ŵ = 0.96 mm1
b = 24.477 (3) ÅT = 90 K
c = 13.6165 (11) Å0.30 × 0.17 × 0.05 mm
β = 103.357 (5)°
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
14279 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
8172 reflections with I > 3σ(I)
Tmin = 0.728, Tmax = 0.946Rint = 0.042
81911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.90Δρmax = 0.78 e Å3
8172 reflectionsΔρmin = 0.71 e Å3
595 parameters
Special details top

Refinement. Refinement of F2. The weighted R-factor wR and goodness of fit are based on F2, conventional R-factors R are based on F. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.22087 (3)0.26340 (2)0.93084 (2)0.01043 (8)
Fe20.29912 (3)0.15787 (2)0.81495 (2)0.01094 (8)
Cl10.35062 (5)0.36704 (3)0.38755 (4)0.0136 (1)
Cl20.16176 (5)0.02549 (3)0.36029 (4)0.0150 (1)
S50.46963 (5)0.23004 (3)0.96923 (4)0.0123 (1)
O10.20634 (13)0.20867 (7)0.84171 (11)0.0124 (4)
O20.37397 (13)0.25008 (7)1.00798 (11)0.0129 (4)
O30.43271 (13)0.17723 (7)0.91148 (12)0.0161 (4)
O40.55651 (13)0.21686 (8)1.05476 (12)0.0166 (5)
O50.4959 (1)0.26959 (8)0.89952 (12)0.0198 (5)
O60.0659 (13)0.4065 (8)0.6270 (8)0.119 (6)0.25
O110.4197 (1)0.32356 (8)0.36660 (12)0.0185 (5)
O120.24272 (13)0.34587 (8)0.37924 (13)0.0204 (5)
O130.3478 (2)0.41082 (8)0.31582 (13)0.0223 (5)
O140.3926 (2)0.38753 (8)0.48880 (12)0.0215 (5)
O210.0775 (1)0.00452 (8)0.3920 (1)0.0244 (5)
O220.1767 (2)0.07740 (8)0.4111 (1)0.0313 (6)
O230.1307 (2)0.03407 (9)0.25307 (13)0.0298 (6)
O240.2609 (1)0.00557 (9)0.3862 (1)0.0264 (5)
N10.0615 (5)0.4712 (3)0.6607 (5)0.112 (3)0.75
N110.0673 (2)0.30205 (9)0.8705 (1)0.0125 (5)
N120.2774 (2)0.33111 (9)0.8582 (1)0.0130 (5)
N130.1708 (2)0.22604 (9)1.0547 (1)0.0119 (5)
N140.2234 (2)0.33223 (8)1.03999 (13)0.0121 (5)
N210.3982 (2)0.09698 (9)0.7557 (2)0.0153 (5)
N220.2472 (2)0.09465 (9)0.9014 (1)0.0135 (5)
N230.3084 (2)0.19461 (9)0.6755 (1)0.0134 (5)
N240.1760 (2)0.11150 (9)0.7049 (1)0.0124 (5)
C10.0943 (4)0.4470 (2)0.5982 (4)0.041 (1)0.75
C20.1257 (3)0.4167 (2)0.5289 (3)0.0231 (10)0.75
C1110.0045 (2)0.28996 (11)0.7787 (2)0.0150 (6)
C1120.0826 (2)0.32136 (12)0.7327 (2)0.0189 (7)
C1130.1098 (2)0.36695 (12)0.7842 (2)0.0206 (7)
C1140.0454 (2)0.37946 (11)0.8778 (2)0.0181 (7)
C1150.0439 (2)0.34687 (10)0.9182 (2)0.0132 (6)
C1160.1165 (2)0.35992 (11)1.0196 (2)0.0153 (6)
C1210.2846 (2)0.33099 (11)0.7613 (2)0.0157 (6)
C1220.3387 (2)0.37159 (11)0.7221 (2)0.0184 (7)
C1230.3848 (2)0.41413 (12)0.7840 (2)0.0191 (7)
C1240.3736 (2)0.41542 (11)0.8834 (2)0.0168 (6)
C1250.3194 (2)0.37323 (10)0.9184 (2)0.0144 (6)
C1260.3123 (2)0.36916 (11)1.0274 (2)0.0164 (6)
C1310.1278 (2)0.17545 (10)1.0520 (2)0.0130 (6)
C1320.1007 (2)0.15191 (11)1.1349 (2)0.0146 (6)
C1330.1142 (2)0.18243 (12)1.2231 (2)0.0163 (6)
C1340.1573 (2)0.23451 (11)1.2264 (2)0.0146 (6)
C1350.1879 (2)0.25491 (10)1.1420 (2)0.0128 (6)
C1360.2468 (2)0.30805 (11)1.1426 (2)0.0144 (6)
C2110.5072 (2)0.09782 (11)0.7736 (2)0.0181 (7)
C2120.5643 (2)0.06486 (12)0.7223 (2)0.0189 (7)
C2130.5072 (2)0.03167 (12)0.6458 (2)0.0217 (7)
C2140.3957 (2)0.03125 (11)0.6247 (2)0.0194 (7)
C2150.3433 (2)0.06357 (10)0.6826 (2)0.0149 (6)
C2160.2224 (2)0.06104 (11)0.6700 (2)0.0145 (6)
C2210.3020 (2)0.07783 (11)0.9932 (2)0.0190 (7)
C2220.2591 (2)0.03969 (12)1.0487 (2)0.0229 (7)
C2230.1578 (2)0.01815 (12)1.0076 (2)0.0229 (7)
C2240.1017 (2)0.03533 (11)0.9122 (2)0.0191 (7)
C2250.1484 (2)0.07404 (11)0.8619 (2)0.0156 (6)
C2260.0923 (2)0.09717 (11)0.7605 (2)0.0151 (6)
C2310.3918 (2)0.22496 (11)0.6615 (2)0.0152 (6)
C2320.4004 (2)0.24110 (11)0.5658 (2)0.0160 (6)
C2330.3215 (2)0.22475 (11)0.4830 (2)0.0157 (6)
C2340.2350 (2)0.19409 (11)0.4975 (2)0.0143 (6)
C2350.2300 (2)0.18008 (10)0.5949 (2)0.0128 (6)
C2360.1359 (2)0.14990 (11)0.6194 (2)0.0146 (6)
H10.16590.38620.56060.028*0.75
H20.16980.43800.49600.028*0.75
H30.06390.40420.48070.028*0.75
H40.07860.42580.68940.143*0.25
H50.13360.38690.62540.143*0.25
H1110.02130.25840.74450.018*
H1120.12370.31240.66720.023*
H1130.17110.38870.75540.025*
H1140.06190.41010.91440.022*
H1150.08040.34921.07030.018*
H1160.12840.39831.02310.018*
H1210.25160.30220.71840.019*
H1220.34400.37030.65370.022*
H1230.42360.44210.75920.023*
H1240.40270.44490.92660.020*
H1250.29960.40461.05080.020*
H1260.37890.35551.06630.020*
H1310.11560.15530.99080.016*
H1320.07350.11571.13180.018*
H1330.09400.16761.28060.020*
H1340.16590.25611.28570.018*
H1350.32240.30181.16460.017*
H1360.22410.33271.18750.017*
H2110.54610.12200.82350.022*
H2120.64110.06490.73890.023*
H2130.54470.00930.60810.026*
H2140.35540.00930.57160.023*
H2150.20590.03090.70780.017*
H2160.18980.05570.60050.017*
H2210.37180.09251.02070.023*
H2220.29860.02861.11360.027*
H2230.12680.00811.04400.027*
H2240.03250.02060.88230.023*
H2250.05260.12890.76970.018*
H2260.04430.07070.72350.018*
H2310.44630.23570.71850.018*
H2320.45950.26300.55740.019*
H2330.32670.23450.41680.019*
H2340.17980.18280.44160.017*
H2350.09930.12990.56190.018*
H2360.08750.17540.63790.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0114 (2)0.0108 (2)0.0095 (2)0.0013 (1)0.00342 (12)0.00123 (13)
Fe20.0098 (2)0.0122 (2)0.0114 (2)0.0019 (1)0.00351 (12)0.00255 (13)
Cl10.0139 (3)0.0142 (3)0.0123 (3)0.0003 (2)0.0022 (2)0.0000 (2)
Cl20.0176 (3)0.0125 (3)0.0155 (3)0.0005 (2)0.0050 (2)0.0008 (2)
S50.0105 (3)0.0150 (3)0.0115 (3)0.0023 (2)0.0024 (2)0.0025 (2)
O10.0120 (8)0.0125 (9)0.0129 (8)0.0013 (7)0.0036 (6)0.0017 (7)
O20.0113 (8)0.0155 (9)0.0117 (8)0.0003 (7)0.0025 (6)0.0022 (7)
O30.0128 (8)0.0158 (10)0.0185 (9)0.0016 (7)0.0013 (7)0.0064 (7)
O40.0133 (8)0.0214 (10)0.0140 (8)0.0006 (8)0.0006 (7)0.0029 (7)
O50.0187 (9)0.0236 (11)0.0189 (9)0.0047 (8)0.0076 (7)0.0028 (8)
O60.122 (12)0.21 (2)0.032 (6)0.14 (1)0.034 (7)0.041 (9)
O110.0195 (9)0.0171 (10)0.0204 (9)0.0031 (8)0.0077 (7)0.0017 (7)
O120.0131 (9)0.0247 (11)0.0242 (9)0.0046 (8)0.0060 (7)0.0014 (8)
O130.0272 (10)0.0174 (10)0.0215 (10)0.0002 (8)0.0037 (8)0.0055 (8)
O140.0242 (10)0.0238 (11)0.0143 (9)0.0007 (9)0.0000 (7)0.0058 (8)
O210.0178 (10)0.0219 (11)0.0356 (11)0.0002 (8)0.0106 (8)0.0062 (9)
O220.0470 (13)0.0149 (11)0.0315 (11)0.0017 (10)0.0077 (10)0.0082 (9)
O230.0487 (13)0.0268 (12)0.0147 (9)0.0088 (10)0.0090 (9)0.0040 (8)
O240.0153 (9)0.0271 (12)0.0364 (11)0.0071 (9)0.0048 (8)0.0000 (9)
N10.115 (5)0.126 (6)0.117 (5)0.037 (4)0.072 (4)0.091 (5)
N110.0140 (10)0.0121 (11)0.0121 (9)0.0021 (8)0.0045 (8)0.0008 (8)
N120.0132 (10)0.0111 (11)0.0147 (10)0.0012 (8)0.0030 (8)0.0017 (8)
N130.0102 (9)0.0138 (11)0.0117 (9)0.0004 (8)0.0027 (8)0.0002 (8)
N140.0138 (10)0.0117 (11)0.0103 (9)0.0017 (8)0.0015 (7)0.0004 (8)
N210.0121 (10)0.0167 (12)0.0173 (10)0.0013 (9)0.0040 (8)0.0027 (8)
N220.0141 (10)0.0131 (11)0.0144 (10)0.0002 (9)0.0054 (8)0.0019 (8)
N230.0122 (10)0.0158 (11)0.0130 (9)0.0022 (8)0.0044 (8)0.0035 (8)
N240.0118 (10)0.0115 (11)0.0145 (10)0.0006 (8)0.0046 (8)0.0012 (8)
C10.031 (2)0.039 (3)0.051 (3)0.014 (2)0.007 (2)0.000 (2)
C20.023 (2)0.023 (2)0.021 (2)0.003 (2)0.000 (1)0.002 (2)
C1110.0164 (12)0.0146 (13)0.0147 (11)0.0034 (10)0.0053 (10)0.0024 (10)
C1120.0143 (12)0.024 (2)0.0167 (12)0.0028 (11)0.0002 (9)0.0003 (11)
C1130.0162 (13)0.017 (1)0.027 (1)0.0021 (11)0.0021 (10)0.0022 (11)
C1140.0199 (13)0.015 (1)0.0186 (12)0.0004 (11)0.0031 (10)0.0016 (10)
C1150.0153 (11)0.0123 (12)0.0135 (11)0.0013 (10)0.0063 (9)0.0011 (9)
C1160.0155 (12)0.0146 (13)0.0164 (12)0.0030 (10)0.0048 (10)0.0027 (10)
C1210.0164 (12)0.0146 (13)0.0170 (12)0.0012 (10)0.0056 (10)0.0009 (10)
C1220.0206 (13)0.020 (2)0.0154 (12)0.0015 (11)0.0066 (10)0.0047 (10)
C1230.0175 (13)0.018 (1)0.0229 (13)0.0010 (11)0.0072 (10)0.0059 (11)
C1240.0150 (12)0.0124 (13)0.0213 (13)0.0010 (10)0.0006 (10)0.0000 (10)
C1250.0129 (12)0.0132 (13)0.0168 (12)0.0003 (10)0.0029 (9)0.0005 (10)
C1260.0197 (13)0.0134 (13)0.0159 (12)0.0062 (11)0.0040 (10)0.0034 (10)
C1310.0093 (11)0.0166 (13)0.0127 (11)0.0004 (10)0.0020 (9)0.0017 (9)
C1320.0106 (11)0.0142 (13)0.0179 (12)0.0007 (10)0.0010 (9)0.0035 (10)
C1330.0132 (12)0.023 (2)0.0118 (11)0.0006 (11)0.0021 (9)0.0037 (10)
C1340.0132 (11)0.022 (1)0.0091 (11)0.0022 (11)0.0028 (9)0.0003 (10)
C1350.0113 (11)0.0137 (13)0.0128 (11)0.0024 (10)0.0018 (9)0.0003 (9)
C1360.0176 (12)0.0146 (13)0.0109 (11)0.0007 (10)0.0030 (9)0.0009 (9)
C2110.0135 (12)0.020 (2)0.0210 (13)0.0023 (11)0.0043 (10)0.0063 (10)
C2120.0128 (12)0.018 (1)0.027 (1)0.0010 (11)0.0070 (10)0.0025 (11)
C2130.0197 (13)0.020 (2)0.030 (1)0.0000 (11)0.0130 (11)0.0070 (11)
C2140.0169 (12)0.018 (1)0.0239 (13)0.0013 (11)0.0061 (10)0.0084 (11)
C2150.0155 (12)0.0116 (13)0.0192 (12)0.0018 (10)0.0070 (10)0.0027 (10)
C2160.0136 (11)0.0141 (13)0.0160 (11)0.0030 (10)0.0038 (9)0.0039 (9)
C2210.0190 (13)0.015 (1)0.0239 (13)0.0029 (11)0.0065 (10)0.0002 (11)
C2220.029 (2)0.018 (2)0.0222 (13)0.0064 (12)0.0086 (12)0.0051 (11)
C2230.030 (2)0.015 (1)0.030 (1)0.0012 (12)0.0183 (12)0.0026 (11)
C2240.0188 (13)0.016 (1)0.0263 (13)0.0020 (11)0.0130 (11)0.0030 (11)
C2250.0166 (12)0.0124 (13)0.0201 (12)0.0009 (10)0.0089 (10)0.0043 (10)
C2260.0111 (11)0.0153 (13)0.0203 (12)0.0023 (10)0.0066 (9)0.0044 (10)
C2310.0139 (12)0.017 (1)0.0158 (12)0.0032 (10)0.0048 (9)0.0028 (10)
C2320.0143 (12)0.018 (1)0.0164 (12)0.0036 (10)0.0058 (9)0.0019 (10)
C2330.0192 (13)0.0144 (13)0.0139 (11)0.0023 (10)0.0049 (10)0.0013 (9)
C2340.0149 (12)0.0156 (13)0.0119 (11)0.0022 (10)0.0017 (9)0.0011 (9)
C2350.0100 (11)0.0130 (13)0.0155 (11)0.0010 (9)0.0035 (9)0.0023 (9)
C2360.0106 (11)0.017 (1)0.0154 (11)0.0008 (10)0.0016 (9)0.0031 (10)
Geometric parameters (Å, º) top
Fe1—O11.788 (2)C135—C1361.499 (3)
Fe1—O22.012 (2)C211—C2121.379 (3)
Fe1—N112.153 (2)C212—C2131.386 (4)
Fe1—N122.138 (2)C213—C2141.379 (4)
Fe1—N132.140 (2)C214—C2151.391 (3)
Fe1—N142.242 (2)C215—C2161.506 (3)
Fe2—O11.807 (2)C221—C2221.389 (4)
Fe2—O31.950 (2)C222—C2231.384 (4)
Fe2—N212.220 (2)C223—C2241.395 (4)
Fe2—N222.138 (2)C224—C2251.380 (3)
Fe2—N232.129 (2)C225—C2261.511 (4)
Fe2—N242.213 (2)C231—C2321.390 (3)
Cl1—O111.449 (2)C232—C2331.383 (3)
Cl1—O121.445 (2)C233—C2341.382 (3)
Cl1—O131.445 (2)C234—C2351.385 (3)
Cl1—O141.448 (2)C235—C2361.507 (3)
Cl2—O211.444 (2)O6—H40.951
Cl2—O221.438 (2)O6—H50.991
Cl2—O231.437 (2)C2—H10.950
Cl2—O241.444 (2)C2—H20.950
S5—O21.514 (2)C2—H30.950
S5—O31.529 (2)C111—H1110.950
S5—O41.444 (2)C112—H1120.950
S5—O51.448 (2)C113—H1130.950
N1—C11.188 (7)C114—H1140.950
N11—C1111.351 (3)C116—H1150.950
N11—C1151.343 (3)C116—H1160.950
N12—C1211.344 (3)C121—H1210.950
N12—C1251.348 (3)C122—H1220.950
N13—C1311.351 (3)C123—H1230.950
N13—C1351.356 (3)C124—H1240.950
N14—C1161.486 (3)C126—H1250.950
N14—C1261.487 (3)C126—H1260.950
N14—C1361.482 (3)C131—H1310.950
N21—C2111.349 (3)C132—H1320.950
N21—C2151.351 (3)C133—H1330.950
N22—C2211.347 (3)C134—H1340.950
N22—C2251.345 (3)C136—H1350.950
N23—C2311.343 (3)C136—H1360.950
N23—C2351.348 (3)C211—H2110.950
N24—C2161.492 (3)C212—H2120.950
N24—C2261.483 (3)C213—H2130.950
N24—C2361.491 (3)C214—H2140.950
C1—C21.332 (6)C216—H2150.950
C111—C1121.373 (4)C216—H2160.950
C112—C1131.403 (4)C221—H2210.950
C113—C1141.380 (4)C222—H2220.950
C114—C1151.392 (4)C223—H2230.950
C115—C1161.506 (3)C224—H2240.950
C121—C1221.383 (3)C226—H2250.950
C122—C1231.382 (4)C226—H2260.950
C123—C1241.392 (3)C231—H2310.950
C124—C1251.385 (3)C232—H2320.950
C125—C1261.511 (3)C233—H2330.950
C131—C1321.379 (3)C234—H2340.950
C132—C1331.390 (4)C236—H2350.950
C133—C1341.384 (4)C236—H2360.950
C134—C1351.389 (3)
O14···C132i3.074 (3)O14···C223iv3.263 (4)
O22···C2343.113 (3)O4···C111ii3.269 (3)
O4···O6ii3.17 (2)O24···C212iii3.277 (3)
O24···C213iii3.141 (3)O12···C23.281 (4)
O5···C234ii3.150 (3)N1···N21iv3.282 (7)
N1···C215iv3.152 (6)O23···C132vi3.282 (3)
O13···O23v3.190 (3)O11···C2333.291 (3)
N1···C214iv3.204 (6)O14···C131i3.294 (3)
O11···C131i3.206 (3)
O1—Fe1—O299.71 (7)C212—C213—C214119.6 (2)
O1—Fe1—N1197.34 (8)C213—C214—C215118.8 (2)
O1—Fe1—N12105.07 (7)N21—C215—C214121.9 (2)
O1—Fe1—N13102.23 (8)N21—C215—C216116.7 (2)
O1—Fe1—N14175.05 (7)C214—C215—C216121.4 (2)
O2—Fe1—N11162.14 (8)N24—C216—C215113.4 (2)
O2—Fe1—N1288.82 (7)N22—C221—C222121.8 (2)
O2—Fe1—N1386.95 (7)C221—C222—C223118.8 (2)
O2—Fe1—N1484.91 (7)C222—C223—C224119.2 (2)
N11—Fe1—N1281.63 (8)C223—C224—C225118.9 (2)
N11—Fe1—N1394.63 (7)N22—C225—C224121.9 (2)
N11—Fe1—N1478.23 (7)N22—C225—C226115.1 (2)
N12—Fe1—N13152.70 (8)C224—C225—C226123.0 (2)
N12—Fe1—N1476.64 (7)N24—C226—C225108.2 (2)
N13—Fe1—N1476.12 (7)N23—C231—C232121.8 (2)
O1—Fe2—O3101.74 (7)C231—C232—C233118.8 (2)
O1—Fe2—N21170.51 (7)C232—C233—C234119.4 (2)
O1—Fe2—N2295.09 (7)C233—C234—C235119.0 (2)
O1—Fe2—N2393.57 (8)N23—C235—C234121.7 (2)
O1—Fe2—N2495.61 (7)N23—C235—C236115.1 (2)
O3—Fe2—N2185.97 (7)C234—C235—C236123.2 (2)
O3—Fe2—N2297.82 (7)N24—C236—C235109.7 (2)
O3—Fe2—N23106.23 (8)H4—O6—H5106.94
O3—Fe2—N24161.81 (8)C1—C2—H1109.47
N21—Fe2—N2289.26 (8)C1—C2—H2109.47
N21—Fe2—N2378.83 (8)C1—C2—H3109.47
N21—Fe2—N2477.34 (7)H1—C2—H2109.47
N22—Fe2—N23152.16 (8)H1—C2—H3109.47
N22—Fe2—N2475.04 (7)H2—C2—H3109.47
N23—Fe2—N2477.81 (7)N11—C111—H111118.65
O11—Cl1—O12109.2 (1)C112—C111—H111118.65
O11—Cl1—O13109.4 (1)C111—C112—H112120.57
O11—Cl1—O14109.6 (1)C113—C112—H112120.57
O12—Cl1—O13109.8 (1)C112—C113—H113120.78
O12—Cl1—O14109.5 (1)C114—C113—H113120.78
O13—Cl1—O14109.4 (1)C113—C114—H114120.23
O21—Cl2—O22109.3 (1)C115—C114—H114120.23
O21—Cl2—O23109.2 (1)N14—C116—H115108.21
O21—Cl2—O24108.9 (1)N14—C116—H116108.21
O22—Cl2—O23109.5 (1)C115—C116—H115108.21
O22—Cl2—O24109.7 (1)C115—C116—H116108.21
O23—Cl2—O24110.2 (1)H115—C116—H116109.46
O2—S5—O3106.1 (1)N12—C121—H121119.01
O2—S5—O4108.47 (9)C122—C121—H121119.02
O2—S5—O5109.7 (1)C121—C122—H122120.51
O3—S5—O4108.2 (1)C123—C122—H122120.51
O3—S5—O5108.5 (1)C122—C123—H123120.48
O4—S5—O5115.4 (1)C124—C123—H123120.48
Fe1—O1—Fe2133.0 (1)C123—C124—H124120.40
Fe1—O2—S5128.9 (1)C125—C124—H124120.40
Fe2—O3—S5131.9 (1)N14—C126—H125108.86
Fe1—N11—C111123.1 (2)N14—C126—H126108.86
Fe1—N11—C115117.1 (2)C125—C126—H125108.86
C111—N11—C115118.5 (2)C125—C126—H126108.86
Fe1—N12—C121124.0 (2)H125—C126—H126109.46
Fe1—N12—C125116.1 (2)N13—C131—H131118.78
C121—N12—C125119.4 (2)C132—C131—H131118.78
Fe1—N13—C131124.2 (2)C131—C132—H132120.73
Fe1—N13—C135116.8 (2)C133—C132—H132120.73
C131—N13—C135118.9 (2)C132—C133—H133120.26
Fe1—N14—C116110.2 (1)C134—C133—H133120.26
Fe1—N14—C126106.0 (1)C133—C134—H134120.38
Fe1—N14—C136107.1 (1)C135—C134—H134120.38
C116—N14—C126112.8 (2)N14—C136—H135109.22
C116—N14—C136109.5 (2)N14—C136—H136109.22
C126—N14—C136111.1 (2)C135—C136—H135109.22
Fe2—N21—C211124.6 (2)C135—C136—H136109.22
Fe2—N21—C215115.7 (2)H135—C136—H136109.46
C211—N21—C215118.5 (2)N21—C211—H211118.75
Fe2—N22—C221125.0 (2)C212—C211—H211118.75
Fe2—N22—C225115.5 (2)C211—C212—H212120.69
C221—N22—C225119.4 (2)C213—C212—H212120.69
Fe2—N23—C231124.7 (2)C212—C213—H213120.18
Fe2—N23—C235115.6 (2)C214—C213—H213120.18
C231—N23—C235119.3 (2)C213—C214—H214120.62
Fe2—N24—C216111.8 (1)C215—C214—H214120.62
Fe2—N24—C226104.7 (1)N24—C216—H215108.49
Fe2—N24—C236105.4 (1)N24—C216—H216108.49
C216—N24—C226110.4 (2)C215—C216—H215108.49
C216—N24—C236111.2 (2)C215—C216—H216108.49
C226—N24—C236113.0 (2)H215—C216—H216109.46
N1—C1—C2175.5 (6)N22—C221—H221119.10
N11—C111—C112122.7 (2)C222—C221—H221119.10
C111—C112—C113118.9 (2)C221—C222—H222120.61
C112—C113—C114118.4 (2)C223—C222—H222120.61
C113—C114—C115119.5 (2)C222—C223—H223120.38
N11—C115—C114121.8 (2)C224—C223—H223120.38
N11—C115—C116117.4 (2)C223—C224—H224120.54
C114—C115—C116120.7 (2)C225—C224—H224120.54
N14—C116—C115114.5 (2)N24—C226—H225109.78
N12—C121—C122122.0 (2)N24—C226—H226109.78
C121—C122—C123119.0 (2)C225—C226—H225109.78
C122—C123—C124119.0 (2)C225—C226—H226109.78
C123—C124—C125119.2 (2)H225—C226—H226109.46
N12—C125—C124121.3 (2)N23—C231—H231119.12
N12—C125—C126116.2 (2)C232—C231—H231119.12
C124—C125—C126122.3 (2)C231—C232—H232120.59
N14—C126—C125111.9 (2)C233—C232—H232120.59
N13—C131—C132122.4 (2)C232—C233—H233120.30
C131—C132—C133118.5 (2)C234—C233—H233120.30
C132—C133—C134119.5 (2)C233—C234—H234120.49
C133—C134—C135119.2 (2)C235—C234—H234120.49
N13—C135—C134121.3 (2)N24—C236—H235109.42
N13—C135—C136115.8 (2)N24—C236—H236109.42
C134—C135—C136122.8 (2)C235—C236—H235109.42
N14—C136—C135110.5 (2)C235—C236—H236109.42
N21—C211—C212122.5 (2)H235—C236—H236109.46
C211—C212—C213118.6 (2)
Fe1—O1—Fe2—O30.8 (1)N13—Fe1—N11—C111116.5 (2)
Fe1—O1—Fe2—N21144.7 (4)N13—Fe1—N11—C11576.4 (2)
Fe1—O1—Fe2—N2298.3 (1)N13—Fe1—N12—C121171.6 (2)
Fe1—O1—Fe2—N23108.2 (1)N13—Fe1—N12—C12516.3 (3)
Fe1—O1—Fe2—N24173.7 (1)N13—Fe1—N14—C11690.0 (1)
Fe1—O2—S5—O353.0 (2)N13—Fe1—N14—C126147.7 (2)
Fe1—O2—S5—O4169.0 (1)N13—Fe1—N14—C13629.0 (1)
Fe1—O2—S5—O564.1 (2)N13—C131—C132—C1332.8 (4)
Fe1—N11—C111—C112167.5 (2)N13—C135—C134—C1333.7 (4)
Fe1—N11—C115—C114170.6 (2)N13—C135—C136—N1430.5 (3)
Fe1—N11—C115—C11611.2 (3)N14—Fe1—N11—C111168.8 (2)
Fe1—N12—C121—C122168.6 (2)N14—Fe1—N11—C1151.6 (2)
Fe1—N12—C125—C124169.9 (2)N14—Fe1—N12—C121167.6 (2)
Fe1—N12—C125—C1265.1 (3)N14—Fe1—N12—C12520.4 (2)
Fe1—N13—C131—C132177.2 (2)N14—Fe1—N13—C131168.2 (2)
Fe1—N13—C135—C134179.3 (2)N14—Fe1—N13—C13514.4 (2)
Fe1—N13—C135—C1363.9 (3)N14—C116—C115—C114163.5 (2)
Fe1—N14—C116—C11515.7 (2)N14—C126—C125—C124161.7 (2)
Fe1—N14—C126—C12537.3 (2)N14—C136—C135—C134152.8 (2)
Fe1—N14—C136—C13539.7 (2)N21—Fe2—N22—C22184.7 (2)
Fe2—O1—Fe1—O24.8 (1)N21—Fe2—N22—C225100.5 (2)
Fe2—O1—Fe1—N11169.9 (1)N21—Fe2—N23—C23182.7 (2)
Fe2—O1—Fe1—N1286.6 (1)N21—Fe2—N23—C23589.0 (2)
Fe2—O1—Fe1—N1393.7 (1)N21—Fe2—N24—C21611.2 (1)
Fe2—O1—Fe1—N14163.8 (8)N21—Fe2—N24—C226130.8 (2)
Fe2—O3—S5—O243.9 (2)N21—Fe2—N24—C236109.8 (1)
Fe2—O3—S5—O4160.1 (1)N21—C211—C212—C2133.4 (4)
Fe2—O3—S5—O573.9 (2)N21—C215—C214—C2132.9 (4)
Fe2—N21—C211—C212169.0 (2)N21—C215—C216—N2425.8 (3)
Fe2—N21—C215—C214166.9 (2)N22—Fe2—N21—C211115.4 (2)
Fe2—N21—C215—C21615.8 (3)N22—Fe2—N21—C21577.2 (2)
Fe2—N22—C221—C222174.5 (2)N22—Fe2—N23—C231149.0 (2)
Fe2—N22—C225—C224176.1 (2)N22—Fe2—N23—C23522.7 (3)
Fe2—N22—C225—C2262.7 (3)N22—Fe2—N24—C21681.4 (2)
Fe2—N23—C231—C232170.4 (2)N22—Fe2—N24—C22638.1 (1)
Fe2—N23—C235—C234170.0 (2)N22—Fe2—N24—C236157.6 (1)
Fe2—N23—C235—C23612.4 (3)N22—C221—C222—C2230.6 (4)
Fe2—N24—C216—C21522.5 (2)N22—C225—C224—C2231.5 (4)
Fe2—N24—C226—C22547.8 (2)N22—C225—C226—N2431.7 (3)
Fe2—N24—C236—C23543.0 (2)N23—Fe2—N21—C21189.9 (2)
S5—O2—Fe1—O136.1 (1)N23—Fe2—N21—C21577.5 (2)
S5—O2—Fe1—N11126.4 (2)N23—Fe2—N22—C221148.7 (2)
S5—O2—Fe1—N1268.9 (1)N23—Fe2—N22—C22536.5 (3)
S5—O2—Fe1—N13138.0 (1)N23—Fe2—N24—C21692.3 (2)
S5—O2—Fe1—N14145.6 (1)N23—Fe2—N24—C226148.1 (2)
S5—O3—Fe2—O120.1 (1)N23—Fe2—N24—C23628.6 (1)
S5—O3—Fe2—N21154.3 (1)N23—C231—C232—C2330.8 (4)
S5—O3—Fe2—N22117.0 (1)N23—C235—C234—C2331.4 (4)
S5—O3—Fe2—N2377.2 (1)N23—C235—C236—N2438.6 (3)
S5—O3—Fe2—N24177.6 (2)N24—Fe2—N21—C211169.8 (2)
O1—Fe1—N11—C11113.5 (2)N24—Fe2—N21—C2152.3 (2)
O1—Fe1—N11—C115179.4 (2)N24—Fe2—N22—C221161.8 (2)
O1—Fe1—N12—C1217.6 (2)N24—Fe2—N22—C22523.4 (2)
O1—Fe1—N12—C125164.4 (2)N24—Fe2—N23—C231162.0 (2)
O1—Fe1—N13—C1317.0 (2)N24—Fe2—N23—C2359.7 (2)
O1—Fe1—N13—C135170.4 (2)N24—C216—C215—C214156.9 (2)
O1—Fe1—N14—C11618.8 (9)N24—C226—C225—C224149.5 (2)
O1—Fe1—N14—C126141.2 (8)N24—C236—C235—C234143.8 (2)
O1—Fe1—N14—C136100.2 (8)C111—N11—C115—C1142.9 (3)
O1—Fe2—N21—C211127.2 (4)C111—N11—C115—C116178.9 (2)
O1—Fe2—N21—C21540.2 (6)C111—C112—C113—C1142.2 (4)
O1—Fe2—N22—C221103.7 (2)C112—C111—N11—C1150.5 (3)
O1—Fe2—N22—C22571.1 (2)C112—C113—C114—C1150.0 (4)
O1—Fe2—N23—C231103.0 (2)C113—C114—C115—C116179.2 (2)
O1—Fe2—N23—C23585.2 (2)C115—C116—N14—C126102.6 (2)
O1—Fe2—N24—C216175.2 (1)C115—C116—N14—C136133.2 (2)
O1—Fe2—N24—C22655.7 (2)C116—N14—C126—C12583.4 (2)
O1—Fe2—N24—C23663.8 (1)C116—N14—C136—C13579.8 (2)
O2—Fe1—N11—C111149.1 (2)C121—N12—C125—C1242.5 (4)
O2—Fe1—N11—C11518.0 (3)C121—N12—C125—C126177.5 (2)
O2—Fe1—N12—C121107.3 (2)C121—C122—C123—C1241.3 (4)
O2—Fe1—N12—C12564.7 (2)C122—C121—N12—C1253.2 (4)
O2—Fe1—N13—C131106.3 (2)C122—C123—C124—C1251.9 (4)
O2—Fe1—N13—C13571.1 (2)C123—C124—C125—C126174.6 (2)
O2—Fe1—N14—C116178.1 (1)C125—C126—N14—C136153.3 (2)
O2—Fe1—N14—C12659.6 (1)C126—N14—C136—C135155.0 (2)
O2—Fe1—N14—C13659.1 (1)C131—N13—C135—C1343.1 (3)
O3—Fe2—N21—C21117.5 (2)C131—N13—C135—C136173.6 (2)
O3—Fe2—N21—C215175.1 (2)C131—C132—C133—C1342.1 (4)
O3—Fe2—N22—C2211.1 (2)C132—C131—N13—C1350.2 (3)
O3—Fe2—N22—C225173.7 (2)C132—C133—C134—C1351.1 (4)
O3—Fe2—N23—C2310.3 (2)C133—C134—C135—C136172.8 (2)
O3—Fe2—N23—C235171.4 (2)C211—N21—C215—C2141.4 (4)
O3—Fe2—N24—C21612.7 (3)C211—N21—C215—C216175.9 (2)
O3—Fe2—N24—C226106.9 (2)C211—C212—C213—C2141.7 (4)
O3—Fe2—N24—C236133.6 (2)C212—C211—N21—C2151.8 (4)
N11—Fe1—N12—C12187.8 (2)C212—C213—C214—C2151.3 (4)
N11—Fe1—N12—C125100.2 (2)C213—C214—C215—C216174.2 (2)
N11—Fe1—N13—C13191.5 (2)C215—C216—N24—C226138.6 (2)
N11—Fe1—N13—C13591.1 (2)C215—C216—N24—C23695.0 (2)
N11—Fe1—N14—C1167.8 (1)C216—N24—C226—C22572.6 (2)
N11—Fe1—N14—C126114.5 (2)C216—N24—C236—C23578.3 (2)
N11—Fe1—N14—C136126.9 (1)C221—N22—C225—C2241.0 (4)
N11—C111—C112—C1132.0 (4)C221—N22—C225—C226177.8 (2)
N11—C115—C114—C1132.6 (4)C221—C222—C223—C2240.1 (4)
N11—C115—C116—N1418.3 (3)C222—C221—N22—C2250.1 (4)
N12—Fe1—N11—C11190.8 (2)C222—C223—C224—C2250.9 (4)
N12—Fe1—N11—C11576.4 (2)C223—C224—C225—C226177.2 (2)
N12—Fe1—N13—C131172.2 (2)C225—C226—N24—C236162.0 (2)
N12—Fe1—N13—C13510.4 (3)C226—N24—C236—C235156.8 (2)
N12—Fe1—N14—C11691.9 (2)C231—N23—C235—C2342.2 (4)
N12—Fe1—N14—C12630.4 (1)C231—N23—C235—C236175.4 (2)
N12—Fe1—N14—C136149.1 (2)C231—C232—C233—C2341.6 (4)
N12—C121—C122—C1231.3 (4)C232—C231—N23—C2351.1 (4)
N12—C125—C124—C1230.1 (4)C232—C233—C234—C2350.6 (4)
N12—C125—C126—N1423.4 (3)C233—C234—C235—C236176.0 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe2(C18H18N4)2O(SO4)]4(ClO4)8·3C2H3N·H2O
Mr4154.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)12.7031 (10), 24.477 (3), 13.6165 (11)
β (°) 103.357 (5)
V3)4119.3 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.30 × 0.17 × 0.05
Data collection
DiffractometerNonius KappaCCD (with Oxford Cryostream)
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.728, 0.946
No. of measured, independent and
observed [I > 3σ(I)] reflections
81911, 14279, 8172
Rint0.042
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.093, 0.90
No. of reflections8172
No. of parameters595
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.71

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), TEXSAN for Windows (Molecular Structure Corporation, 1999), ORTEPII (Johnson, 1976), TEXSAN for Windows (Molecular Structure Corporation, 1999.

Selected geometric parameters (Å, º) top
Fe1—O11.788 (2)Fe2—O11.807 (2)
Fe1—O22.012 (2)Fe2—O31.950 (2)
Fe1—N112.153 (2)Fe2—N212.220 (2)
Fe1—N122.138 (2)Fe2—N222.138 (2)
Fe1—N132.140 (2)Fe2—N232.129 (2)
Fe1—N142.242 (2)Fe2—N242.213 (2)
Fe1—O1—Fe2133.0 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds