Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C25H16BrN, was synthesized by the reaction of N-aryl­idenenaphthalen-2-amine and phenyl­acetaldehyde in the presence of iodine. In the mol­ecular structure, the benzoquinoline ring system makes dihedral angles of 61.1 (1) and 39.8 (1)°, respectively, with the phenyl and bromo­phenyl rings. The dihedral angle between these rings is 57.6 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036975/is2196sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036975/is2196Isup2.hkl
Contains datablock I

CCDC reference: 662407

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.084
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.298 0.679 Tmin and Tmax expected: 0.237 0.680 RR = 1.260 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.28 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.78 mm PLAT432_ALERT_2_C Short Inter X...Y Contact C14 .. C14 .. 3.17 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Quinoline and its derivatives represent an important class of nitrogen-containing heterocycles as they constitute useful intermediates in organic synthesis and are useful dyes (Brock et al., 1999). They are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities including antiasthmatic activity (Sawada et al., 2004), anti-inflammatory activity (Fokialakis et al., 2002), antimalarial activity (Fossa et al., 2002) and anthelmintic agents (Sakata et al., 1988). We report here the crystal structure of the title compound, (I).

In (I), the benzoquinoline ring system (C1—C5/N1/C18—C25) makes dihedral angles of 61.1 (1) and 39.8 (1)° with the phenyl (C12—C17) and benzene (C6—C11) rings, respectively. The dihedral angle between the phenyl (C12—C17) and benzene (C6—C11) rings is 57.6 (1)°. There is no intermolecular hydrogen bond in the crystal.

Related literature top

For related literature, see: Brock et al. (1999); Fokialakis et al. (2002); Fossa et al. (2002); Sakata et al. (1988); Sawada et al. (2004).

Experimental top

The title compound was prepared by the reaction of N-arylidenenaphthalen-2-amine (0.62 g, 2 mmol) and phenylacetaldehyde (0.24 g, 2 mmol) in the presence of iodine (0.05 g) in THF at 340 K for 5 h (yield 72%; m.p. 478–480 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a DMF solution.

Elemental analysis calculated: C 73.18, H 3.93, N, 3.41%; found: C 73.25, H 3.88, N 3.20%. 1H NMR (DMSO-d6): 7.38 (d, J = 8.4 Hz, 2H, ArH), 7.39 (s, 5H, ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 7.74–7.76 (m, 2H, ArH), 7.99 (d, J = 8.8 Hz, 1H, ArH), 8.09–8.11 (m, 1H, ArH), 8.17 (d, J = 8.8 Hz, 1H, ArH), 9.19 (d, J = 7.6 Hz, 1H, ArH), 9.21 (s, 1H, ArH); IR (cm-1): 3056(ArH), 1678(C=N), 1603, 1584, 1566, 1487, 1472, 1431(phenyl ring).

Refinement top

The H atoms were calculated geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Quinoline and its derivatives represent an important class of nitrogen-containing heterocycles as they constitute useful intermediates in organic synthesis and are useful dyes (Brock et al., 1999). They are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities including antiasthmatic activity (Sawada et al., 2004), anti-inflammatory activity (Fokialakis et al., 2002), antimalarial activity (Fossa et al., 2002) and anthelmintic agents (Sakata et al., 1988). We report here the crystal structure of the title compound, (I).

In (I), the benzoquinoline ring system (C1—C5/N1/C18—C25) makes dihedral angles of 61.1 (1) and 39.8 (1)° with the phenyl (C12—C17) and benzene (C6—C11) rings, respectively. The dihedral angle between the phenyl (C12—C17) and benzene (C6—C11) rings is 57.6 (1)°. There is no intermolecular hydrogen bond in the crystal.

For related literature, see: Brock et al. (1999); Fokialakis et al. (2002); Fossa et al. (2002); Sakata et al. (1988); Sawada et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (please check); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-(4-Bromophenyl)-3-phenylbenzo[f]quinoline top
Crystal data top
C25H16BrNF(000) = 832
Mr = 410.30Dx = 1.497 Mg m3
Monoclinic, P21/cMelting point = 478–480 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 12.704 (2) ÅCell parameters from 6717 reflections
b = 9.4917 (14) Åθ = 3.0–25.3°
c = 15.142 (3) ŵ = 2.27 mm1
β = 94.612 (4)°T = 193 K
V = 1819.9 (5) Å3Block, colorless
Z = 40.78 × 0.55 × 0.17 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3336 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1513
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1111
Tmin = 0.298, Tmax = 0.679l = 1817
17280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.5016P]
where P = (Fo2 + 2Fc2)/3
3336 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C25H16BrNV = 1819.9 (5) Å3
Mr = 410.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.704 (2) ŵ = 2.27 mm1
b = 9.4917 (14) ÅT = 193 K
c = 15.142 (3) Å0.78 × 0.55 × 0.17 mm
β = 94.612 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
3336 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3034 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.679Rint = 0.042
17280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.17Δρmax = 0.36 e Å3
3336 reflectionsΔρmin = 0.30 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.41136 (3)0.18517 (3)0.83655 (2)0.04218 (13)
N10.03956 (17)0.1754 (2)0.57827 (14)0.0277 (5)
C10.1407 (2)0.1676 (3)0.56232 (17)0.0257 (6)
C20.1811 (2)0.2330 (3)0.48741 (17)0.0245 (6)
C30.1113 (2)0.3102 (3)0.43206 (17)0.0270 (6)
H30.13670.35690.38250.032*
C40.0041 (2)0.3215 (3)0.44696 (17)0.0247 (6)
C50.0276 (2)0.2501 (3)0.52243 (17)0.0268 (6)
C60.2081 (2)0.0849 (3)0.62874 (17)0.0258 (6)
C70.1673 (2)0.0381 (3)0.66346 (18)0.0294 (6)
H70.09780.06770.64380.035*
C80.2262 (2)0.1175 (3)0.72588 (18)0.0303 (6)
H80.19800.20120.74910.036*
C90.3270 (2)0.0729 (3)0.75395 (17)0.0286 (6)
C100.3691 (2)0.0492 (3)0.72268 (18)0.0304 (6)
H100.43780.07930.74380.036*
C110.3088 (2)0.1277 (3)0.65955 (17)0.0271 (6)
H110.33710.21190.63720.033*
C120.2918 (2)0.2181 (3)0.46368 (17)0.0251 (6)
C130.3338 (2)0.0866 (3)0.44567 (18)0.0312 (7)
H130.29250.00410.45130.037*
C140.4349 (2)0.0755 (3)0.41985 (19)0.0354 (7)
H140.46210.01450.40630.042*
C150.4972 (2)0.1933 (3)0.41337 (19)0.0339 (7)
H150.56740.18450.39660.041*
C160.4569 (2)0.3239 (3)0.43142 (19)0.0331 (7)
H160.49940.40560.42750.040*
C170.3545 (2)0.3359 (3)0.45528 (18)0.0294 (6)
H170.32660.42660.46610.035*
C180.1360 (2)0.2552 (3)0.54188 (19)0.0311 (7)
H180.15730.20860.59300.037*
C190.2081 (2)0.3251 (3)0.48871 (19)0.0325 (7)
H190.27940.32690.50310.039*
C200.1798 (2)0.3970 (3)0.41076 (18)0.0293 (6)
C210.2560 (2)0.4670 (3)0.35408 (19)0.0360 (7)
H210.32740.46870.36850.043*
C220.2291 (3)0.5324 (3)0.2787 (2)0.0408 (8)
H220.28150.57990.24150.049*
C230.1256 (3)0.5294 (4)0.2567 (2)0.0435 (8)
H230.10730.57360.20380.052*
C240.0491 (2)0.4632 (3)0.3106 (2)0.0389 (7)
H240.02170.46280.29460.047*
C250.0736 (2)0.3956 (3)0.38919 (17)0.0276 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0505 (2)0.0406 (2)0.03533 (19)0.01776 (15)0.00243 (14)0.00900 (15)
N10.0279 (13)0.0312 (13)0.0238 (12)0.0001 (10)0.0016 (10)0.0020 (10)
C10.0287 (15)0.0247 (14)0.0237 (14)0.0015 (11)0.0011 (12)0.0027 (12)
C20.0261 (14)0.0255 (14)0.0219 (14)0.0035 (11)0.0015 (11)0.0030 (11)
C30.0311 (15)0.0282 (14)0.0216 (14)0.0030 (12)0.0015 (12)0.0012 (12)
C40.0249 (14)0.0258 (14)0.0230 (14)0.0012 (11)0.0004 (11)0.0034 (12)
C50.0282 (15)0.0282 (15)0.0236 (14)0.0028 (12)0.0002 (12)0.0031 (12)
C60.0305 (15)0.0256 (14)0.0217 (14)0.0043 (12)0.0045 (12)0.0017 (12)
C70.0334 (16)0.0292 (15)0.0260 (15)0.0020 (12)0.0042 (12)0.0014 (12)
C80.0439 (18)0.0227 (14)0.0254 (15)0.0043 (13)0.0086 (13)0.0001 (12)
C90.0340 (16)0.0309 (15)0.0209 (14)0.0113 (13)0.0027 (12)0.0005 (12)
C100.0299 (16)0.0349 (16)0.0264 (15)0.0027 (12)0.0025 (12)0.0009 (13)
C110.0320 (16)0.0261 (14)0.0233 (14)0.0017 (12)0.0022 (12)0.0021 (12)
C120.0252 (14)0.0320 (15)0.0175 (13)0.0002 (12)0.0012 (11)0.0015 (12)
C130.0315 (16)0.0310 (16)0.0303 (15)0.0037 (13)0.0029 (13)0.0039 (13)
C140.0339 (17)0.0361 (17)0.0360 (17)0.0065 (14)0.0015 (14)0.0086 (14)
C150.0244 (15)0.0477 (19)0.0299 (15)0.0039 (14)0.0038 (12)0.0037 (14)
C160.0331 (16)0.0351 (17)0.0318 (16)0.0052 (13)0.0070 (13)0.0004 (13)
C170.0310 (16)0.0284 (15)0.0294 (15)0.0019 (12)0.0065 (13)0.0007 (12)
C180.0293 (16)0.0371 (16)0.0272 (15)0.0006 (13)0.0043 (13)0.0006 (13)
C190.0261 (15)0.0397 (17)0.0324 (16)0.0007 (13)0.0068 (13)0.0073 (14)
C200.0298 (15)0.0301 (15)0.0273 (15)0.0039 (12)0.0016 (12)0.0083 (13)
C210.0328 (16)0.0414 (18)0.0332 (17)0.0085 (14)0.0023 (13)0.0060 (14)
C220.0439 (19)0.0441 (19)0.0324 (17)0.0140 (15)0.0098 (14)0.0032 (15)
C230.044 (2)0.050 (2)0.0352 (18)0.0071 (16)0.0035 (15)0.0135 (15)
C240.0341 (17)0.0475 (19)0.0349 (17)0.0005 (14)0.0011 (14)0.0095 (15)
C250.0286 (15)0.0284 (15)0.0252 (14)0.0003 (12)0.0022 (12)0.0023 (12)
Geometric parameters (Å, º) top
Br1—C91.906 (3)C13—C141.376 (4)
N1—C11.328 (3)C13—H130.9500
N1—C51.353 (3)C14—C151.379 (4)
C1—C21.424 (4)C14—H140.9500
C1—C61.491 (4)C15—C161.376 (4)
C2—C31.380 (4)C15—H150.9500
C2—C121.485 (4)C16—C171.383 (4)
C3—C41.403 (4)C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.415 (4)C18—C191.344 (4)
C4—C251.448 (4)C18—H180.9500
C5—C181.432 (4)C19—C201.434 (4)
C6—C111.387 (4)C19—H190.9500
C6—C71.398 (4)C20—C211.407 (4)
C7—C81.381 (4)C20—C251.414 (4)
C7—H70.9500C21—C221.366 (4)
C8—C91.383 (4)C21—H210.9500
C8—H80.9500C22—C231.383 (4)
C9—C101.376 (4)C22—H220.9500
C10—C111.392 (4)C23—C241.370 (4)
C10—H100.9500C23—H230.9500
C11—H110.9500C24—C251.409 (4)
C12—C171.385 (4)C24—H240.9500
C12—C131.393 (4)
C1—N1—C5119.1 (2)C14—C13—H13119.8
N1—C1—C2122.5 (2)C12—C13—H13119.8
N1—C1—C6114.7 (2)C13—C14—C15120.8 (3)
C2—C1—C6122.8 (2)C13—C14—H14119.6
C3—C2—C1117.4 (2)C15—C14—H14119.6
C3—C2—C12118.5 (2)C16—C15—C14119.4 (3)
C1—C2—C12124.1 (2)C16—C15—H15120.3
C2—C3—C4121.8 (2)C14—C15—H15120.3
C2—C3—H3119.1C15—C16—C17119.9 (3)
C4—C3—H3119.1C15—C16—H16120.0
C3—C4—C5115.9 (2)C17—C16—H16120.0
C3—C4—C25124.3 (2)C16—C17—C12121.2 (3)
C5—C4—C25119.7 (2)C16—C17—H17119.4
N1—C5—C4123.3 (2)C12—C17—H17119.4
N1—C5—C18117.3 (2)C19—C18—C5120.9 (3)
C4—C5—C18119.4 (2)C19—C18—H18119.6
C11—C6—C7118.6 (3)C5—C18—H18119.6
C11—C6—C1122.5 (2)C18—C19—C20121.6 (3)
C7—C6—C1118.9 (2)C18—C19—H19119.2
C8—C7—C6121.0 (3)C20—C19—H19119.2
C8—C7—H7119.5C21—C20—C25119.1 (3)
C6—C7—H7119.5C21—C20—C19121.4 (3)
C7—C8—C9118.8 (3)C25—C20—C19119.5 (3)
C7—C8—H8120.6C22—C21—C20121.2 (3)
C9—C8—H8120.6C22—C21—H21119.4
C10—C9—C8121.8 (3)C20—C21—H21119.4
C10—C9—Br1118.9 (2)C21—C22—C23119.8 (3)
C8—C9—Br1119.3 (2)C21—C22—H22120.1
C9—C10—C11118.7 (3)C23—C22—H22120.1
C9—C10—H10120.7C24—C23—C22120.6 (3)
C11—C10—H10120.7C24—C23—H23119.7
C6—C11—C10121.1 (3)C22—C23—H23119.7
C6—C11—H11119.5C23—C24—C25121.2 (3)
C10—C11—H11119.5C23—C24—H24119.4
C17—C12—C13118.2 (2)C25—C24—H24119.4
C17—C12—C2120.5 (2)C24—C25—C20118.1 (3)
C13—C12—C2121.2 (2)C24—C25—C4123.1 (3)
C14—C13—C12120.4 (3)C20—C25—C4118.8 (2)
C5—N1—C1—C21.2 (4)C1—C2—C12—C17122.9 (3)
C5—N1—C1—C6179.0 (2)C3—C2—C12—C13117.5 (3)
N1—C1—C2—C32.1 (4)C1—C2—C12—C1359.9 (4)
C6—C1—C2—C3178.2 (2)C17—C12—C13—C140.3 (4)
N1—C1—C2—C12175.3 (2)C2—C12—C13—C14177.0 (3)
C6—C1—C2—C124.4 (4)C12—C13—C14—C151.6 (4)
C1—C2—C3—C41.7 (4)C13—C14—C15—C161.2 (4)
C12—C2—C3—C4175.9 (2)C14—C15—C16—C170.4 (4)
C2—C3—C4—C50.5 (4)C15—C16—C17—C121.7 (4)
C2—C3—C4—C25177.1 (3)C13—C12—C17—C161.3 (4)
C1—N1—C5—C40.0 (4)C2—C12—C17—C16178.6 (2)
C1—N1—C5—C18179.7 (2)N1—C5—C18—C19178.8 (3)
C3—C4—C5—N10.4 (4)C4—C5—C18—C191.0 (4)
C25—C4—C5—N1178.2 (2)C5—C18—C19—C200.1 (4)
C3—C4—C5—C18179.4 (2)C18—C19—C20—C21178.3 (3)
C25—C4—C5—C181.6 (4)C18—C19—C20—C250.4 (4)
N1—C1—C6—C11138.9 (3)C25—C20—C21—C220.4 (4)
C2—C1—C6—C1141.3 (4)C19—C20—C21—C22178.4 (3)
N1—C1—C6—C739.0 (3)C20—C21—C22—C230.6 (5)
C2—C1—C6—C7140.8 (3)C21—C22—C23—C241.1 (5)
C11—C6—C7—C81.2 (4)C22—C23—C24—C250.5 (5)
C1—C6—C7—C8179.3 (2)C23—C24—C25—C200.5 (4)
C6—C7—C8—C90.2 (4)C23—C24—C25—C4178.5 (3)
C7—C8—C9—C101.2 (4)C21—C20—C25—C240.9 (4)
C7—C8—C9—Br1177.56 (19)C19—C20—C25—C24177.9 (3)
C8—C9—C10—C111.5 (4)C21—C20—C25—C4179.0 (2)
Br1—C9—C10—C11177.3 (2)C19—C20—C25—C40.2 (4)
C7—C6—C11—C101.0 (4)C3—C4—C25—C240.8 (4)
C1—C6—C11—C10178.9 (2)C5—C4—C25—C24176.8 (3)
C9—C10—C11—C60.4 (4)C3—C4—C25—C20178.8 (3)
C3—C2—C12—C1759.8 (3)C5—C4—C25—C201.2 (4)

Experimental details

Crystal data
Chemical formulaC25H16BrN
Mr410.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)12.704 (2), 9.4917 (14), 15.142 (3)
β (°) 94.612 (4)
V3)1819.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.78 × 0.55 × 0.17
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.298, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
17280, 3336, 3034
Rint0.042
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.084, 1.17
No. of reflections3336
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: CrystalClear (Rigaku, 1999), CrystalClear, CrystalStructure (Rigaku/MSC 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97 (please check), SHELXL97.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds