Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, {[Cd2(C17H6O9)(C12H8N2)4]·2H2O}n, each CdII atom is hexa­coordinated by two carboxyl­ate O atoms from two 3,3′,4,4′-benzophenone tetra­carboxyl­ate anions and four N atoms from two 1,10-phenanthroline ligands, showing a slightly distorted octa­hedral geometry. Neighboring CdII atoms are bridged by benzophenone tetra­carboxyl­ate anions, forming a dinuclear unit, which is further bridged by benzophenone tetra­carboxyl­ate anions to form an infinite chain. The benzophenone carbonyl group lies on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028425/is2175sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028425/is2175Isup2.hkl
Contains datablock I

CCDC reference: 1148879

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.047
  • wR factor = 0.136
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT223_ALERT_4_C Large Solvent/Anion H Ueq(max)/Ueq(min) ... 3.75 Ratio PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C2 ... 1.53 Ang. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 51.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 1.97 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Hybrid organic-inorganic materials occupy a prominent position by virtue of their applications to catalysis, optical materials, membranes, and sorption (Ngo et al., 2004; Evans et al., 2001; Vioux et al., 2004; Sanchez et al., 2003; Evans & Lin, 2001; Jannasch, 2003; Javaid et al., 2001; Honma et al., 2001; Sudik et al., 2005; Rowsell et al., 2004; Kitaura et al., 2002). The design of organic-inorganic hybrid materials is conceived of the metal, metal cluster, or metal oxide substructure as a node from which rigid or flexible multitopic organic ligands radiate to act as tethers to adjacent nodes in the bottom-up construction of complex extended architectures. While a variety of organic molecules have been investigated as potential tethers, materials incorporating multitopic carboxylates and pyridine ligands have witnessed the most significant development. However, ligands offering alternative tether lengths, different charge-balance requirements, and orientations of donor groups may afford advantages in the design of materials. Herein, We report the structure of the new title complex, (I). The cadmium cation is hexa-coordinated by two carboxylate oxygen atoms from two 3,3',4,4'-benzophenone tetracarboxylate and four nitrogen atoms from two 1,10-phenanthroline, showing a slightly distorted octahedral geometry (Fig. 1). Each two Cd atoms form one circle via two half of 3,3',4,4'-benzophenone tetracarboxylate, which are further linked to form chains (Fig. 2). The Cd—N and Cd—O bond lengths are in the range of 2.392 (4)–2.524 (4) and 2.255 (3)–2.275 (4) Å, respectively.

Related literature top

For related compounds, see: Ngo et al. (2004); Evans et al. (2001); Vioux et al. (2004); Sanchez et al. (2003); Evans & Lin (2001); Jannasch (2003); Javaid et al. (2001); Honma et al. (2001); Sudik et al. (2005); Rowsell et al. (2004); Kitaura et al. (2002).

Experimental top

A mixture of cadmium acetate (0.5 mmol), 3,3',4,4'-benzophenone tetracarboxylic acid (0.5 mmol) and 1,10-phenanthroline (0.5 mmol) in 20 ml solution of water and ethanol (1:1) was sealed in an 30 ml Teflon-lined stainless autoclave, and kept at 423 K for 2 days. Colorless block-shaped crystals were obtained in 16% yield after slowly cooling to room temperature. Anal. Calc. for C65H42Cd2N8O11: C 58.38, H 3.14, N 8.38, Cd 16.83%; Found: C 58.31, H 3.11, N 8.29, Cd 16.76%.

Refinement top

C-bound H atoms were generated geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). H atoms of the water molecule were located in a difference map and were refined with distance restraints of H···H = 1.38 (2) and O–H = 0.82 (2) Å, and with a fixed Uiso(H) of 0.80 Å2. The highest peak and deepest hole in the difference Fourier map are located 0.92 and 0.65 Å, respectively, from atoms Cd1 and O6.

Structure description top

Hybrid organic-inorganic materials occupy a prominent position by virtue of their applications to catalysis, optical materials, membranes, and sorption (Ngo et al., 2004; Evans et al., 2001; Vioux et al., 2004; Sanchez et al., 2003; Evans & Lin, 2001; Jannasch, 2003; Javaid et al., 2001; Honma et al., 2001; Sudik et al., 2005; Rowsell et al., 2004; Kitaura et al., 2002). The design of organic-inorganic hybrid materials is conceived of the metal, metal cluster, or metal oxide substructure as a node from which rigid or flexible multitopic organic ligands radiate to act as tethers to adjacent nodes in the bottom-up construction of complex extended architectures. While a variety of organic molecules have been investigated as potential tethers, materials incorporating multitopic carboxylates and pyridine ligands have witnessed the most significant development. However, ligands offering alternative tether lengths, different charge-balance requirements, and orientations of donor groups may afford advantages in the design of materials. Herein, We report the structure of the new title complex, (I). The cadmium cation is hexa-coordinated by two carboxylate oxygen atoms from two 3,3',4,4'-benzophenone tetracarboxylate and four nitrogen atoms from two 1,10-phenanthroline, showing a slightly distorted octahedral geometry (Fig. 1). Each two Cd atoms form one circle via two half of 3,3',4,4'-benzophenone tetracarboxylate, which are further linked to form chains (Fig. 2). The Cd—N and Cd—O bond lengths are in the range of 2.392 (4)–2.524 (4) and 2.255 (3)–2.275 (4) Å, respectively.

For related compounds, see: Ngo et al. (2004); Evans et al. (2001); Vioux et al. (2004); Sanchez et al. (2003); Evans & Lin (2001); Jannasch (2003); Javaid et al. (2001); Honma et al. (2001); Sudik et al. (2005); Rowsell et al. (2004); Kitaura et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The coordination of the Cd atom in the title compound, with displacement ellipsoids at the 30% probability level. The suffix I corresponds to symmetry code (-x + 3/2, -y + 1/2, -z).
[Figure 2] Fig. 2. A view of the chain structure of the title compound.
Poly[[(µ4-carbonyldibenzene-3,3',4,4'-tetracarboxylato)tetrakis(1,10- phenanthroline)dicadmium(II)] dihydrate] top
Crystal data top
[Cd2(C17H6O9)(C12H8N2)4]·2H2OF(000) = 2688
Mr = 1335.87Dx = 1.631 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3610 reflections
a = 24.5326 (10) Åθ = 4.0–27.4°
b = 9.9826 (15) ŵ = 0.86 mm1
c = 23.761 (3) ÅT = 273 K
β = 110.797 (2)°Block, colorless
V = 5439.9 (11) Å30.10 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
φ and ω scansh = 2928
20482 measured reflectionsk = 1111
4681 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0734P)2 + 4.4546P]
where P = (Fo2 + 2Fc2)/3
4681 reflections(Δ/σ)max < 0.001
398 parametersΔρmax = 1.48 e Å3
3 restraintsΔρmin = 1.39 e Å3
Crystal data top
[Cd2(C17H6O9)(C12H8N2)4]·2H2OV = 5439.9 (11) Å3
Mr = 1335.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.5326 (10) ŵ = 0.86 mm1
b = 9.9826 (15) ÅT = 273 K
c = 23.761 (3) Å0.10 × 0.10 × 0.10 mm
β = 110.797 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3527 reflections with I > 2σ(I)
20482 measured reflectionsRint = 0.022
4681 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.48 e Å3
4681 reflectionsΔρmin = 1.39 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.672613 (12)0.28062 (3)0.051215 (14)0.03039 (16)
C10.66588 (18)0.4960 (5)0.0547 (2)0.0350 (11)
C20.62528 (17)0.4085 (5)0.10503 (19)0.0317 (10)
C30.56796 (19)0.4497 (6)0.1303 (2)0.0522 (15)
H280.55600.52580.11530.063*
C40.52773 (19)0.3802 (6)0.1777 (2)0.0536 (15)
H290.48960.41140.19420.064*
C50.54344 (18)0.2669 (5)0.2001 (2)0.0392 (12)
C60.60108 (18)0.2224 (5)0.1749 (2)0.0341 (11)
H310.61210.14410.18920.041*
C70.64206 (16)0.2930 (4)0.1289 (2)0.0283 (10)
C80.70458 (18)0.2475 (5)0.1058 (2)0.0335 (11)
C90.50000.1883 (8)0.25000.0427 (18)
C100.67162 (18)0.0193 (5)0.0332 (2)0.0346 (11)
H130.71160.03340.01530.042*
C110.6526 (2)0.0881 (6)0.0740 (2)0.0429 (12)
H140.67920.14550.08140.052*
C120.5939 (2)0.1053 (6)0.1023 (2)0.0499 (14)
H150.57980.17250.13090.060*
C130.55538 (19)0.0220 (5)0.0881 (2)0.0407 (12)
C140.57798 (16)0.0817 (5)0.04594 (19)0.0305 (10)
C150.53995 (16)0.1662 (5)0.0282 (2)0.0345 (11)
C160.47858 (17)0.1462 (5)0.0548 (2)0.0423 (12)
C170.4574 (2)0.0417 (6)0.0988 (3)0.0582 (16)
H180.41740.02820.11640.070*
C180.4931 (2)0.0363 (6)0.1152 (3)0.0539 (15)
H170.47750.10120.14460.065*
C190.4427 (2)0.2264 (6)0.0360 (3)0.0530 (16)
H200.40250.21400.05200.064*
C200.4658 (2)0.3252 (6)0.0065 (3)0.0557 (15)
H210.44190.38030.01920.067*
C210.5267 (2)0.3397 (6)0.0299 (3)0.0512 (14)
H220.54260.40610.05840.061*
C220.69912 (18)0.0002 (5)0.1315 (2)0.0393 (12)
H10.70590.03140.09770.047*
C230.70645 (19)0.0893 (6)0.1788 (2)0.0447 (13)
H20.71770.17740.17620.054*
C240.69687 (19)0.0450 (5)0.2296 (2)0.0446 (13)
H30.70130.10320.26150.054*
C250.68045 (18)0.0886 (5)0.2326 (2)0.0385 (11)
C260.67419 (16)0.1711 (5)0.1821 (2)0.0325 (10)
C270.6712 (2)0.1433 (6)0.2843 (2)0.0492 (13)
H50.67500.08810.31700.059*
C280.6571 (3)0.2734 (6)0.2864 (3)0.0540 (15)
H60.65120.30690.32030.065*
C290.65118 (19)0.3610 (5)0.2359 (2)0.0423 (12)
C300.65990 (17)0.3122 (5)0.1843 (2)0.0329 (10)
C310.6484 (2)0.5214 (5)0.1396 (3)0.0458 (13)
H100.64840.57750.10830.055*
C320.6388 (2)0.5774 (6)0.1898 (3)0.0563 (15)
H90.63160.66880.19050.068*
C330.6400 (2)0.4995 (6)0.2370 (3)0.0551 (15)
H80.63350.53710.26990.066*
H1W0.706 (10)0.649 (5)0.046 (9)0.30 (17)*
H2W0.730 (3)0.774 (6)0.047 (3)0.08 (3)*
N10.68314 (14)0.1253 (4)0.13188 (16)0.0310 (8)
N20.65750 (15)0.3910 (4)0.13560 (18)0.0356 (9)
N30.63683 (13)0.1007 (4)0.01870 (16)0.0319 (9)
N40.56285 (16)0.2636 (4)0.0134 (2)0.0412 (11)
O10.66782 (13)0.4723 (3)0.00050 (14)0.0382 (8)
O20.68981 (15)0.5896 (4)0.06927 (16)0.0516 (10)
O30.73871 (12)0.3046 (3)0.06003 (14)0.0375 (8)
O40.71910 (13)0.1553 (4)0.13297 (17)0.0534 (10)
O50.50000.0672 (6)0.25000.0660 (17)
O60.7101 (2)0.7270 (5)0.0619 (2)0.0664 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0267 (2)0.0350 (3)0.0285 (2)0.00281 (13)0.00860 (13)0.00070 (14)
C10.031 (2)0.038 (3)0.032 (3)0.004 (2)0.0066 (18)0.003 (2)
C20.0277 (19)0.040 (3)0.024 (2)0.0007 (19)0.0047 (16)0.004 (2)
C30.035 (2)0.063 (4)0.050 (3)0.015 (2)0.004 (2)0.012 (3)
C40.030 (2)0.071 (4)0.048 (3)0.015 (2)0.001 (2)0.007 (3)
C50.028 (2)0.048 (3)0.034 (3)0.004 (2)0.0012 (19)0.005 (2)
C60.032 (2)0.037 (3)0.026 (2)0.0014 (19)0.0010 (18)0.002 (2)
C70.0239 (19)0.035 (3)0.024 (2)0.0014 (17)0.0058 (16)0.0004 (19)
C80.028 (2)0.040 (3)0.030 (3)0.0028 (19)0.0090 (19)0.006 (2)
C90.031 (3)0.052 (5)0.036 (4)0.0000.001 (3)0.000
C100.032 (2)0.038 (3)0.033 (3)0.0013 (19)0.0110 (18)0.004 (2)
C110.043 (2)0.049 (3)0.040 (3)0.005 (2)0.018 (2)0.003 (3)
C120.048 (3)0.057 (4)0.042 (3)0.006 (2)0.013 (2)0.019 (3)
C130.039 (2)0.047 (3)0.037 (3)0.009 (2)0.0142 (19)0.005 (2)
C140.0276 (19)0.035 (3)0.027 (2)0.0025 (18)0.0070 (16)0.003 (2)
C150.026 (2)0.040 (3)0.036 (3)0.0054 (19)0.0094 (17)0.004 (2)
C160.025 (2)0.052 (3)0.048 (3)0.002 (2)0.0105 (19)0.006 (3)
C170.029 (2)0.070 (4)0.068 (4)0.014 (2)0.007 (2)0.009 (3)
C180.039 (3)0.060 (4)0.058 (4)0.017 (3)0.011 (2)0.024 (3)
C190.027 (2)0.063 (4)0.067 (4)0.004 (2)0.013 (2)0.006 (3)
C200.038 (2)0.063 (4)0.069 (4)0.016 (3)0.023 (2)0.001 (3)
C210.041 (3)0.053 (4)0.056 (4)0.006 (2)0.014 (2)0.009 (3)
C220.035 (2)0.037 (3)0.048 (3)0.003 (2)0.018 (2)0.004 (2)
C230.042 (2)0.040 (3)0.052 (3)0.004 (2)0.016 (2)0.001 (3)
C240.043 (2)0.045 (3)0.044 (3)0.002 (2)0.013 (2)0.013 (3)
C250.034 (2)0.050 (3)0.032 (3)0.004 (2)0.0116 (18)0.002 (2)
C260.0233 (18)0.043 (3)0.032 (2)0.0025 (18)0.0097 (16)0.001 (2)
C270.069 (3)0.047 (3)0.035 (3)0.002 (3)0.021 (2)0.008 (3)
C280.068 (3)0.070 (4)0.033 (3)0.015 (3)0.028 (3)0.011 (3)
C290.041 (2)0.049 (3)0.041 (3)0.007 (2)0.019 (2)0.015 (3)
C300.0273 (19)0.043 (3)0.031 (2)0.0015 (19)0.0126 (17)0.006 (2)
C310.047 (3)0.035 (3)0.058 (3)0.006 (2)0.021 (2)0.003 (3)
C320.061 (3)0.037 (3)0.073 (4)0.003 (3)0.026 (3)0.011 (3)
C330.058 (3)0.053 (4)0.061 (4)0.003 (3)0.029 (3)0.026 (3)
N10.0319 (17)0.032 (2)0.032 (2)0.0018 (16)0.0154 (15)0.0049 (18)
N20.0333 (18)0.034 (2)0.040 (2)0.0009 (16)0.0137 (15)0.000 (2)
N30.0233 (16)0.038 (2)0.032 (2)0.0034 (15)0.0071 (14)0.0029 (18)
N40.0303 (19)0.048 (3)0.047 (3)0.0035 (17)0.0151 (18)0.003 (2)
O10.0489 (17)0.0366 (19)0.0269 (18)0.0026 (15)0.0106 (13)0.0013 (15)
O20.062 (2)0.043 (2)0.050 (2)0.0156 (19)0.0203 (17)0.0016 (19)
O30.0236 (14)0.055 (2)0.0314 (18)0.0001 (13)0.0064 (12)0.0064 (16)
O40.0338 (16)0.058 (2)0.065 (3)0.0066 (17)0.0131 (16)0.019 (2)
O50.055 (3)0.054 (4)0.064 (4)0.0000.009 (3)0.000
O60.068 (3)0.065 (3)0.074 (3)0.006 (2)0.034 (2)0.019 (2)
Geometric parameters (Å, º) top
Cd1—O12.255 (3)C16—C171.438 (8)
Cd1—O3i2.275 (3)C17—C181.328 (8)
Cd1—N32.392 (4)C17—H180.9300
Cd1—N12.407 (4)C18—H170.9300
Cd1—N22.429 (4)C19—C201.380 (8)
Cd1—N42.524 (4)C19—H200.9300
C1—O21.217 (6)C20—C211.405 (7)
C1—O11.293 (6)C20—H210.9300
C1—C21.529 (6)C21—N41.327 (7)
C2—C31.381 (6)C21—H220.9300
C2—C71.410 (6)C22—N11.314 (6)
C3—C41.390 (7)C22—C231.394 (7)
C3—H280.9300C22—H10.9300
C4—C51.363 (7)C23—C241.382 (7)
C4—H290.9300C23—H20.9300
C5—C61.398 (6)C24—C251.402 (7)
C5—C91.503 (6)C24—H30.9300
C6—C71.386 (6)C25—C261.419 (7)
C6—H310.9300C25—C271.434 (7)
C7—C81.504 (6)C26—N11.366 (6)
C8—O41.246 (6)C26—C301.458 (7)
C8—O31.250 (6)C27—C281.349 (8)
C9—O51.209 (9)C27—H50.9300
C9—C5ii1.503 (6)C28—C291.449 (8)
C10—N31.310 (6)C28—H60.9300
C10—C111.409 (7)C29—C301.405 (7)
C10—H130.9300C29—C331.411 (8)
C11—C121.368 (7)C30—N21.383 (6)
C11—H140.9300C31—N21.330 (6)
C12—C131.386 (7)C31—C321.411 (8)
C12—H150.9300C31—H100.9300
C13—C141.410 (7)C32—C331.357 (8)
C13—C181.440 (6)C32—H90.9300
C14—N31.370 (5)C33—H80.9300
C14—C151.427 (6)O3—Cd1i2.275 (3)
C15—N41.357 (7)O6—H1W0.85 (5)
C15—C161.425 (5)O6—H2W0.84 (7)
C16—C191.376 (8)
O1—Cd1—O3i103.33 (12)C16—C17—H18118.9
O1—Cd1—N3108.88 (12)C17—C18—C13121.1 (5)
O3i—Cd1—N383.48 (11)C17—C18—H17119.5
O1—Cd1—N1161.97 (12)C13—C18—H17119.4
O3i—Cd1—N181.79 (12)C16—C19—C20120.6 (4)
N3—Cd1—N188.77 (13)C16—C19—H20119.7
O1—Cd1—N294.07 (12)C20—C19—H20119.7
O3i—Cd1—N2120.99 (11)C19—C20—C21117.8 (5)
N3—Cd1—N2142.01 (13)C19—C20—H21121.1
N1—Cd1—N268.88 (13)C21—C20—H21121.1
O1—Cd1—N491.18 (13)N4—C21—C20123.5 (5)
O3i—Cd1—N4150.69 (13)N4—C21—H22118.2
N3—Cd1—N467.65 (13)C20—C21—H22118.2
N1—Cd1—N492.26 (13)N1—C22—C23123.7 (5)
N2—Cd1—N482.44 (13)N1—C22—H1118.1
O2—C1—O1124.9 (4)C23—C22—H1118.1
O2—C1—C2117.5 (4)C24—C23—C22119.2 (5)
O1—C1—C2117.3 (4)C24—C23—H2120.4
C3—C2—C7117.7 (4)C22—C23—H2120.4
C3—C2—C1116.8 (4)C23—C24—C25119.3 (5)
C7—C2—C1125.4 (4)C23—C24—H3120.3
C2—C3—C4121.6 (5)C25—C24—H3120.3
C2—C3—H28119.2C24—C25—C26117.1 (5)
C4—C3—H28119.2C24—C25—C27122.8 (5)
C5—C4—C3120.8 (4)C26—C25—C27120.1 (5)
C5—C4—H29119.6N1—C26—C25122.8 (4)
C3—C4—H29119.6N1—C26—C30118.1 (4)
C4—C5—C6118.6 (4)C25—C26—C30119.0 (4)
C4—C5—C9121.5 (4)C28—C27—C25121.2 (5)
C6—C5—C9119.9 (5)C28—C27—H5119.4
C7—C6—C5121.1 (4)C25—C27—H5119.4
C7—C6—H31119.4C27—C28—C29120.2 (5)
C5—C6—H31119.5C27—C28—H6119.9
C6—C7—C2120.0 (4)C29—C28—H6119.9
C6—C7—C8119.6 (4)C30—C29—C33116.5 (5)
C2—C7—C8120.4 (4)C30—C29—C28120.7 (5)
O4—C8—O3124.1 (4)C33—C29—C28122.7 (5)
O4—C8—C7118.4 (4)N2—C30—C29124.0 (4)
O3—C8—C7117.5 (4)N2—C30—C26117.3 (4)
O5—C9—C5121.5 (3)C29—C30—C26118.7 (4)
O5—C9—C5ii121.5 (3)N2—C31—C32122.0 (5)
C5—C9—C5ii117.1 (7)N2—C31—H10119.0
N3—C10—C11124.4 (4)C32—C31—H10119.0
N3—C10—H13117.8C33—C32—C31120.7 (5)
C11—C10—H13117.8C33—C32—H9119.6
C12—C11—C10117.8 (5)C31—C32—H9119.6
C12—C11—H14121.1C32—C33—C29119.6 (5)
C10—C11—H14121.1C32—C33—H8120.2
C11—C12—C13119.7 (5)C29—C33—H8120.2
C11—C12—H15120.1C22—N1—C26117.8 (4)
C13—C12—H15120.2C22—N1—Cd1123.8 (3)
C12—C13—C14118.9 (4)C26—N1—Cd1118.3 (3)
C12—C13—C18122.6 (5)C31—N2—C30117.1 (5)
C14—C13—C18118.5 (5)C31—N2—Cd1125.5 (4)
N3—C14—C13121.3 (4)C30—N2—Cd1117.3 (3)
N3—C14—C15117.9 (4)C10—N3—C14117.8 (4)
C13—C14—C15120.7 (4)C10—N3—Cd1122.4 (3)
N4—C15—C16121.4 (5)C14—N3—Cd1119.8 (3)
N4—C15—C14119.5 (3)C21—N4—C15118.5 (4)
C16—C15—C14119.0 (4)C21—N4—Cd1126.6 (3)
C19—C16—C15118.2 (5)C15—N4—Cd1114.9 (3)
C19—C16—C17123.4 (4)C1—O1—Cd1132.4 (3)
C15—C16—C17118.4 (5)C8—O3—Cd1i103.5 (3)
C18—C17—C16122.2 (4)H1W—O6—H2W109 (16)
C18—C17—H18118.9
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cd2(C17H6O9)(C12H8N2)4]·2H2O
Mr1335.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)24.5326 (10), 9.9826 (15), 23.761 (3)
β (°) 110.797 (2)
V3)5439.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20482, 4681, 3527
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.00
No. of reflections4681
No. of parameters398
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.48, 1.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds