Download citation
Download citation
link to html
The methods used to extract chord-length distributions from small-angle scattering data assume a structure consisting of spatially uncorrelated and disconnected convex regions. These restrictive conditions are seldom met for a wide variety of materials such as porous materials and semicrystalline or phase-separated copolymers, the structures of which consist of co-continuous phases that interpenetrate each other in a geometrically complex way. The significant errors that would result from applying existing methods to such systems are discussed using three distinct models for which the chord-length distributions are known analytically. The models are a dilute suspension of hollow spheres, the Poisson mosaic and the Boolean model of spheres.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds