metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­tris­­[1-(2,4-dioxo-2H-1-benzo­pyran-3-yl­­idene)ethan-1-olato]ethano­lgadolinium(III) ethanol monosolvate

CROSSMARK_Color_square_no_text.svg

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 25 March 2019; accepted 10 April 2019; online 18 April 2019)

The title compound, [Gd(C11H7O4)3(C2H5OH)(H2O)]·C2H5OH, was crystallized from ethanol, affording a solvate. The main ligand in the complex results from deprotonation of the hy­droxy group in 3-acetyl-4-hy­droxy­coumarin (C11H8O4) and the resulting anionic ligands chelate the GdIII centre. Three anions, one ethanol and one water mol­ecule are bonded to the lanthanide, giving an eight-coordinate metal centre with a slightly distorted trigonal–prismatic square-face-bicapped coordination geometry. All water and ethanol mol­ecules participate in an intricate three-dimensional framework of hydrogen bonds. The complex is isostructural to the Tb and Dy compounds reported previously [Guzmán-Méndez et al. (2018[Guzmán-Méndez, Ó., González, F., Bernès, S., Flores-Álamo, M., Ordóñez-Hernández, J., García-Ortega, H., Guerrero, J., Qian, W., Aliaga-Alcalde, N. & Gasque, L. (2018). Inorg. Chem. 57, 908-911.]). Inorg. Chem. 57, 908–911].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We are currently probing the possibility of using a coumarin derivative, 3-acetyl-4-hy­droxy­coumarin, as an efficient luminescence sensitizer for lanthanide ions (Guzmán-Méndez et al., 2018[Guzmán-Méndez, Ó., González, F., Bernès, S., Flores-Álamo, M., Ordóñez-Hernández, J., García-Ortega, H., Guerrero, J., Qian, W., Aliaga-Alcalde, N. & Gasque, L. (2018). Inorg. Chem. 57, 908-911.]). Although the mol­ecular structure of this coumarin derivative is very simple, with an essentially planar conformation (Traven et al., 2000[Traven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Russ. J. Gen. Chem. 70, 798-808.]; Lyssenko & Anti­pin, 2001[Lyssenko, K. A. & Antipin, M. Yu. (2001). Russ. Chem. Bull. 50, 418-431.]), weak inter­molecular contacts in the solid state are known to promote polymorphism (Ghouili et al., 2015[Ghouili, A., Brahmia, A. & Ben Hassen, R. (2015). Acta Cryst. C71, 873-877.]). Such behaviour was previously studied in detail for a closely related system, 3-acetyl­coumarin (Munshi et al., 2004[Munshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105-1107.]; Munshi & Guru Row, 2006[Munshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708-718.]). For our part, we determined that the coordination ability of 3-acetyl-4-hy­droxy­coumarin towards lanthanides is related to the chelating character of the acetyl and hydroxyl groups, once the hydroxyl group has been deprotonated. The same behaviour has been reported for this ligand with a transition metal (CoII; Bejaoui et al., 2018[Bejaoui, L., Rohlicek, J. & Ben Hassen, R. (2018). J. Mol. Struct. 1173, 574-582.]) and a main-group element (B; Manaev et al., 2006[Manaev, A. V., Chibisova, T. A., Lyssenko, K. A., Antipin, M. Yu. & Traven', V. F. (2006). Russ. Chem. Bull. 55, 2091-2094.]). In the case of lanthanides, for which the coordination number is generally unpredictable, it is sometimes difficult to set up well-reproducible synthetic methods, especially when small coordinating mol­ecules, such as water and alcohols, may be included in the coordination sphere. However, isotypic or partially isotypic series may be obtained along the lanthanide group. For example, compounds with reproducible formulae {[LnL3(H2O)(EtOH)]·EtOH}, where L is the anion obtained from 3-acetyl-4-hy­droxy­coumarin, can be crystallized in the space group P21/c at least with Ln = Gd, Tb, Dy, Ho and Tm. The present report deals with the compound corresponding to Ln = Gd.

The complex crystallizes with one uncoordinated ethanol mol­ecule (O57) per complex, with no disordered parts (Fig. 1[link]). The neutral complex [GdL3(H2O)(EtOH)] is built up of an eight-coordinate GdIII ion, which is a common coordination number for this metal. Three coumarin ligands chelate the metal, with Gd—O bond lengths in the range 2.330 (2)–2.401 (2) Å, the coordination sphere being completed with one water mol­ecule [Gd1—O53: 2.379 (3) Å] and one ethanol mol­ecule [Gd—O54: 2.417 (3) Å]. The set of eight O atoms around the lanthanide is arranged to form a trigonal–prismatic square-face-bicapped polyhedron, corresponding to the TPRS-8 polyhedral symbol in the IUPAC nomenclature (IUPAC, 2005[IUPAC (2005). Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, edited by N. G. Connelly et al., pp. 175-178. RSC Publishing.]). The chelating fragment, O3—C4—C3—C11—O4 (and equivalent groups in other L ligands) displays geometric parameters consistent with a negative charge fully delocalized over the chelate, giving a strongly stabilizing six-membered metallacycle. Two ligands L are almost coplanar, forming a dihedral angle of 9.87 (8)°, while the third ligand bis­ects this plane, with dihedral angles of 80.05 (6) and 82.60 (5)° (mean planes are calculated using 15 non-H atoms for each ligand L; see Fig. 1[link], inset). This arrangement is similar to that observed for the eight-coordinate [LnL3(H2O)(EtOH)] and [LnL3(H2O)(MeOH)] complexes previously reported (Guzmán-Méndez et al., 2018[Guzmán-Méndez, Ó., González, F., Bernès, S., Flores-Álamo, M., Ordóñez-Hernández, J., García-Ortega, H., Guerrero, J., Qian, W., Aliaga-Alcalde, N. & Gasque, L. (2018). Inorg. Chem. 57, 908-911.]).

[Figure 1]
Figure 1
Structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. The inset shows the GdIII coordination polyhedron (red capped sticks), which is compared with the idealized TPRS-8 polyhedron (IUPAC, 2005[IUPAC (2005). Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, edited by N. G. Connelly et al., pp. 175-178. RSC Publishing.]).

Water and ethanol mol­ecules participate in the building of a complex supra­molecular structure based on O—H⋯O hydrogen bonds. The main feature is the formation of a one-dimensional frame along the [010] direction, in which mol­ecules are connected using the non-coordinating carbonyl groups of two α-pyrone rings as acceptor to form bonds with coordinated water and ethanol mol­ecules (Table 1[link], entries 1 and 2). The lattice ethanol mol­ecule forms a third bond, with the coordinated water mol­ecule (Table 1[link], entry 3). The resulting arrangement allows weak ππ inter­actions between coumarin ligands related by inversion, with a separation of 3.32 Å between the planes of these rings (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O53—H53A⋯O22i 0.84 (2) 2.01 (2) 2.840 (4) 169 (4)
O54—H54⋯O42ii 0.85 (2) 1.95 (2) 2.768 (4) 163 (5)
O53—H53B⋯O57 0.84 (2) 1.80 (2) 2.634 (4) 173 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the inter­actions between the lattice solvent (blue mol­ecules) and the complexes, via hydrogen bonds (dashed lines). The colour scheme for the complexes indicates the symmetry operations in P21/c: grey: asymmetric unit; gold: inversion (1 − x, 1 − y, 1 − z); green: screw axis (1 − x, [{1\over 2}] + y, [{3\over 2}] − z); magenta: glide plane (x, [{1\over 2}] − y, −[{1\over 2}] + z).

Synthesis and crystallization

The synthesis was carried out using the methodology described in a previous publication (Guzmán-Méndez et al., 2018[Guzmán-Méndez, Ó., González, F., Bernès, S., Flores-Álamo, M., Ordóñez-Hernández, J., García-Ortega, H., Guerrero, J., Qian, W., Aliaga-Alcalde, N. & Gasque, L. (2018). Inorg. Chem. 57, 908-911.]). The title complex was synthesized by dissolving 0.75 mmol HL in 40 ml EtOH with 0.75 mmol of sodium methoxide. To this mixture, an ethano­lic solution of 0.25 mmol of Gd(NO3)3·6H2O was added dropwise. This mixture was allowed to react for 5 h at 333 K with vigorous stirring. After this time, the solvent was evaporated to 5 ml and water was added to precipitate the complex, which was then filtered and dried (yield: 89%). Colourless plate-shaped crystals were obtained from the slow evaporation of an ethano­lic solution of the solid.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Gd(C11H7O4)3(C2H6O)(H2O)]·C2H6O
Mr 876.90
Crystal system, space group Monoclinic, P21/c
Temperature (K) 250
a, b, c (Å) 11.5029 (3), 31.8022 (9), 10.8445 (3)
β (°) 113.840 (2)
V3) 3628.62 (18)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 1.02
Crystal size (mm) 0.50 × 0.30 × 0.06
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.583, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45823, 7317, 5494
Rint 0.051
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.01
No. of reflections 7317
No. of parameters 495
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.65
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]),Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Aquatris[1-(2,4-dioxo-2H-1-benzopyran-3-ylidene)ethan-1-olato]ethanolgadolinium(III) ethanol monosolvate top
Crystal data top
[Gd(C11H7O4)3(C2H6O)(H2O)]·C2H6OF(000) = 1764
Mr = 876.90Dx = 1.605 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 11.5029 (3) ÅCell parameters from 36640 reflections
b = 31.8022 (9) Åθ = 2.2–22.7°
c = 10.8445 (3) ŵ = 1.02 mm1
β = 113.840 (2)°T = 250 K
V = 3628.62 (18) Å3Plate, colourless
Z = 40.50 × 0.30 × 0.06 mm
Data collection top
Stoe Stadivari
diffractometer
7317 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source5494 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.051
Detector resolution: 5.81 pixels mm-1θmax = 20.5°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 3939
Tmin = 0.583, Tmax = 1.000l = 1313
45823 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0397P)2]
where P = (Fo2 + 2Fc2)/3
7317 reflections(Δ/σ)max = 0.002
495 parametersΔρmax = 0.62 e Å3
6 restraintsΔρmin = 0.65 e Å3
0 constraints
Special details top

Refinement. H atoms bonded to C atoms were placed in idealized positions and refined as riding to their parent atoms, while remaining H atoms, for water and ethanol molecules, were placed using difference maps and refined with free coordinates. All O—H bond lengths were restrained to a distance target of 0.85 (2) Å, while H—O53—H angle for the water molecule was restrained with a target H···H = 1.34 (4) Å. Isotropic displacement parameters were calculated for all H atoms, as Uiso = xUeq(carrier atom) where x = 1.2 or x = 1.5.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.32396 (2)0.38332 (2)0.65440 (2)0.03530 (7)
O10.2286 (2)0.36089 (11)0.5373 (3)0.0632 (8)
O20.1432 (3)0.34226 (12)0.7479 (3)0.0754 (10)
O30.1096 (2)0.40002 (9)0.5385 (2)0.0458 (6)
O40.2153 (2)0.38175 (9)0.8025 (2)0.0425 (6)
C20.1229 (4)0.35819 (15)0.6576 (4)0.0510 (10)
C30.0025 (3)0.37320 (12)0.6643 (4)0.0382 (9)
C40.0079 (3)0.38814 (12)0.5459 (4)0.0380 (8)
C50.1081 (4)0.39009 (13)0.4215 (4)0.0463 (10)
C60.1080 (4)0.40423 (16)0.3008 (4)0.0605 (12)
H60.0319180.4139000.2979640.073*
C70.2187 (6)0.4043 (2)0.1843 (5)0.0825 (16)
H70.2181390.4140980.1028140.099*
C80.3302 (6)0.38977 (19)0.1892 (6)0.0872 (18)
H80.4050350.3895330.1098280.105*
C90.3339 (4)0.37599 (18)0.3048 (6)0.0756 (16)
H90.4106440.3665350.3066050.091*
C100.2212 (4)0.37593 (14)0.4230 (5)0.0543 (11)
C110.1068 (3)0.37340 (12)0.7928 (4)0.0386 (9)
C120.0962 (4)0.36405 (16)0.9238 (4)0.0558 (11)
H12A0.0268520.3802290.9290700.084*
H12B0.1749970.3715840.9983820.084*
H12C0.0798300.3342920.9284250.084*
O210.3255 (3)0.19355 (9)0.6550 (3)0.0593 (8)
O220.4516 (3)0.20264 (11)0.5523 (4)0.0754 (10)
O230.2292 (2)0.31735 (8)0.6307 (3)0.0427 (6)
O240.4223 (2)0.33318 (10)0.5646 (3)0.0505 (7)
C220.3833 (4)0.22069 (15)0.5968 (4)0.0528 (11)
C230.3607 (3)0.26510 (13)0.5977 (4)0.0397 (9)
C240.2634 (3)0.27989 (12)0.6364 (3)0.0366 (8)
C250.1987 (3)0.24889 (12)0.6863 (4)0.0397 (9)
C260.1059 (4)0.26070 (14)0.7297 (4)0.0517 (10)
H260.0784090.2888140.7209690.062*
C270.0533 (4)0.23141 (16)0.7858 (5)0.0635 (12)
H270.0094840.2396340.8156330.076*
C280.0922 (4)0.19063 (16)0.7982 (4)0.0635 (13)
H280.0558810.1708780.8366630.076*
C290.1837 (4)0.17797 (15)0.7553 (4)0.0624 (12)
H290.2106470.1498020.7641780.075*
C300.2355 (4)0.20766 (13)0.6984 (4)0.0467 (9)
C310.4325 (3)0.29467 (15)0.5552 (4)0.0461 (10)
C320.5275 (4)0.28046 (17)0.4999 (5)0.0718 (14)
H32A0.4843050.2640460.4187140.108*
H32B0.5924550.2633560.5666730.108*
H32C0.5667220.3048610.4788480.108*
O410.6855 (2)0.47924 (9)0.4682 (3)0.0523 (7)
O420.5149 (3)0.48143 (10)0.2835 (3)0.0562 (7)
O430.5179 (2)0.41424 (9)0.6765 (2)0.0425 (6)
O440.3049 (2)0.41309 (9)0.4466 (2)0.0431 (6)
C420.5606 (3)0.46792 (13)0.3981 (4)0.0440 (9)
C430.4987 (3)0.44347 (12)0.4673 (4)0.0379 (8)
C440.5643 (3)0.43375 (12)0.6066 (4)0.0390 (9)
C450.6956 (3)0.44855 (13)0.6745 (4)0.0427 (9)
C460.7656 (4)0.44179 (15)0.8114 (4)0.0522 (11)
H460.7296310.4266310.8616980.063*
C470.8878 (4)0.45728 (17)0.8737 (5)0.0654 (13)
H470.9350600.4529720.9664200.079*
C480.9401 (4)0.47921 (18)0.7982 (5)0.0711 (15)
H481.0236690.4894300.8405890.085*
C490.8725 (4)0.48642 (16)0.6625 (5)0.0660 (14)
H490.9086130.5016110.6123600.079*
C500.7510 (3)0.47080 (13)0.6023 (4)0.0471 (10)
C510.3681 (3)0.43018 (12)0.3907 (4)0.0386 (8)
C520.3027 (4)0.43506 (15)0.2412 (4)0.0551 (11)
H52A0.3510720.4206920.1985690.083*
H52B0.2962180.4646900.2181160.083*
H52C0.2181560.4229770.2098510.083*
O530.4721 (2)0.35409 (11)0.8598 (3)0.0536 (8)
H53A0.455 (4)0.3378 (13)0.911 (4)0.080*
H53B0.546 (2)0.3478 (16)0.871 (4)0.080*
O540.3384 (3)0.45345 (9)0.7454 (3)0.0535 (7)
H540.396 (4)0.4704 (13)0.748 (5)0.080*
C550.2554 (4)0.47760 (16)0.7856 (5)0.0677 (13)
H55A0.1749620.4625040.7616590.081*
H55B0.2371020.5044820.7373010.081*
C560.3133 (6)0.4856 (2)0.9332 (5)0.111 (2)
H56A0.2542300.5014090.9585420.167*
H56B0.3911270.5015530.9564540.167*
H56C0.3322760.4589800.9810960.167*
O570.6984 (4)0.33100 (18)0.8778 (5)0.124 (2)
H570.714 (6)0.333 (2)0.808 (4)0.187*
C580.7719 (6)0.2997 (3)0.9692 (7)0.109 (2)
H58A0.7402360.2960231.0399710.131*
H58B0.8602650.3092751.0123640.131*
C590.7684 (7)0.2592 (3)0.9043 (9)0.140 (3)
H59A0.8108510.2381560.9724770.210*
H59B0.8112090.2616180.8437850.210*
H59C0.6806930.2509050.8535060.210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.03853 (10)0.03460 (12)0.03740 (11)0.00399 (9)0.02013 (8)0.00337 (9)
O10.0395 (15)0.079 (3)0.069 (2)0.0063 (15)0.0202 (15)0.0025 (18)
O20.0566 (17)0.105 (3)0.076 (2)0.0144 (18)0.0388 (16)0.020 (2)
O30.0389 (13)0.0559 (18)0.0441 (15)0.0055 (12)0.0184 (12)0.0157 (13)
O40.0419 (13)0.0498 (18)0.0401 (14)0.0059 (12)0.0210 (11)0.0001 (12)
C20.043 (2)0.057 (3)0.056 (3)0.004 (2)0.024 (2)0.003 (2)
C30.0394 (19)0.034 (2)0.045 (2)0.0002 (15)0.0215 (17)0.0014 (17)
C40.0397 (19)0.034 (2)0.042 (2)0.0045 (16)0.0173 (16)0.0016 (17)
C50.050 (2)0.043 (3)0.042 (2)0.0073 (18)0.0147 (18)0.0044 (18)
C60.064 (3)0.066 (3)0.043 (2)0.009 (2)0.013 (2)0.003 (2)
C70.091 (4)0.093 (5)0.045 (3)0.012 (3)0.008 (3)0.003 (3)
C80.081 (4)0.085 (5)0.061 (3)0.010 (3)0.008 (3)0.013 (3)
C90.053 (3)0.079 (4)0.075 (4)0.005 (3)0.005 (3)0.022 (3)
C100.047 (2)0.049 (3)0.060 (3)0.0019 (19)0.014 (2)0.004 (2)
C110.048 (2)0.032 (2)0.043 (2)0.0011 (16)0.0259 (18)0.0041 (16)
C120.061 (2)0.072 (3)0.044 (2)0.002 (2)0.032 (2)0.005 (2)
O210.0678 (18)0.0345 (17)0.072 (2)0.0106 (15)0.0253 (16)0.0012 (15)
O220.078 (2)0.059 (2)0.098 (2)0.0106 (17)0.0451 (19)0.0266 (19)
O230.0464 (14)0.0250 (15)0.0651 (17)0.0008 (11)0.0313 (13)0.0029 (13)
O240.0552 (16)0.049 (2)0.0597 (17)0.0022 (14)0.0361 (14)0.0020 (15)
C220.049 (2)0.052 (3)0.052 (2)0.005 (2)0.014 (2)0.011 (2)
C230.0400 (19)0.038 (2)0.039 (2)0.0050 (17)0.0143 (16)0.0045 (18)
C240.0380 (19)0.033 (2)0.036 (2)0.0010 (16)0.0121 (15)0.0030 (17)
C250.044 (2)0.034 (2)0.037 (2)0.0042 (17)0.0114 (16)0.0013 (17)
C260.057 (2)0.039 (3)0.066 (3)0.003 (2)0.032 (2)0.002 (2)
C270.072 (3)0.059 (3)0.071 (3)0.014 (2)0.042 (3)0.000 (3)
C280.080 (3)0.055 (3)0.051 (3)0.024 (3)0.022 (2)0.006 (2)
C290.082 (3)0.041 (3)0.051 (3)0.009 (2)0.013 (2)0.002 (2)
C300.054 (2)0.037 (3)0.042 (2)0.0026 (19)0.0122 (19)0.0013 (19)
C310.046 (2)0.055 (3)0.040 (2)0.005 (2)0.0202 (17)0.002 (2)
C320.070 (3)0.077 (4)0.090 (4)0.010 (3)0.055 (3)0.007 (3)
O410.0537 (16)0.056 (2)0.0558 (17)0.0166 (14)0.0316 (14)0.0005 (14)
O420.0722 (18)0.054 (2)0.0529 (17)0.0137 (15)0.0360 (15)0.0057 (15)
O430.0412 (13)0.0496 (18)0.0381 (13)0.0098 (12)0.0174 (11)0.0044 (12)
O440.0465 (14)0.0486 (18)0.0377 (13)0.0094 (12)0.0204 (11)0.0069 (12)
C420.050 (2)0.040 (2)0.048 (2)0.0084 (18)0.0268 (19)0.0050 (19)
C430.048 (2)0.034 (2)0.040 (2)0.0084 (17)0.0252 (17)0.0029 (17)
C440.0405 (19)0.037 (2)0.044 (2)0.0041 (16)0.0218 (17)0.0056 (18)
C450.041 (2)0.041 (2)0.048 (2)0.0049 (17)0.0204 (18)0.0072 (18)
C460.046 (2)0.057 (3)0.051 (2)0.005 (2)0.0170 (19)0.010 (2)
C470.052 (3)0.070 (4)0.068 (3)0.004 (2)0.018 (2)0.015 (3)
C480.044 (2)0.082 (4)0.086 (4)0.018 (2)0.024 (3)0.032 (3)
C490.053 (3)0.073 (4)0.081 (4)0.022 (2)0.036 (3)0.021 (3)
C500.044 (2)0.046 (3)0.057 (3)0.0099 (19)0.026 (2)0.012 (2)
C510.051 (2)0.030 (2)0.040 (2)0.0043 (17)0.0236 (17)0.0020 (17)
C520.066 (3)0.061 (3)0.039 (2)0.017 (2)0.0212 (19)0.002 (2)
O530.0438 (14)0.072 (2)0.0475 (16)0.0016 (15)0.0204 (13)0.0185 (15)
O540.0657 (18)0.0407 (18)0.0727 (19)0.0148 (14)0.0471 (16)0.0094 (15)
C550.077 (3)0.058 (3)0.084 (3)0.006 (3)0.049 (3)0.006 (3)
C560.106 (4)0.171 (8)0.068 (4)0.024 (4)0.047 (3)0.016 (4)
O570.082 (2)0.199 (6)0.125 (3)0.064 (3)0.074 (2)0.100 (4)
C580.069 (4)0.154 (8)0.101 (5)0.013 (4)0.030 (3)0.055 (5)
C590.129 (6)0.151 (9)0.183 (9)0.016 (6)0.108 (6)0.051 (7)
Geometric parameters (Å, º) top
Gd1—O232.330 (2)C29—C301.387 (6)
Gd1—O32.331 (2)C29—H290.9400
Gd1—O432.360 (2)C31—C321.513 (5)
Gd1—O442.372 (2)C32—H32A0.9700
Gd1—O532.379 (3)C32—H32B0.9700
Gd1—O242.380 (3)C32—H32C0.9700
Gd1—O42.401 (2)O41—C501.367 (5)
Gd1—O542.417 (3)O41—C421.374 (4)
O1—C101.363 (5)O42—C421.215 (4)
O1—C21.381 (5)O43—C441.254 (4)
O2—C21.206 (5)O44—C511.244 (4)
O3—C41.262 (4)C42—C431.451 (5)
O4—C111.238 (4)C43—C441.423 (5)
C2—C31.438 (5)C43—C511.455 (5)
C3—C41.419 (5)C44—C451.465 (5)
C3—C111.451 (5)C45—C501.387 (5)
C4—C51.466 (5)C45—C461.390 (5)
C5—C101.383 (6)C46—C471.382 (6)
C5—C61.384 (6)C46—H460.9400
C6—C71.385 (6)C47—C481.384 (7)
C6—H60.9400C47—H470.9400
C7—C81.384 (8)C48—C491.378 (7)
C7—H70.9400C48—H480.9400
C8—C91.345 (8)C49—C501.375 (6)
C8—H80.9400C49—H490.9400
C9—C101.407 (6)C51—C521.494 (5)
C9—H90.9400C52—H52A0.9700
C11—C121.504 (5)C52—H52B0.9700
C12—H12A0.9700C52—H52C0.9700
C12—H12B0.9700O53—H53A0.840 (19)
C12—H12C0.9700O53—H53B0.835 (19)
O21—C301.375 (5)O54—C551.424 (5)
O21—C221.388 (5)O54—H540.847 (19)
O22—C221.219 (5)C55—C561.486 (7)
O23—C241.248 (4)C55—H55A0.9800
O24—C311.238 (5)C55—H55B0.9800
C22—C231.437 (6)C56—H56A0.9700
C23—C241.426 (5)C56—H56B0.9700
C23—C311.444 (5)C56—H56C0.9700
C24—C251.464 (5)O57—C581.419 (7)
C25—C301.368 (5)O57—H570.84 (2)
C25—C261.382 (5)C58—C591.461 (10)
C26—C271.378 (6)C58—H58A0.9800
C26—H260.9400C58—H58B0.9800
C27—C281.361 (7)C59—H59A0.9700
C27—H270.9400C59—H59B0.9700
C28—C291.372 (7)C59—H59C0.9700
C28—H280.9400
O23—Gd1—O378.45 (9)C27—C28—C29120.8 (4)
O23—Gd1—O43140.12 (9)C27—C28—H28119.6
O3—Gd1—O43135.25 (9)C29—C28—H28119.6
O23—Gd1—O44113.27 (9)C28—C29—C30118.5 (5)
O3—Gd1—O4474.08 (8)C28—C29—H29120.7
O43—Gd1—O4469.55 (8)C30—C29—H29120.7
O23—Gd1—O5382.98 (10)C25—C30—O21121.8 (4)
O3—Gd1—O53142.64 (8)C25—C30—C29121.6 (4)
O43—Gd1—O5377.15 (9)O21—C30—C29116.6 (4)
O44—Gd1—O53143.28 (8)O24—C31—C23122.2 (3)
O23—Gd1—O2468.30 (8)O24—C31—C32115.8 (4)
O3—Gd1—O24120.42 (10)C23—C31—C32122.0 (4)
O43—Gd1—O2474.59 (9)C31—C32—H32A109.5
O44—Gd1—O2475.82 (9)C31—C32—H32B109.5
O53—Gd1—O2480.92 (10)H32A—C32—H32B109.5
O23—Gd1—O473.04 (9)C31—C32—H32C109.5
O3—Gd1—O469.03 (8)H32A—C32—H32C109.5
O43—Gd1—O4131.84 (8)H32B—C32—H32C109.5
O44—Gd1—O4140.41 (9)C50—O41—C42122.7 (3)
O53—Gd1—O474.66 (8)C44—O43—Gd1139.5 (2)
O24—Gd1—O4136.22 (9)C51—O44—Gd1142.2 (2)
O23—Gd1—O54145.86 (8)O42—C42—O41113.4 (3)
O3—Gd1—O5483.85 (10)O42—C42—C43128.2 (3)
O43—Gd1—O5470.61 (9)O41—C42—C43118.4 (3)
O44—Gd1—O5489.10 (9)C44—C43—C42120.3 (3)
O53—Gd1—O5494.21 (11)C44—C43—C51121.7 (3)
O24—Gd1—O54145.06 (8)C42—C43—C51118.0 (3)
O4—Gd1—O5473.42 (9)O43—C44—C43125.2 (3)
C10—O1—C2121.8 (3)O43—C44—C45117.3 (3)
C4—O3—Gd1134.7 (2)C43—C44—C45117.4 (3)
C11—O4—Gd1136.6 (2)C50—C45—C46118.8 (3)
O2—C2—O1114.1 (3)C50—C45—C44119.7 (3)
O2—C2—C3126.6 (4)C46—C45—C44121.4 (3)
O1—C2—C3119.3 (3)C47—C46—C45120.2 (4)
C4—C3—C2119.8 (3)C47—C46—H46119.9
C4—C3—C11120.6 (3)C45—C46—H46119.9
C2—C3—C11119.5 (3)C46—C47—C48119.4 (4)
O3—C4—C3125.2 (3)C46—C47—H47120.3
O3—C4—C5116.8 (3)C48—C47—H47120.3
C3—C4—C5117.9 (3)C49—C48—C47121.5 (4)
C10—C5—C6118.5 (4)C49—C48—H48119.2
C10—C5—C4119.1 (4)C47—C48—H48119.2
C6—C5—C4122.4 (4)C50—C49—C48118.3 (4)
C5—C6—C7120.7 (5)C50—C49—H49120.9
C5—C6—H6119.6C48—C49—H49120.9
C7—C6—H6119.6O41—C50—C49116.9 (4)
C8—C7—C6119.3 (5)O41—C50—C45121.3 (3)
C8—C7—H7120.4C49—C50—C45121.8 (4)
C6—C7—H7120.4O44—C51—C43121.4 (3)
C9—C8—C7121.6 (5)O44—C51—C52115.9 (3)
C9—C8—H8119.2C43—C51—C52122.7 (3)
C7—C8—H8119.2C51—C52—H52A109.5
C8—C9—C10119.0 (5)C51—C52—H52B109.5
C8—C9—H9120.5H52A—C52—H52B109.5
C10—C9—H9120.5C51—C52—H52C109.5
O1—C10—C5122.0 (4)H52A—C52—H52C109.5
O1—C10—C9117.1 (4)H52B—C52—H52C109.5
C5—C10—C9120.9 (5)Gd1—O53—H53A126 (3)
O4—C11—C3122.3 (3)Gd1—O53—H53B122 (3)
O4—C11—C12115.2 (3)H53A—O53—H53B104 (3)
C3—C11—C12122.4 (3)C55—O54—Gd1132.7 (2)
C11—C12—H12A109.5C55—O54—H54105 (3)
C11—C12—H12B109.5Gd1—O54—H54122 (3)
H12A—C12—H12B109.5O54—C55—C56111.0 (4)
C11—C12—H12C109.5O54—C55—H55A109.4
H12A—C12—H12C109.5C56—C55—H55A109.4
H12B—C12—H12C109.5O54—C55—H55B109.4
C30—O21—C22121.2 (3)C56—C55—H55B109.4
C24—O23—Gd1136.9 (2)H55A—C55—H55B108.0
C31—O24—Gd1140.6 (2)C55—C56—H56A109.5
O22—C22—O21113.0 (4)C55—C56—H56B109.5
O22—C22—C23127.8 (4)H56A—C56—H56B109.5
O21—C22—C23119.2 (3)C55—C56—H56C109.5
C24—C23—C22119.5 (3)H56A—C56—H56C109.5
C24—C23—C31119.8 (3)H56B—C56—H56C109.5
C22—C23—C31120.6 (3)C58—O57—H57113 (4)
O23—C24—C23124.7 (3)O57—C58—C59112.9 (7)
O23—C24—C25117.6 (3)O57—C58—H58A109.0
C23—C24—C25117.6 (3)C59—C58—H58A109.0
C30—C25—C26118.7 (4)O57—C58—H58B109.0
C30—C25—C24119.8 (3)C59—C58—H58B109.0
C26—C25—C24121.4 (4)H58A—C58—H58B107.8
C27—C26—C25120.2 (4)C58—C59—H59A109.5
C27—C26—H26119.9C58—C59—H59B109.5
C25—C26—H26119.9H59A—C59—H59B109.5
C28—C27—C26120.2 (4)C58—C59—H59C109.5
C28—C27—H27119.9H59A—C59—H59C109.5
C26—C27—H27119.9H59B—C59—H59C109.5
C10—O1—C2—O2176.4 (4)C25—C26—C27—C280.3 (7)
C10—O1—C2—C32.6 (6)C26—C27—C28—C290.1 (7)
O2—C2—C3—C4174.9 (4)C27—C28—C29—C300.2 (7)
O1—C2—C3—C43.9 (6)C26—C25—C30—O21178.7 (4)
O2—C2—C3—C115.9 (7)C24—C25—C30—O215.2 (6)
O1—C2—C3—C11175.3 (4)C26—C25—C30—C291.3 (6)
Gd1—O3—C4—C328.2 (6)C24—C25—C30—C29174.8 (4)
Gd1—O3—C4—C5151.8 (3)C22—O21—C30—C250.0 (5)
C2—C3—C4—O3176.2 (4)C22—O21—C30—C29179.9 (4)
C11—C3—C4—O34.5 (6)C28—C29—C30—C250.9 (6)
C2—C3—C4—C53.8 (5)C28—C29—C30—O21179.1 (4)
C11—C3—C4—C5175.4 (3)Gd1—O24—C31—C236.9 (7)
O3—C4—C5—C10177.6 (4)Gd1—O24—C31—C32171.6 (3)
C3—C4—C5—C102.5 (5)C24—C23—C31—O247.9 (6)
O3—C4—C5—C60.1 (6)C22—C23—C31—O24174.3 (4)
C3—C4—C5—C6179.9 (4)C24—C23—C31—C32173.8 (4)
C10—C5—C6—C70.2 (7)C22—C23—C31—C324.0 (6)
C4—C5—C6—C7177.8 (5)C50—O41—C42—O42173.5 (4)
C5—C6—C7—C80.4 (8)C50—O41—C42—C434.4 (5)
C6—C7—C8—C90.7 (9)O42—C42—C43—C44173.9 (4)
C7—C8—C9—C100.8 (9)O41—C42—C43—C443.6 (5)
C2—O1—C10—C51.3 (6)O42—C42—C43—C514.9 (6)
C2—O1—C10—C9177.9 (4)O41—C42—C43—C51177.5 (3)
C6—C5—C10—O1178.9 (4)Gd1—O43—C44—C431.5 (6)
C4—C5—C10—O11.2 (6)Gd1—O43—C44—C45177.1 (3)
C6—C5—C10—C90.2 (6)C42—C43—C44—O43177.3 (4)
C4—C5—C10—C9177.9 (4)C51—C43—C44—O431.5 (6)
C8—C9—C10—O1178.6 (5)C42—C43—C44—C451.3 (5)
C8—C9—C10—C50.5 (7)C51—C43—C44—C45179.9 (3)
Gd1—O4—C11—C319.3 (6)O43—C44—C45—C50179.1 (4)
Gd1—O4—C11—C12161.5 (3)C43—C44—C45—C500.5 (5)
C4—C3—C11—O48.5 (6)O43—C44—C45—C460.9 (6)
C2—C3—C11—O4172.3 (4)C43—C44—C45—C46177.8 (4)
C4—C3—C11—C12170.7 (4)C50—C45—C46—C470.4 (6)
C2—C3—C11—C128.6 (6)C44—C45—C46—C47177.9 (4)
C30—O21—C22—O22173.4 (4)C45—C46—C47—C480.6 (7)
C30—O21—C22—C238.0 (5)C46—C47—C48—C490.8 (8)
O22—C22—C23—C24170.9 (4)C47—C48—C49—C500.7 (8)
O21—C22—C23—C2410.8 (5)C42—O41—C50—C49175.6 (4)
O22—C22—C23—C316.9 (6)C42—O41—C50—C452.7 (6)
O21—C22—C23—C31171.4 (3)C48—C49—C50—O41178.6 (4)
Gd1—O23—C24—C2332.4 (6)C48—C49—C50—C450.4 (7)
Gd1—O23—C24—C25147.7 (3)C46—C45—C50—O41178.4 (4)
C22—C23—C24—O23174.1 (3)C44—C45—C50—O410.1 (6)
C31—C23—C24—O233.7 (6)C46—C45—C50—C490.3 (6)
C22—C23—C24—C255.8 (5)C44—C45—C50—C49178.0 (4)
C31—C23—C24—C25176.4 (3)Gd1—O44—C51—C4310.3 (6)
O23—C24—C25—C30178.0 (3)Gd1—O44—C51—C52168.2 (3)
C23—C24—C25—C302.1 (5)C44—C43—C51—O446.5 (6)
O23—C24—C25—C262.0 (5)C42—C43—C51—O44172.3 (3)
C23—C24—C25—C26178.1 (4)C44—C43—C51—C52171.9 (4)
C30—C25—C26—C271.0 (6)C42—C43—C51—C529.3 (5)
C24—C25—C26—C27175.0 (4)Gd1—O54—C55—C56114.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O53—H53A···O22i0.84 (2)2.01 (2)2.840 (4)169 (4)
O54—H54···O42ii0.85 (2)1.95 (2)2.768 (4)163 (5)
O53—H53B···O570.84 (2)1.80 (2)2.634 (4)173 (5)
O57—H57···O2iii0.84 (2)2.02 (5)2.740 (4)143 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Funding information

Funding for this research was provided by: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (grant No. IN 222615 to LG); Consejo Nacional de Ciencia y Tecnología (grant No. 268178).

References

First citationBejaoui, L., Rohlicek, J. & Ben Hassen, R. (2018). J. Mol. Struct. 1173, 574–582.  CSD CrossRef CAS Google Scholar
First citationGhouili, A., Brahmia, A. & Ben Hassen, R. (2015). Acta Cryst. C71, 873–877.  CSD CrossRef IUCr Journals Google Scholar
First citationGuzmán-Méndez, Ó., González, F., Bernès, S., Flores-Álamo, M., Ordóñez-Hernández, J., García-Ortega, H., Guerrero, J., Qian, W., Aliaga-Alcalde, N. & Gasque, L. (2018). Inorg. Chem. 57, 908–911.  PubMed Google Scholar
First citationIUPAC (2005). Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, edited by N. G. Connelly et al., pp. 175–178. RSC Publishing.  Google Scholar
First citationLyssenko, K. A. & Antipin, M. Yu. (2001). Russ. Chem. Bull. 50, 418–431.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManaev, A. V., Chibisova, T. A., Lyssenko, K. A., Antipin, M. Yu. & Traven', V. F. (2006). Russ. Chem. Bull. 55, 2091–2094.  CrossRef CAS Google Scholar
First citationMunshi, P. & Guru Row, T. N. (2006). Cryst. Growth Des. 6, 708–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105–1107.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTraven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Russ. J. Gen. Chem. 70, 798–808.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds