research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[μ3-(S)-2-amino-3-hy­droxy­propano­ato]-cis-di-μ-chlorido-caesium­palladium(II)]

CROSSMARK_Color_square_no_text.svg

aMark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia, and bDepartment of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
*Correspondence e-mail: alec.charlson@gmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 16 August 2017; accepted 9 November 2017; online 21 November 2017)

The structure of the title compound, [CsPd(C3H6NO3)Cl2]n, previously shown to have anti­cancer activity in rodent test systems and recently found to have anti­fungal activity, has been determined. The Pd centre is in a square-planar coordination environment with two chlorine atoms in cis positions and the remaining two coordination sites being coordinated by N and O atoms from deprotonated L-serine. Each of the Cs cations shows ninefold coordination with six chlorine and three O atoms resulting in a coordination environment that is similar to the well known Cs2SO4 structure. X-ray crystal structures of only three di­chlorido­palladium(II)–amino acid complexes have been determined so far and the present paper describes one of those.

1. Chemical context

The X-ray crystal structure of potassium-L-alaninato-di­chloro­platinate(II) has been published (Schiesser et al., 2012[Schiesser, S., Mayer, P., Carell, T. & Beck, W. (2012). Z. Naturforsch. Teil B, 67, 849-852.]). Two complexes of L-serine with palladium(II), bis(L-serinato) palladium(II) and caesium cis-di­chloro-L-serinato palladium(II), were synthesized (Charlson et al., 1981[Charlson, A. J., McArdle, N. T. & Watton, E. C. (1981). Inorg. Chim. Acta, 56, L35-L36.]) and an X-ray crystal structure determination of bis (L-serinato) palladium(II) has been performed (Vagg, 1979[Vagg, R. S. (1979). Acta Cryst. B35, 341-344.]). Previously it was shown that caesium cis-di­chloro-L-serinato palladium(II) produced filamentous growth in Escherichia coli (E.coli) bacteria (Charlson et al., 1981[Charlson, A. J., McArdle, N. T. & Watton, E. C. (1981). Inorg. Chim. Acta, 56, L35-L36.]), markedly modified the inter­ior of E.coli bacteria cells (McArdle et al., 1984[McArdle, N. T., Charlson, A. J., Shorey, C. D., Arnold, R. & Barker, N. (1984). Inorg. Chim. Acta, 92, 113-121.]), increased the lifespan of solid murine tumors Ca-755 and RShM-5 (Treschalina et al., 1994[Treschalina, H. M., Charlson, A. J., Shorland, W. A., Sedakova, L. A. & Firsova, G. A. (1994). Herald Cancer Res. Centre AMS Russia, 2, 28-32.]) and had radio-modifying properties (Treshalina et al., 1995[Treshalina, H. M., Krimker, V. M., Charlson, A. J. & Shorland, W. A. (1995). Azerbaijan J. Oncol. Relat. Sci. 1, 62-63.]). Recently it was found that caesium cis-di­chloro-serinato palladium(II) had anti­fungal activity in the Candida albicans and Cryptococcus neoformans test-systems and was non-cytotoxic against human kidney cells at the dose levels used (Elliott, 2016[Elliott, A. (2016). Personal communication. CO-ADD, University of Queensland, Australia.]). The anti­microbial screening was performed by CO–ADD (The Community for Anti­microbial Drug Discovery) funded by the Welcome Trust (UK) and the University of Queensland (Australia). In the publication describing the synthesis of caesium cis-di­chloro-L-serinato palladium(II), the empirical formula of the compound was deduced on the basis of the percentages of carbon, hydrogen, chlorine and nitro­gen that were obtained by micro analysis (Charlson et al., 1981[Charlson, A. J., McArdle, N. T. & Watton, E. C. (1981). Inorg. Chim. Acta, 56, L35-L36.]) The present X-ray crystal structure was performed in order to establish the mol­ecular and structural formulae of caesium cis-di­chloro-L-serinato palladium(II).

[Scheme 1]

2. Structural commentary

The palladium(II) serine complex ion shows a square-planar coordination of palladium with the two chloro ligands being in cis positions relative to each other and the remaining two coordination sites being coordinated by the nitro­gen atom (N1) and one of the carboxyl­ato oxygen atoms (O1) of the deprotonated amino acid L-serine. The view of the asymmetric unit is given in Fig. 1[link] and the ninefold coordination (three oxygen and six chlorine atoms) of caesium is shown in Fig. 2[link]. A summary of significant bond distances is given in Table 1[link]. The two Pd—Cl bonds are of slightly different bond length. The longer bond [Pd1—Cl1 = 2.305 (4) A] is trans to nitro­gen and the shorter one [Pd1—Cl2 = 2.287 (4) A] is trans to the oxygen atom. The same behaviour was observed in the structure of barium di­chloro­(glycinato) palladium(II)·2H2O (Baidina et al., 1980a[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119-125.]). The five membered ring Pd1–O1–C1–C2–N1 is planar with the hy­droxy­methyl substituent in a gauche–gauche orientation that is very similar with the conformation of one of the ligands in the structure of bis­(L-serinato) palladium(II) (Vagg, 1979[Vagg, R. S. (1979). Acta Cryst. B35, 341-344.]).

Table 1
Selected bond lengths (Å)

Cs1—Cs1i 4.421 (2) Cs1—O2 3.117 (10)
Cs1—Pd1ii 3.8755 (17) Cs1—O2vi 2.962 (10)
Cs1—Cl1iii 3.528 (4) Cs1—O3 3.349 (10)
Cs1—Cl1iv 3.572 (4) Cs1—C1 3.654 (15)
Cs1—Cl1ii 3.740 (4) Pd1—Cl1 2.305 (4)
Cs1—Cl1v 3.698 (4) Pd1—Cl2 2.287 (4)
Cs1—Cl2ii 3.510 (4) Pd1—O1 1.993 (9)
Cs1—Cl2v 3.901 (4) Pd1—N1 2.000 (12)
Symmetry codes: (i) -x+1, -y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (vi) x, y, z+1.
[Figure 1]
Figure 1
ORTEP representation of the asymmetric unit showing atom labelling (ellipsoids drawn at 50% probabilities).
[Figure 2]
Figure 2
Caesium coordination and packing of cations and anions in the unit cell.

3. Supra­molecular features

The cation and anion assembly, viewed along the twofold axis (the c axis) is shown in Fig. 3[link]. Chains of complex anions related by a 21 screw axis along the b axis link double rows of caesium cations (Fig. 4[link]). The caesium ions are bridged by chlorine atoms along and across the rows. The successful crystallization with larger Cs ions, which failed with smaller K ions, can be rationalized with this lattice arrangement. Larger cations with higher coordination capability can engage four mol­ecules of complex anions acting as a nucleator in forming the lattice much better compared to smaller cations such as Na or Li.

[Figure 3]
Figure 3
The cation and anion assembly viewed along the twofold axis (the c axis).
[Figure 4]
Figure 4
Chains of complex anions related by a 21 screw axis along the a axis linking double rows of caesium cations (blue spheres).

In the crystal, extensive O—H⋯O, N—H⋯Cl and C—H⋯O hydrogen bonds (Table 2[link], Fig. 5[link]) link the molecules, forming a two-dimensional network parallel to (010).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1iv 0.91 (1) 2.07 (2) 2.750 (14) 131 (3)
O3—H3⋯O2iv 0.91 (1) 2.60 (2) 3.479 (15) 163 (3)
N1—H1A⋯Cl2vii 0.91 2.62 3.471 (13) 156
N1—H1B⋯Cl2viii 0.91 2.51 3.388 (13) 163
C2—H2⋯O3vii 1.00 2.58 3.255 (19) 125
Symmetry codes: (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vii) x, y, z-1; (viii) -x+1, -y+1, z.
[Figure 5]
Figure 5
A view of the packing illustrating the hydrogen bonding (dashed lines; see Table 2[link]).

4. Database survey

The planarity of the chelate ring M–N–CH(R)–C–O is thought to be a relevant structural parameter in correlating biological activities and was examined in the structures of Pd (36 hits) and Pt (49 hits) complexes from the Cambridge Structural Database (CSD; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Version 1.19; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). However, there are very few structure determinations of Pd or Pt complexes with amino acids as the organic ligands, only five having been reported for Pt and three for Pd. Table 3[link] details these structures and their chelate ring geometry parameters in relation to their planarity. It appears from Table 3[link] that the planarity of the five-membered ring is dependent on the hybridization state of the carboxyl­ate moiety after it has coordinated to the metal ion. Thus longer C—O bonds (associated with shorter exocyclic ones) give rise to larger O—C—C—N torsion angles (and non-planarity), whereas more equal C—O bonds form planar five-membered rings. For example, structure ACEMEC (Schiesser et al., 2012[Schiesser, S., Mayer, P., Carell, T. & Beck, W. (2012). Z. Naturforsch. Teil B, 67, 849-852.]) has the highest torsion angle (25.85°) accompanied by a quite long C—O bond length (1.304 Å) whereas structure BAGLPD (Baidina et al., 1980a[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119-125.]) shows the smallest torsion angle (5.36°) together with a slightly shorter C—O bond length (1.284 Å). Irrespective of its causes (electronic factors during the complex formation), this parameter could be an important feature while modelling the inter­action of the complexes with DNA for biological activities.

Table 3
Mol­ecular geometry (Å, °) of the five-membered ring in MCl2 (amino acid) complexes with Pt and Pd

Data obtained from a search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

CCDC refcode Reference Structure C—O C=O C—C C—N O—C—C—N (τ)
ACEMEC Schiesser et al., (2012[Schiesser, S., Mayer, P., Carell, T. & Beck, W. (2012). Z. Naturforsch. Teil B, 67, 849-852.]) K[Pt(L-alaO)Cl2] 1.304 1.223 1.528 1.480 25.85
GAWYOS Bino et al., (1988[Bino, A., Cohen, S., Altman, J. & Wilchek, M. (1988). Inorg. Chim. Acta, 147, 99-102.]) [PtCl2(N,O-Dap)] 1.313 1.232 1.543 1.499 19.44
GAWYUY Bino et al., (1988[Bino, A., Cohen, S., Altman, J. & Wilchek, M. (1988). Inorg. Chim. Acta, 147, 99-102.]) [PtCl2(N,O-Lys)]·H2O 1.300 1.219 1.500 1.557 13.66
GAWYPS Bino et al., (1988[Bino, A., Cohen, S., Altman, J. & Wilchek, M. (1988). Inorg. Chim. Acta, 147, 99-102.]) [PtCl2(N,O-Lys)]·H2O 1.315 1.227 1.457 1.436 15.72
KCGLPD Baidina et al., (1980b[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980b). Zh. Strukt. Khim. 21, 198-203.]) K[Pd(Gly)Cl2]·H2O 1.285 1.216 1.518 1.490 11.74
BAGLPD Baidina et al., (1980a[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119-125.]) Ba[Pd(Gly)Cl2]·2H2O 1.268 1.194 1.526 1.484 −13.69
BAGLPD Baidina et al., (1980a[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119-125.]) Ba[Pd(Gly)Cl2]·2H2O 1.284 1.233 1.503 1.507 5.36

5. Biological considerations

Caesium cis-di­chloro-L-serinato platinum(II) has been shown to increase the lifespan of P-388 leukemic mice. It also has anti-tumor activity in the MBG5 Supernal Capsule MX-1 mammary carcinoma xenograph mouse test-system (Charlson & Shorland, 1984[Charlson, A. J. & Shorland, W. A. (1984). Inorg. Chim. Acta, 93, L67-L68.]). An X-ray crystal structure determination of caesium cis-di­chloro-L-serinato platinum(II) has not been performed. Since caesium cis-di­chloro-L-serinato platinum(II) and caesium cis-di­chloro-L-serinato palladium(II) both show anti­cancer activity in mouse test-systems, it may be anti­cipated that the platinum(II) complex also has a planar five-membered ring system. Recently, there has been a report on the structure of potassium (2-amino-3-hy­droxy­propano­ato)di­chloro­platinum(II) (Fabbiani et al., 2015[Fabbiani, F., Sadler, P. & Zobi, F. (2015). Private communication (refcode 1413050). CCDC, Cambridge, England.]) in which one mol­ecule has a planar ring. Potassium cis-di­chloro-glycinato platinum(II) has also been shown to increase the lifespan of P-388 leukemic mice (Charlson & Shorland, 1984[Charlson, A. J. & Shorland, W. A. (1984). Inorg. Chim. Acta, 93, L67-L68.]). Therefore the hydroxyl group in caesium cis-di­chloro-L-serinato platinum(II) plays little or no part in the anti-tumor activity shown by this complex. In the publication by Schiesser et al. (2012[Schiesser, S., Mayer, P., Carell, T. & Beck, W. (2012). Z. Naturforsch. Teil B, 67, 849-852.]), the authors mentioned that some platinum(II) complexes with amino acid ligands showed moderate cytotoxicity toward tumor cells. However, they did not mention whether potassium-L-alaninato-di­chloro platinum(II) has been tested or not in any of the rodent test-systems. It should also be mentioned that potassium cis-di­chloro­glycinato platinum(II) and caesium cis-di­chloro-L-serinato platinum(II) have not been screened for possible anti­fungal activity. The X-ray crystal structure of bis­(phenyl­glycinato)palladium(II) containing two mol­ecules of dimethyl sulfoxide has been determined (Gao et al., 2009[Gao, E., Wu, Q., Wang, C., Zhu, M., Wang, L., Liu, H., Huang, Y. & Sun, Y. (2009). J. Coord. Chem. 62, 3425-3437.]). These authors also synthesized bis­(phenyl­glycinato)platinum(II), which also contains two mol­ecules of dimethyl sulfoxide, and showed that this platinum complex had a stronger binding affinity to fish-sperm DNA than the corres­ponding palladium complex. Both complexes added to DNA by a strong inter­calating mode and both complexes could cleave pBR 332plasmid DNA. (A plasmid is a small DNA mol­ecule within a cell that is physically separated from chromo­somal DNA and replicates independently. Plasmids are commonly found in bacteria as circular double-stranded DNA. Plasmid DNA can also be found in fungi and higher plants.) The palladium and platinum complexes are also cytotoxic to HeLa, Hep-G2, KB, and AGZY-83a tumor cells, with the platinum complex being more effective than the palladium complex. X-ray crystal structures have been reported for the palladium(II) complexes of glycine with 2,2′-bi­pyridine, 1,10-phenathroline or 2,2′-bi­pyridyl­amine with chloride counter-ions (Yodoshi & Okabe, 2008[Yodoshi, M. & Okabe, N. (2008). Chem. Pharm. Bull. 56, 908-914.]). Each of the complexes was shown to be capable of inter­calative binding to calf thymus DNA and could enhance the cleavage of pBR 332 plasmid DNA in the presence of hydrogen peroxide and ascorbic acid (Yodoshi & Okabi, 2008) . Small mol­ecules can inter­calate DNA by fitting in between base pairs in the two different DNA strands. Generally these mol­ecules are planar or nearly planar. In the case of the palladium(II) complex with glycine and bi­pyridine, the central palladium(II) atom has a distorted square-planar geometry. Furthermore, the two five-membered rings formed by the bi­pyridine and the glycine ligands are almost planar and the two pyridine rings are planar (Yodoshi & Okabe, 2008[Yodoshi, M. & Okabe, N. (2008). Chem. Pharm. Bull. 56, 908-914.]).

6. Synthesis and crystallization

Poly{caesium [cis-di­chloro-(S-2-amino-3-hy­droxy­propano­ate-κ2N,O)palladate(II)]} was synthesized by a previously described method (Charlson et al., 1981[Charlson, A. J., McArdle, N. T. & Watton, E. C. (1981). Inorg. Chim. Acta, 56, L35-L36.]). Using a procedure similar to the method described for the synthesis of potassium-L-alaninato-di­chloro­platinum(II) (Ley & Ficken, 1912[Ley, H. & Ficken, F. (1912). Ber. Dtsch. Chem. Ges. 45, 377-382.]), a crude amorphous sample of potassium cis-di­chloro-L-serinato palladium(II) was obtained. Therefore, the potassium salt was converted by a known method (Cleare, 1977[Cleare, M. J. (1977). SAE J.-Automot. Eng. Tech. Pap. 1, 770061.]) into crystalline caesium cis-di­chloro-L-serinato palladium(II), which could be purified by recrystallization from water. In a typical preparation, a solution of L-serine (2.1 g) and potassium tetra­chloro­palladate(II) (3.2 g) in water (60 mL) was heated for 3h under reflux on a boiling water bath. Absolute ethanol (450 mL) was added to the filtered reaction mixture and the light-orange precipitate (1.7 g) was filtered off. This potassium salt of the palladium L-serine complex was reprecipitated from water (10 mL) with ethanol (40 mL). Small qu­anti­ties of solid caesium chloride were added to a stirred solution of the potassium salt (1.5 g) in water (10 mL) until the solution became dark red. A brick-shaped red crystalline caesium salt (1.2 g) was obtained by keeping this solution for 24 h at 278 K. The caesium complex was purified by two recrystallizations from water (yield 0.2 g). Analysis found: C, 8.83; H, 1.55; Cl, 17.2; N, 3.43. Calculated for C3H6Cl2NO3PdCs: C, 8.70; H, 1.46; Cl, 17.1; N, 3.38%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically with d(N—H) = 0.91 Å, for Csp3—H, d(C—H) = 0.99 Å and (O—H) = 0.87 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Table 4
Experimental details

Crystal data
Chemical formula [CsPd(C3H6NO3)Cl2]
Mr 414.30
Crystal system, space group Orthorhombic, P21212
Temperature (K) 150
a, b, c (Å) 11.594 (4), 17.072 (5), 4.4739 (12)
V3) 885.6 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.71
Crystal size (mm) 0.08 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.499, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5126, 1546, 1212
Rint 0.125
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 0.83
No. of reflections 1546
No. of parameters 91
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.64, −1.24
Absolute structure Flack x determined using 375 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (5)
Computer programs: APEX2 and SAINT (Bruker, 2016[Baidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119-125.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[µ3-(S)-2-amino-3-hydroxypropanoato]-cis-di-µ-chlorido-caesiumpalladium(II)] top
Crystal data top
[CsPd(C3H6NO3)Cl2]Dx = 3.107 Mg m3
Mr = 414.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 360 reflections
a = 11.594 (4) Åθ = 2.4–20.1°
b = 17.072 (5) ŵ = 6.71 mm1
c = 4.4739 (12) ÅT = 150 K
V = 885.6 (5) Å3Plate, light yellow
Z = 40.08 × 0.07 × 0.03 mm
F(000) = 760
Data collection top
Bruker APEXII CCD
diffractometer
1212 reflections with I > 2σ(I)
φ and ω scansRint = 0.125
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.499, Tmax = 0.746h = 1313
5126 measured reflectionsk = 2016
1546 independent reflectionsl = 53
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 0.83Δρmax = 1.64 e Å3
1546 reflectionsΔρmin = 1.24 e Å3
91 parametersAbsolute structure: Flack x determined using 375 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
13 restraintsAbsolute structure parameter: 0.02 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.38524 (10)0.10339 (5)0.6704 (2)0.0179 (3)
Pd10.28780 (11)0.41984 (6)0.5719 (2)0.0097 (3)
Cl10.1180 (4)0.4294 (2)0.8375 (9)0.0184 (9)
Cl20.3493 (4)0.5375 (2)0.7574 (8)0.0164 (10)
O10.2471 (9)0.3141 (6)0.415 (2)0.016 (3)
O20.3137 (9)0.2136 (6)0.147 (2)0.020 (3)
O30.5412 (9)0.2649 (6)0.538 (2)0.016 (2)
H30.6175 (15)0.2695 (16)0.579 (8)0.024*
N10.4279 (10)0.4068 (7)0.316 (3)0.014 (2)
H1A0.4301530.4460080.1781950.017*
H1B0.4920810.4107580.4318820.017*
C10.3228 (14)0.2811 (9)0.245 (3)0.012 (4)
C20.4286 (13)0.3293 (8)0.158 (4)0.014 (2)
H20.4247820.3395380.0618970.017*
C30.5389 (14)0.2847 (9)0.222 (3)0.016 (2)
H3A0.5416360.2364000.0994940.019*
H3B0.6065680.3173870.1701550.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0240 (7)0.0163 (5)0.0134 (5)0.0002 (5)0.0022 (5)0.0020 (4)
Pd10.0094 (7)0.0098 (6)0.0097 (6)0.0012 (6)0.0003 (6)0.0000 (5)
Cl10.015 (2)0.0202 (19)0.020 (2)0.001 (2)0.003 (2)0.0022 (17)
Cl20.016 (3)0.0124 (19)0.021 (3)0.0018 (19)0.0006 (18)0.0039 (15)
O10.009 (6)0.015 (5)0.025 (7)0.003 (5)0.011 (5)0.005 (5)
O20.024 (8)0.013 (5)0.024 (6)0.001 (5)0.010 (6)0.003 (5)
O30.010 (5)0.022 (5)0.016 (5)0.002 (4)0.000 (4)0.002 (4)
N10.008 (5)0.018 (5)0.017 (6)0.002 (4)0.004 (5)0.001 (5)
C10.008 (9)0.021 (9)0.007 (9)0.001 (7)0.005 (6)0.003 (6)
C20.008 (5)0.018 (5)0.017 (6)0.002 (4)0.004 (5)0.001 (5)
C30.010 (5)0.022 (5)0.016 (5)0.002 (4)0.000 (4)0.002 (4)
Geometric parameters (Å, º) top
Cs1—Cs1i4.421 (2)Pd1—O11.993 (9)
Cs1—Pd1ii3.8755 (17)Pd1—N12.000 (12)
Cs1—Cl1iii3.528 (4)O1—C11.291 (17)
Cs1—Cl1iv3.572 (4)O2—C11.238 (18)
Cs1—Cl1ii3.740 (4)O3—H30.907 (12)
Cs1—Cl1v3.698 (4)O3—C31.458 (18)
Cs1—Cl2ii3.510 (4)N1—H1A0.9100
Cs1—Cl2v3.901 (4)N1—H1B0.9100
Cs1—O23.117 (10)N1—C21.500 (17)
Cs1—O2vi2.962 (10)C1—C21.53 (2)
Cs1—O33.349 (10)C2—H21.0000
Cs1—C13.654 (15)C2—C31.52 (2)
Pd1—Cl12.305 (4)C3—H3A0.9900
Pd1—Cl22.287 (4)C3—H3B0.9900
Pd1ii—Cs1—Cs1i70.48 (4)O3—Cs1—C148.1 (3)
Pd1ii—Cs1—Cl2v65.76 (6)C1—Cs1—Cs1i141.5 (2)
Cl1v—Cs1—Cs1i50.56 (7)C1—Cs1—Pd1ii115.0 (2)
Cl1iii—Cs1—Cs1i54.04 (6)C1—Cs1—Cl1ii109.9 (2)
Cl1iv—Cs1—Cs1i54.55 (6)C1—Cs1—Cl1v167.2 (3)
Cl1ii—Cs1—Cs1i51.09 (7)C1—Cs1—Cl2v116.3 (3)
Cl1iv—Cs1—Pd1ii94.97 (7)Cl1—Pd1—Cs1vii69.20 (10)
Cl1iii—Cs1—Pd1ii116.25 (7)Cl2—Pd1—Cs1vii63.44 (11)
Cl1ii—Cs1—Pd1ii35.18 (7)Cl2—Pd1—Cl190.97 (14)
Cl1v—Cs1—Pd1ii60.77 (7)O1—Pd1—Cs1vii120.7 (3)
Cl1iii—Cs1—Cl1v60.58 (12)O1—Pd1—Cl192.5 (3)
Cl1iii—Cs1—Cl1iv78.11 (9)O1—Pd1—Cl2175.4 (3)
Cl1iv—Cs1—Cl1v105.11 (6)O1—Pd1—N183.7 (4)
Cl1iii—Cs1—Cl1ii105.13 (6)N1—Pd1—Cs1vii110.5 (3)
Cl1v—Cs1—Cl1ii73.95 (7)N1—Pd1—Cl1175.3 (4)
Cl1iv—Cs1—Cl1ii59.79 (11)N1—Pd1—Cl293.0 (3)
Cl1iii—Cs1—Cl2v94.47 (10)Cs1viii—Cl1—Cs1ix119.79 (11)
Cl1v—Cs1—Cl2v50.97 (8)Cs1x—Cl1—Cs1ix75.40 (8)
Cl1ii—Cs1—Cl2v99.35 (9)Cs1ix—Cl1—Cs1vii73.95 (7)
Cl1iv—Cs1—Cl2v154.03 (9)Cs1x—Cl1—Cs1vii119.82 (11)
Cl1iii—Cs1—C1127.5 (3)Cs1viii—Cl1—Cs1vii74.36 (8)
Cl1iv—Cs1—C187.0 (3)Cs1x—Cl1—Cs1viii78.11 (9)
Cl2v—Cs1—Cs1i100.91 (6)Pd1—Cl1—Cs1vii75.62 (10)
Cl2ii—Cs1—Cs1i102.14 (7)Pd1—Cl1—Cs1viii107.83 (14)
Cl2ii—Cs1—Pd1ii35.65 (6)Pd1—Cl1—Cs1x164.55 (15)
Cl2ii—Cs1—Cl1iii151.89 (9)Pd1—Cl1—Cs1ix111.88 (14)
Cl2ii—Cs1—Cl1v93.39 (9)Cs1vii—Cl2—Cs1ix74.06 (8)
Cl2ii—Cs1—Cl1ii53.58 (9)Pd1—Cl2—Cs1ix105.91 (14)
Cl2ii—Cs1—Cl1iv100.86 (10)Pd1—Cl2—Cs1vii80.92 (12)
Cl2ii—Cs1—Cl2v74.06 (8)C1—O1—Pd1116.2 (9)
Cl2ii—Cs1—C180.1 (3)Cs1xi—O2—Cs194.8 (3)
O2—Cs1—Cs1i129.96 (19)C1—O2—Cs1xi145.3 (10)
O2vi—Cs1—Cs1i132.5 (2)C1—O2—Cs1105.8 (9)
O2vi—Cs1—Pd1ii124.7 (2)Cs1—O3—H3124.3 (19)
O2—Cs1—Pd1ii98.06 (19)C3—O3—Cs1110.7 (8)
O2vi—Cs1—Cl1iii82.3 (2)C3—O3—H3101 (2)
O2—Cs1—Cl1ii91.2 (2)Pd1—N1—H1A109.2
O2—Cs1—Cl1iv79.5 (2)Pd1—N1—H1B109.2
O2—Cs1—Cl1v158.4 (2)H1A—N1—H1B107.9
O2vi—Cs1—Cl1ii159.9 (2)C2—N1—Pd1111.9 (9)
O2—Cs1—Cl1iii140.2 (2)C2—N1—H1A109.2
O2vi—Cs1—Cl1v94.5 (2)C2—N1—H1B109.2
O2vi—Cs1—Cl1iv140.3 (2)O1—C1—Cs1101.0 (8)
O2vi—Cs1—Cl2ii112.3 (2)O1—C1—C2117.5 (13)
O2—Cs1—Cl2v118.8 (2)O2—C1—Cs155.1 (8)
O2—Cs1—Cl2ii65.0 (2)O2—C1—O1123.8 (15)
O2vi—Cs1—Cl2v61.0 (2)O2—C1—C2118.7 (14)
O2vi—Cs1—O294.8 (3)C2—C1—Cs1114.9 (9)
O2—Cs1—O360.9 (3)N1—C2—C1110.5 (13)
O2vi—Cs1—O375.8 (3)N1—C2—H2108.0
O2—Cs1—C119.0 (3)N1—C2—C3111.1 (12)
O2vi—Cs1—C178.0 (3)C1—C2—H2108.0
O3—Cs1—Cs1i109.42 (18)C3—C2—C1111.0 (13)
O3—Cs1—Pd1ii153.60 (18)C3—C2—H2108.0
O3—Cs1—Cl1iii80.07 (19)O3—C3—C2108.4 (14)
O3—Cs1—Cl1ii123.52 (19)O3—C3—H3A110.0
O3—Cs1—Cl1iv66.99 (18)O3—C3—H3B110.0
O3—Cs1—Cl1v140.51 (19)C2—C3—H3A110.0
O3—Cs1—Cl2v136.84 (18)C2—C3—H3B110.0
O3—Cs1—Cl2ii125.87 (19)H3A—C3—H3B108.4
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+2; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x1/2, y+1/2, z+1; (ix) x+1/2, y+1/2, z+2; (x) x1/2, y+1/2, z+2; (xi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1iv0.91 (1)2.07 (2)2.750 (14)131 (3)
O3—H3···O2iv0.91 (1)2.60 (2)3.479 (15)163 (3)
N1—H1A···Cl2xi0.912.623.471 (13)156
N1—H1B···Cl2xii0.912.513.388 (13)163
C2—H2···O3xi1.002.583.255 (19)125
Symmetry codes: (iv) x+1/2, y+1/2, z+1; (xi) x, y, z1; (xii) x+1, y+1, z.
Molecular geometry (Å, °) of the five-membered ring in MCl2 (amino acid) complexes with Pt and Pd top
Data obtained from a search of the CSD (Groom et al., 2016).
CCDC refcodeReferenceStructureC—OCOC—CC—NO—C—C—N (τ)
ACEMECSchiesser et al., (2012)K[Pt(L-alaO)Cl2]1.3041.2231.5281.48025.85
GAWYOSBino et al., (1988)[PtCl2(N,O-Dap)]1.3131.2321.5431.49919.44
GAWYUYBino et al., (1988)[PtCl2(N,O-Lys)]·H2O1.3001.2191.5001.55713.66
GAWYPSBino et al., (1988)[PtCl2(N,O-Lys)]·H2O1.3151.2271.4571.43615.72
KCGLPDBaidina et al., (1980b)K[Pd (Gly) Cl2]·H2O1.2851.2161.5181.49011.74
BAGLPDBaidina et al., (1980a)Ba[Pd (Gly) Cl2]·2H2O1.2681.1941.5261.484-13.69
BAGLPDBaidina et al., (1980a)Ba[Pd (Gly) Cl2]·2H2O1.2841.2331.5031.5075.36
 

Acknowledgements

We thank the Johnson and Matthey Company in Reading, England, for supplying the potassium tetra­chloro­palladate(II) that was used in the preparation of caesium cis-di­chloro-L-serinatopalladium(II) on their loan scheme. We also thank Dr Alysha Elliott from the CO-ADD of the University of Queensland for giving us the results of the anti­fungal testing and Dr Andrew Piggott of the Department of Chemistry and Biological Sciences for taking an inter­est in this work. In addition, we thank Dr Christopher Marjo, Head of the Division (SSEAU), Mark Wainwright Analytical Centre, UNSW for his encouragement and support.

References

First citationBaidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980a). Zh. Strukt. Khim. 21, 119–125.  CAS
First citationBaidina, I. A., Podberezskaya, N. V. & Borisov, S. V. (1980b). Zh. Strukt. Khim. 21, 198–203.  CAS
First citationBino, A., Cohen, S., Altman, J. & Wilchek, M. (1988). Inorg. Chim. Acta, 147, 99–102.  CSD CrossRef CAS
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals
First citationCharlson, A. J., McArdle, N. T. & Watton, E. C. (1981). Inorg. Chim. Acta, 56, L35–L36.  CrossRef CAS
First citationCharlson, A. J. & Shorland, W. A. (1984). Inorg. Chim. Acta, 93, L67–L68.  CrossRef CAS
First citationCleare, M. J. (1977). SAE J.-Automot. Eng. Tech. Pap. 1, 770061.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationElliott, A. (2016). Personal communication. CO–ADD, University of Queensland, Australia.
First citationFabbiani, F., Sadler, P. & Zobi, F. (2015). Private communication (refcode 1413050). CCDC, Cambridge, England.
First citationGao, E., Wu, Q., Wang, C., Zhu, M., Wang, L., Liu, H., Huang, Y. & Sun, Y. (2009). J. Coord. Chem. 62, 3425–3437.  CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationLey, H. & Ficken, F. (1912). Ber. Dtsch. Chem. Ges. 45, 377–382.  CrossRef CAS
First citationMcArdle, N. T., Charlson, A. J., Shorey, C. D., Arnold, R. & Barker, N. (1984). Inorg. Chim. Acta, 92, 113–121.  CrossRef CAS
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals
First citationSchiesser, S., Mayer, P., Carell, T. & Beck, W. (2012). Z. Naturforsch. Teil B, 67, 849–852.  CAS
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTreschalina, H. M., Charlson, A. J., Shorland, W. A., Sedakova, L. A. & Firsova, G. A. (1994). Herald Cancer Res. Centre AMS Russia, 2, 28–32.
First citationTreshalina, H. M., Krimker, V. M., Charlson, A. J. & Shorland, W. A. (1995). Azerbaijan J. Oncol. Relat. Sci. 1, 62–63.
First citationVagg, R. S. (1979). Acta Cryst. B35, 341–344.  CSD CrossRef CAS IUCr Journals Web of Science
First citationYodoshi, M. & Okabe, N. (2008). Chem. Pharm. Bull. 56, 908–914.  CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds