organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1H-Indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: l_bouissane@yahoo.fr

(Received 11 October 2013; accepted 21 October 2013; online 26 October 2013)

In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene­sulfonamide moiety. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010).

Related literature

For the pharmacological activity of selected sulfonamide derivatives, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Smith & Jones (2008[Smith, D. A. & Jones, R. M. (2008). Curr. Opin. Drug Discov. Devel. 11, 72-79.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]). For similar compounds, see: Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3S

  • Mr = 303.33

  • Monoclinic, P 21 /c

  • a = 8.9996 (4) Å

  • b = 7.1999 (3) Å

  • c = 21.3728 (10) Å

  • β = 91.794 (3)°

  • V = 1384.20 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.41 × 0.36 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.954

  • 14415 measured reflections

  • 3059 independent reflections

  • 2234 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.05

  • 3059 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 2.07 2.956 (2) 168
N3—H3N⋯O2ii 0.77 2.23 2.998 (2) 172
C6—H6⋯O2i 0.93 2.52 3.381 (2) 155
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Smith & Jones, 2008; Scozzafava et al., 2003). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012, 2013; Bouissane et al., 2006; Chicha et al., 2013).

The molecule of the title compound is built up from two fused five- and six-membered rings (N1/N2/C1 to C7) linked to the 4-methoxybenzenesulfonamide group, as shown in Fig. 1. The fused ring system is almost planar, with the maximum deviation of -0.023 (2) Å arising from atom C1. Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the benzene ring (C8 to C13) is 47.92 (10)°.

In the crystal, molecules are connected through N—H···O hydrogen bonds and weak C—H···O contacts, forming a two-dimensional network nearly parallel to (0 1 0) as shown in Fig.2 and Table 1.

Related literature top

For the pharmacological activity of selected sulfonamide derivatives, see: El-Sayed et al. (2011); Smith & Jones (2008); Scozzafava et al. (2003). For similar compounds, see: Bouissane et al. (2006); Abbassi et al. (2012, 2013); Chicha et al. (2013).

Experimental top

A mixture of 5-nitroindazole (216 mg, 1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: hexane 2:8, yield: 54%, m.p.: 437 K). The title compound was recrystallized from ethanol.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.93 Å, and N–H = 0.89 Å for methyl, aromatic CH and NH, respectively. Thermal parameters for hydrogen atoms were refined as Uiso(H) = 1.2 Ueq(C) (aromatic CH, NH) and Uiso(H) = 1.5 Ueq(C) for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing N1–H1N···O1, N3–H3N···O2 and C6–H6···O2 hydrogen bonds as dashed lines.
N-(1H-Indazol-5-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C14H13N3O3SF(000) = 632
Mr = 303.33Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3059 reflections
a = 8.9996 (4) Åθ = 2.3–27.1°
b = 7.1999 (3) ŵ = 0.25 mm1
c = 21.3728 (10) ÅT = 296 K
β = 91.794 (3)°Block, colourless
V = 1384.20 (11) Å30.41 × 0.36 × 0.27 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
3059 independent reflections
Radiation source: fine-focus sealed tube2234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.912, Tmax = 0.954k = 97
14415 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3443P]
where P = (Fo2 + 2Fc2)/3
3059 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H13N3O3SV = 1384.20 (11) Å3
Mr = 303.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9996 (4) ŵ = 0.25 mm1
b = 7.1999 (3) ÅT = 296 K
c = 21.3728 (10) Å0.41 × 0.36 × 0.27 mm
β = 91.794 (3)°
Data collection top
Bruker X8 APEX
diffractometer
3059 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2234 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.954Rint = 0.039
14415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3059 reflectionsΔρmin = 0.32 e Å3
192 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4773 (2)0.7356 (3)0.10971 (11)0.0511 (5)
H10.42120.84160.11670.061*
C20.4174 (2)0.5666 (3)0.08594 (9)0.0393 (4)
C30.2770 (2)0.5028 (3)0.06477 (9)0.0418 (5)
H30.19470.58100.06380.050*
C40.26542 (19)0.3211 (3)0.04565 (9)0.0375 (4)
C50.3905 (2)0.2042 (3)0.04520 (10)0.0432 (5)
H50.37860.08190.03200.052*
C60.5286 (2)0.2648 (3)0.06360 (10)0.0468 (5)
H60.61120.18740.06240.056*
C70.5405 (2)0.4478 (3)0.08428 (9)0.0399 (4)
C80.0730 (2)0.0780 (3)0.13810 (10)0.0443 (5)
C90.0520 (3)0.1113 (3)0.13918 (12)0.0564 (6)
H90.00860.16820.10880.068*
C100.1216 (3)0.2164 (3)0.18576 (12)0.0631 (6)
H100.10680.34420.18720.076*
C110.2130 (3)0.1310 (4)0.23000 (11)0.0658 (7)
C120.2318 (4)0.0582 (4)0.22939 (12)0.0789 (8)
H120.29130.11540.26010.095*
C130.1630 (3)0.1618 (3)0.18373 (11)0.0649 (7)
H130.17650.28990.18310.078*
C140.2942 (4)0.4178 (4)0.27574 (15)0.0991 (11)
H14A0.35280.46200.31100.149*
H14B0.33750.45940.23770.149*
H14C0.19480.46530.27790.149*
N10.65971 (18)0.5491 (3)0.10488 (8)0.0496 (4)
H1N0.75530.51500.10820.073 (8)*
N20.6220 (2)0.7245 (3)0.12066 (9)0.0543 (5)
N30.12368 (17)0.2461 (2)0.02574 (8)0.0442 (4)
H3N0.12790.15870.00470.049 (7)*
O10.03673 (15)0.3928 (2)0.10350 (8)0.0574 (4)
O20.11991 (14)0.1127 (2)0.04547 (8)0.0589 (4)
O30.2906 (3)0.2221 (3)0.27662 (9)0.1019 (8)
S10.00356 (5)0.21505 (7)0.07747 (3)0.04454 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0589 (13)0.0394 (11)0.0548 (14)0.0011 (10)0.0028 (10)0.0053 (10)
C20.0456 (10)0.0356 (10)0.0365 (10)0.0006 (8)0.0010 (8)0.0011 (8)
C30.0415 (10)0.0377 (11)0.0459 (11)0.0054 (8)0.0026 (8)0.0007 (9)
C40.0389 (9)0.0398 (11)0.0339 (10)0.0002 (8)0.0002 (7)0.0013 (8)
C50.0469 (10)0.0358 (10)0.0468 (12)0.0034 (8)0.0020 (9)0.0047 (9)
C60.0400 (10)0.0464 (12)0.0542 (13)0.0079 (9)0.0020 (9)0.0065 (10)
C70.0389 (9)0.0454 (11)0.0354 (10)0.0010 (8)0.0009 (8)0.0005 (8)
C80.0443 (10)0.0438 (12)0.0451 (12)0.0001 (9)0.0055 (9)0.0046 (9)
C90.0622 (13)0.0440 (13)0.0630 (15)0.0017 (10)0.0010 (11)0.0081 (11)
C100.0843 (17)0.0379 (12)0.0674 (17)0.0027 (12)0.0079 (13)0.0046 (11)
C110.0959 (18)0.0586 (16)0.0429 (14)0.0103 (14)0.0008 (12)0.0005 (11)
C120.123 (2)0.0618 (17)0.0505 (15)0.0090 (16)0.0227 (15)0.0034 (12)
C130.0962 (18)0.0471 (13)0.0505 (14)0.0087 (13)0.0114 (13)0.0016 (11)
C140.154 (3)0.0627 (19)0.080 (2)0.0185 (19)0.006 (2)0.0124 (16)
N10.0429 (9)0.0535 (11)0.0522 (11)0.0027 (8)0.0032 (8)0.0073 (8)
N20.0598 (11)0.0472 (11)0.0554 (11)0.0070 (9)0.0059 (9)0.0075 (9)
N30.0425 (9)0.0444 (10)0.0452 (10)0.0006 (7)0.0059 (7)0.0074 (8)
O10.0471 (8)0.0472 (9)0.0780 (11)0.0083 (7)0.0036 (7)0.0120 (8)
O20.0357 (7)0.0605 (10)0.0797 (11)0.0009 (7)0.0091 (7)0.0128 (8)
O30.179 (2)0.0620 (12)0.0623 (13)0.0153 (13)0.0334 (14)0.0025 (10)
S10.0340 (2)0.0421 (3)0.0572 (3)0.0021 (2)0.0027 (2)0.0070 (2)
Geometric parameters (Å, º) top
C1—N21.319 (3)C9—H90.9300
C1—C21.418 (3)C10—C111.378 (3)
C1—H10.9300C10—H100.9300
C2—C71.401 (3)C11—O31.366 (3)
C2—C31.406 (3)C11—C121.373 (4)
C3—C41.374 (3)C12—C131.362 (3)
C3—H30.9300C12—H120.9300
C4—C51.405 (3)C13—H130.9300
C4—N31.437 (2)C14—O31.410 (3)
C5—C61.364 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.393 (3)C14—H14C0.9600
C6—H60.9300N1—N21.353 (2)
C7—N11.359 (2)N1—H1N0.8951
C8—C91.376 (3)N3—S11.6319 (18)
C8—C131.387 (3)N3—H3N0.7745
C8—S11.753 (2)O1—S11.4306 (15)
C9—C101.385 (3)O2—S11.4361 (14)
N2—C1—C2111.95 (19)O3—C11—C12115.0 (2)
N2—C1—H1124.0O3—C11—C10124.5 (2)
C2—C1—H1124.0C12—C11—C10120.5 (2)
C7—C2—C3119.72 (17)C13—C12—C11119.8 (2)
C7—C2—C1103.96 (17)C13—C12—H12120.1
C3—C2—C1136.31 (19)C11—C12—H12120.1
C4—C3—C2117.75 (17)C12—C13—C8120.5 (2)
C4—C3—H3121.1C12—C13—H13119.7
C2—C3—H3121.1C8—C13—H13119.7
C3—C4—C5121.28 (17)O3—C14—H14A109.5
C3—C4—N3120.26 (16)O3—C14—H14B109.5
C5—C4—N3118.46 (17)H14A—C14—H14B109.5
C6—C5—C4121.96 (18)O3—C14—H14C109.5
C6—C5—H5119.0H14A—C14—H14C109.5
C4—C5—H5119.0H14B—C14—H14C109.5
C5—C6—C7117.02 (18)N2—N1—C7112.33 (17)
C5—C6—H6121.5N2—N1—H1N118.9
C7—C6—H6121.5C7—N1—H1N128.8
N1—C7—C6131.46 (18)C1—N2—N1105.43 (17)
N1—C7—C2106.32 (17)C4—N3—S1119.08 (13)
C6—C7—C2122.21 (17)C4—N3—H3N114.7
C9—C8—C13119.8 (2)S1—N3—H3N109.3
C9—C8—S1121.26 (17)C11—O3—C14118.8 (2)
C13—C8—S1118.83 (17)O1—S1—O2119.10 (9)
C8—C9—C10119.6 (2)O1—S1—N3107.47 (10)
C8—C9—H9120.2O2—S1—N3105.32 (9)
C10—C9—H9120.2O1—S1—C8107.36 (10)
C11—C10—C9119.7 (2)O2—S1—C8109.09 (10)
C11—C10—H10120.1N3—S1—C8108.06 (9)
C9—C10—H10120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.902.072.956 (2)168
N3—H3N···O2ii0.772.232.998 (2)172
C6—H6···O2i0.932.523.381 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.902.072.956 (2)168.2
N3—H3N···O2ii0.772.232.998 (2)171.7
C6—H6···O2i0.932.523.381 (2)154.9
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pffeifer, P., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, D. A. & Jones, R. M. (2008). Curr. Opin. Drug Discov. Devel. 11, 72–79.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds