organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Methyl­phen­yl)-5-(quinolin-8-yl­meth­­oxy)-1,2,4-oxa­diazole monohydrate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 3 April 2013; accepted 5 September 2013; online 12 September 2013)

In the title compound, C19H15N3O2·H2O, the oxa­diazole ring and the quinoline unit are almost coplanar, making a dihedral angle of 7.66 (8)°. The dihedral angle between the benzene ring and the quinoline system is 25.95 (8)° while that between the benzene and the oxa­diazole rings is 18.88 (9)°. The water mol­ecule is hydrogen bonded to an oxa­diazole N atom and to the quinoline N atom. In the crystal, these units are linked via C—H⋯O hydrogen bonds, forming two-dimensional net­works lying parallel to the ab plane.

Related literature

For the preparation of the title compound, see: Chiou & Shine (1989[Chiou, S. & Shine, H. J. (1989). J. Heterocycl. Chem. 26, 125-128.]). For the biological activity of 1,2,4-oxa­diazole derivatives, see: Street et al. (1990[Street, L. J., Baker, R., Book, T., Kneen, C. O., MacLeod, A. M., Merchant, K. J., Showell, G. A., Saunders, J., Herbert, R. H., Freedman, S. B. & Harley, E. A. (1990). J. Med. Chem. 33, 2690-2697.]). For metal complexes of related compounds, see: da Silva et al. (1999[Silva, A. S. da, de Silva, M. A. A., Carvalho, C. E. M., Antunes, O. A. C., Herrera, J. O. M., Brinn, I. M. & Mangrich, A. S. (1999). Inorg. Chim. Acta 292, 1-6.]); Pibiri et al. (2010[Pibiri, I., Piccionello, A. P., Calabrese, A., Buscemi, S., Vivona, N. & Pace, A. (2010). Eur. J. Org. Chem. pp. 4549-4553.]); Terenzi et al. (2011[Terenzi, A., Barone, G., Piccionello, A. P., Giorgi, G., Guarecello, A. & Pace, A. (2011). Inorg. Chim. Acta, 373, 62-67.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O2·H2O

  • Mr = 335.36

  • Triclinic, [P \overline 1]

  • a = 7.2070 (14) Å

  • b = 7.6200 (15) Å

  • c = 15.109 (3) Å

  • α = 92.62 (3)°

  • β = 90.19 (3)°

  • γ = 92.15 (3)°

  • V = 828.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 3302 measured reflections

  • 3039 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.162

  • S = 1.00

  • 3039 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯N2 0.91 (3) 2.09 (3) 2.980 (3) 169 (3)
OW—HWA⋯N1 0.94 (3) 1.91 (3) 2.830 (3) 165 (3)
C7—H7A⋯OWi 0.93 2.51 3.272 (3) 139
C10—H10A⋯OWii 0.97 2.55 3.482 (3) 160
C10—H10B⋯OWiii 0.97 2.59 3.534 (3) 164
Symmetry codes: (i) -x-1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x, -y+2, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-Oxadiazole derivatives have shown high biological activity, such as antibacterial, anti-HIV and weed control (Street et al., 1990). They are therefore widely used in medicinal chemistry and as pesticides. 1,2,4-Oxadiazole derivatives in combination with metal ions can also be used in fluorescent recognition (da Silva et al., 1999; Pibiri et al., 2010; Terenzi et al., 2011). The title compound 5-(quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole was also used in metal ions fluorescent recognition. In the molecule of 5-(quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole hydrate (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges.The oxadiazol ring and the quinoline moiety are almost coplanar showing a dihedral angle of 7.66 (8)°. The dihedral angles between the benzene ring and the quinoline system is 25.95 (8)°, the corresponding angle between the benzene and the oxadiazol rings is 18.88 (9)°. The crystal structure is established by intermolecular N—H···O and O—H···O hydrogen bonds (Fig. 2).

Related literature top

For the preparation of the title compound, see: Chiou & Shine (1989). For the biological activity of 1,2,4-oxadiazole derivatives, see: Street et al. (1990). For metal complexes of related compounds, see: da Silva et al. (1999); Pibiri et al. (2010); Terenzi et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

5-(Quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole was prepared by a literature method (Chiou & Shine, 1989). 3-(4-Methyl-phenyl)-5-chloromethyl-1,2,4-oxadizole (3.4 g, 16.4 mmol), 8-hydroxy-quinoline (2.4 g, 16.4 mmol), potassium carbonate (3.4 g ,24.6 mmol) and potassium iodide (catalytic amount) were added to acetone (40 ml). The mixture was then heated to reflux for 6 hours. After being cooled to room temperature, the mixture was filtered and evaporated to afford the product as a yellow solid. The crude product was re-crystallized from ethyl acetate (yield 3.1g, 59.8%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. Hydrogen atoms of the solvent water molecule have been determined from Fourier maps and refined freely.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3-(3-Methylphenyl)-5-(quinolin-8-ylmethoxy)-1,2,4-oxadiazole monohydrate top
Crystal data top
C19H15N3O2·H2OZ = 2
Mr = 335.36F(000) = 352
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Melting point: 342 K
a = 7.2070 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6200 (15) ÅCell parameters from 25 reflections
c = 15.109 (3) Åθ = 9–13°
α = 92.62 (3)°µ = 0.09 mm1
β = 90.19 (3)°T = 293 K
γ = 92.15 (3)°Block, yellow
V = 828.3 (3) Å30.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1949 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.4°, θmin = 1.4°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.973, Tmax = 0.991l = 1818
3302 measured reflections3 standard reflections every 200 reflections
3039 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3039 reflectionsΔρmax = 0.24 e Å3
233 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (7)
Crystal data top
C19H15N3O2·H2Oγ = 92.15 (3)°
Mr = 335.36V = 828.3 (3) Å3
Triclinic, P1Z = 2
a = 7.2070 (14) ÅMo Kα radiation
b = 7.6200 (15) ŵ = 0.09 mm1
c = 15.109 (3) ÅT = 293 K
α = 92.62 (3)°0.30 × 0.10 × 0.10 mm
β = 90.19 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1949 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
3302 measured reflections intensity decay: 1%
3039 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
3039 reflectionsΔρmin = 0.18 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0819 (2)0.7951 (2)0.99656 (11)0.0571 (5)
N10.1889 (3)0.6301 (2)1.08273 (13)0.0522 (5)
C10.2813 (3)0.8077 (3)1.12657 (18)0.0596 (7)
H1B0.37630.86701.09740.071*
N20.0057 (3)0.8438 (2)0.81930 (13)0.0511 (5)
O20.2873 (2)0.9553 (2)0.80096 (12)0.0695 (6)
C20.3046 (4)0.7675 (4)1.21478 (19)0.0667 (7)
H2B0.41550.80051.24370.080*
C30.1700 (4)0.6819 (4)1.25913 (18)0.0656 (7)
H3A0.18940.65531.31780.079*
N30.2016 (3)0.9460 (3)0.71676 (15)0.0714 (7)
C40.0008 (3)0.6320 (3)1.21701 (17)0.0551 (6)
C50.1489 (4)0.5465 (3)1.25918 (18)0.0642 (7)
H5A0.13740.51791.31810.077*
C60.3092 (4)0.5051 (3)1.21418 (19)0.0653 (7)
H6A0.40840.44831.24160.078*
C70.3218 (3)0.5497 (3)1.12629 (18)0.0594 (7)
H7A0.43230.52061.09620.071*
C80.0273 (3)0.6721 (3)1.12723 (16)0.0475 (6)
C90.1196 (3)0.7605 (3)1.08256 (16)0.0486 (6)
C100.2240 (3)0.8842 (3)0.94993 (17)0.0557 (6)
H10A0.33860.82190.95280.067*
H10B0.24601.00220.97570.067*
C110.1608 (3)0.8911 (3)0.85698 (17)0.0511 (6)
C120.0369 (3)0.8783 (3)0.73185 (16)0.0535 (6)
C130.0981 (3)0.8373 (3)0.66076 (16)0.0553 (6)
C140.2843 (4)0.8113 (3)0.67896 (17)0.0617 (7)
H14A0.32490.81610.73740.074*
C150.4105 (4)0.7784 (4)0.61087 (18)0.0687 (7)
H15A0.53560.76280.62450.082*
C160.3573 (4)0.7677 (3)0.52325 (17)0.0677 (8)
C170.1699 (5)0.7904 (4)0.50615 (19)0.0847 (9)
H17A0.12910.78260.44780.102*
C180.0424 (4)0.8242 (4)0.57307 (19)0.0814 (9)
H18A0.08280.83850.55940.098*
C190.4974 (5)0.7358 (4)0.45006 (19)0.0905 (10)
H19A0.43520.73390.39400.136*
H19B0.58450.82820.45230.136*
H19C0.56220.62500.45710.136*
OW0.3313 (2)0.7299 (3)0.91840 (14)0.0733 (6)
HWB0.236 (5)0.757 (4)0.8819 (19)0.088*
HWA0.274 (4)0.682 (4)0.967 (2)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (8)0.0683 (11)0.0639 (11)0.0106 (8)0.0065 (8)0.0075 (8)
N10.0400 (10)0.0500 (11)0.0661 (13)0.0038 (9)0.0033 (10)0.0013 (9)
C10.0387 (13)0.0624 (16)0.0769 (19)0.0010 (11)0.0102 (12)0.0030 (13)
N20.0425 (11)0.0550 (12)0.0551 (12)0.0019 (9)0.0074 (9)0.0021 (9)
O20.0450 (10)0.0884 (13)0.0744 (13)0.0133 (9)0.0078 (9)0.0081 (10)
C20.0498 (15)0.0751 (18)0.0742 (19)0.0041 (13)0.0197 (14)0.0088 (14)
C30.0634 (17)0.0752 (18)0.0579 (16)0.0075 (14)0.0165 (14)0.0034 (13)
N30.0556 (13)0.0913 (17)0.0670 (15)0.0103 (12)0.0084 (12)0.0106 (12)
C40.0528 (14)0.0486 (13)0.0640 (16)0.0094 (11)0.0032 (12)0.0022 (11)
C50.0694 (18)0.0598 (16)0.0643 (17)0.0119 (14)0.0029 (14)0.0052 (13)
C60.0580 (16)0.0608 (16)0.0773 (19)0.0011 (13)0.0091 (14)0.0079 (14)
C70.0457 (14)0.0567 (15)0.0753 (18)0.0028 (12)0.0016 (13)0.0017 (13)
C80.0405 (12)0.0420 (12)0.0595 (15)0.0032 (10)0.0053 (11)0.0046 (10)
C90.0370 (12)0.0478 (13)0.0607 (15)0.0047 (10)0.0081 (11)0.0021 (11)
C100.0327 (11)0.0617 (15)0.0713 (17)0.0062 (11)0.0050 (11)0.0053 (12)
C110.0351 (12)0.0505 (13)0.0668 (16)0.0005 (10)0.0058 (11)0.0041 (11)
C120.0478 (13)0.0534 (14)0.0592 (16)0.0016 (11)0.0118 (11)0.0019 (11)
C130.0573 (15)0.0544 (14)0.0540 (15)0.0009 (12)0.0074 (12)0.0002 (11)
C140.0577 (15)0.0757 (17)0.0516 (15)0.0001 (13)0.0060 (12)0.0021 (12)
C150.0590 (15)0.0846 (19)0.0623 (18)0.0007 (14)0.0003 (13)0.0034 (14)
C160.085 (2)0.0642 (17)0.0536 (17)0.0042 (15)0.0039 (14)0.0020 (13)
C170.090 (2)0.112 (3)0.0512 (17)0.0007 (19)0.0109 (16)0.0037 (16)
C180.0700 (18)0.111 (2)0.0616 (18)0.0049 (17)0.0182 (16)0.0037 (16)
C190.111 (3)0.100 (2)0.0606 (18)0.003 (2)0.0170 (18)0.0006 (17)
OW0.0446 (10)0.1012 (15)0.0735 (13)0.0152 (10)0.0081 (9)0.0147 (11)
Geometric parameters (Å, º) top
O1—C91.366 (3)C7—H7A0.9300
O1—C101.415 (3)C8—C91.422 (3)
N1—C71.313 (3)C10—C111.479 (4)
N1—C81.363 (3)C10—H10A0.9700
C1—C91.368 (3)C10—H10B0.9700
C1—C21.392 (4)C12—C131.462 (3)
C1—H1B0.9300C13—C141.380 (4)
N2—C111.285 (3)C13—C181.386 (4)
N2—C121.376 (3)C14—C151.379 (4)
O2—C111.340 (3)C14—H14A0.9300
O2—N31.410 (3)C15—C161.379 (4)
C2—C31.346 (4)C15—H15A0.9300
C2—H2B0.9300C16—C171.381 (4)
C3—C41.415 (3)C16—C191.501 (4)
C3—H3A0.9300C17—C181.373 (4)
N3—C121.301 (3)C17—H17A0.9300
C4—C51.400 (4)C18—H18A0.9300
C4—C81.418 (3)C19—H19A0.9600
C5—C61.358 (4)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.389 (4)OW—HWB0.91 (3)
C6—H6A0.9300OW—HWA0.94 (3)
C9—O1—C10116.60 (18)O1—C10—H10B110.3
C7—N1—C8117.4 (2)C11—C10—H10B110.3
C9—C1—C2120.5 (2)H10A—C10—H10B108.5
C9—C1—H1B119.8N2—C11—O2113.4 (2)
C2—C1—H1B119.8N2—C11—C10131.4 (2)
C11—N2—C12103.1 (2)O2—C11—C10115.16 (19)
C11—O2—N3105.97 (17)N3—C12—N2114.0 (2)
C3—C2—C1121.4 (2)N3—C12—C13122.2 (2)
C3—C2—H2B119.3N2—C12—C13123.9 (2)
C1—C2—H2B119.3C14—C13—C18118.2 (3)
C2—C3—C4120.4 (3)C14—C13—C12121.0 (2)
C2—C3—H3A119.8C18—C13—C12120.8 (2)
C4—C3—H3A119.8C15—C14—C13120.2 (2)
C12—N3—O2103.59 (19)C15—C14—H14A119.9
C5—C4—C3123.8 (3)C13—C14—H14A119.9
C5—C4—C8117.1 (2)C14—C15—C16122.2 (3)
C3—C4—C8119.0 (2)C14—C15—H15A118.9
C6—C5—C4120.1 (3)C16—C15—H15A118.9
C6—C5—H5A120.0C15—C16—C17116.9 (3)
C4—C5—H5A120.0C15—C16—C19121.3 (3)
C5—C6—C7118.5 (3)C17—C16—C19121.8 (3)
C5—C6—H6A120.7C18—C17—C16121.7 (3)
C7—C6—H6A120.7C18—C17—H17A119.2
N1—C7—C6124.6 (2)C16—C17—H17A119.2
N1—C7—H7A117.7C17—C18—C13120.8 (3)
C6—C7—H7A117.7C17—C18—H18A119.6
N1—C8—C4122.3 (2)C13—C18—H18A119.6
N1—C8—C9119.1 (2)C16—C19—H19A109.5
C4—C8—C9118.7 (2)C16—C19—H19B109.5
O1—C9—C1125.1 (2)H19A—C19—H19B109.5
O1—C9—C8114.81 (19)C16—C19—H19C109.5
C1—C9—C8120.1 (2)H19A—C19—H19C109.5
O1—C10—C11107.17 (18)H19B—C19—H19C109.5
O1—C10—H10A110.3HWB—OW—HWA104 (3)
C11—C10—H10A110.3
C9—C1—C2—C30.0 (4)C12—N2—C11—O20.9 (3)
C1—C2—C3—C40.8 (4)C12—N2—C11—C10177.9 (2)
C11—O2—N3—C120.1 (3)N3—O2—C11—N20.5 (3)
C2—C3—C4—C5178.5 (2)N3—O2—C11—C10178.5 (2)
C2—C3—C4—C80.6 (4)O1—C10—C11—N25.4 (4)
C3—C4—C5—C6179.2 (2)O1—C10—C11—O2173.34 (19)
C8—C4—C5—C60.1 (4)O2—N3—C12—N20.7 (3)
C4—C5—C6—C70.0 (4)O2—N3—C12—C13177.1 (2)
C8—N1—C7—C60.1 (4)C11—N2—C12—N31.0 (3)
C5—C6—C7—N10.1 (4)C11—N2—C12—C13176.7 (2)
C7—N1—C8—C40.0 (3)N3—C12—C13—C14162.3 (3)
C7—N1—C8—C9179.5 (2)N2—C12—C13—C1420.1 (4)
C5—C4—C8—N10.1 (3)N3—C12—C13—C1817.4 (4)
C3—C4—C8—N1179.2 (2)N2—C12—C13—C18160.1 (3)
C5—C4—C8—C9179.4 (2)C18—C13—C14—C151.8 (4)
C3—C4—C8—C90.3 (3)C12—C13—C14—C15177.9 (2)
C10—O1—C9—C11.1 (3)C13—C14—C15—C160.9 (4)
C10—O1—C9—C8179.53 (19)C14—C15—C16—C170.4 (4)
C2—C1—C9—O1179.3 (2)C14—C15—C16—C19178.6 (3)
C2—C1—C9—C80.9 (4)C15—C16—C17—C180.7 (5)
N1—C8—C9—O10.0 (3)C19—C16—C17—C18178.2 (3)
C4—C8—C9—O1179.54 (19)C16—C17—C18—C130.2 (5)
N1—C8—C9—C1178.5 (2)C14—C13—C18—C171.5 (5)
C4—C8—C9—C11.1 (3)C12—C13—C18—C17178.2 (3)
C9—O1—C10—C11174.34 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.91 (3)2.09 (3)2.980 (3)169 (3)
OW—HWA···N10.94 (3)1.91 (3)2.830 (3)165 (3)
C7—H7A···OWi0.932.513.272 (3)139
C10—H10A···OWii0.972.553.482 (3)160
C10—H10B···OWiii0.972.593.534 (3)164
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.91 (3)2.09 (3)2.980 (3)169 (3)
OW—HWA···N10.94 (3)1.91 (3)2.830 (3)165 (3)
C7—H7A···OWi0.93002.51003.272 (3)139.00
C10—H10A···OWii0.97002.55003.482 (3)160.00
C10—H10B···OWiii0.97002.59003.534 (3)164.00
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+2, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChiou, S. & Shine, H. J. (1989). J. Heterocycl. Chem. 26, 125–128.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPibiri, I., Piccionello, A. P., Calabrese, A., Buscemi, S., Vivona, N. & Pace, A. (2010). Eur. J. Org. Chem. pp. 4549–4553.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. S. da, de Silva, M. A. A., Carvalho, C. E. M., Antunes, O. A. C., Herrera, J. O. M., Brinn, I. M. & Mangrich, A. S. (1999). Inorg. Chim. Acta 292, 1–6.  Google Scholar
First citationStreet, L. J., Baker, R., Book, T., Kneen, C. O., MacLeod, A. M., Merchant, K. J., Showell, G. A., Saunders, J., Herbert, R. H., Freedman, S. B. & Harley, E. A. (1990). J. Med. Chem. 33, 2690–2697.  Google Scholar
First citationTerenzi, A., Barone, G., Piccionello, A. P., Giorgi, G., Guarecello, A. & Pace, A. (2011). Inorg. Chim. Acta, 373, 62–67.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds