organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Do­decyl-1H-benzo[d]imidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanmaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr

(Received 15 September 2012; accepted 1 October 2012; online 6 October 2012)

In the title compound, C19H30N2O, the fused ring system is essentially planar, the maximum deviation from the mean plane being 0.013 (2) Å for the N atom bearing the dodecyl chain. The 1-dodecyl group is almost perpendicular to the 1H-benzo[d]imidazol-2(3H)-one plane as indicated by the dihedral angle of 82.9 (2)°between planes through the fused ring system and the first three C atoms of the chain. The C—C—C—C torsion angles (about ±179°) of the dodecyl group indicate an anti­periplanar conformation. In the crystal, inversion dimers are formed by pairs of N—H⋯O hydrogen bonds.

Related literature

For pharmacological and biochemical properties of benzimidazoles and their derivatives, see: Al Muhaimeed (1997[Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175-181.]); Scott et al. (2002[Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503-1538.]); Nakano et al. (2000[Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373-380.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]); Zarrinmayeh et al. (1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]). For compounds with closely related structures, see: Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.]); Kandri Rodi et al. (2011[Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340-o3341.]); Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.]).

[Scheme 1]

Experimental

Crystal data
  • C19H30N2O

  • Mr = 302.45

  • Monoclinic, C 2/c

  • a = 38.3223 (14) Å

  • b = 4.8318 (2) Å

  • c = 21.9831 (8) Å

  • β = 117.843 (2)°

  • V = 3599.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.47 × 0.31 × 0.14 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • 29002 measured reflections

  • 4637 independent reflections

  • 3179 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.01

  • 4637 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.97 2.815 (1) 168
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and antiallergic (Nakano et al., 2000). In addition, benzimidazole derivatives are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998).

In a previous study, we reacted benzimidazol-2-one with octyl bromide in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to form 1-octyl-1H-benzo[d]imidazol-2(3H)-one (Belaziz et al., 2012). The study has been extended to the synthesis of a new benzimidazol-2-one derivative by action of dodecyl bromide with 1H-benzo[d]imidazol-2(3H)-one to form the title compound (Scheme 1).

The molecular structure of 1-dodecyl-1H-benzo[d]imidazol-2(3H)-one is built up from fused six-and five-membered rings linked to a C12H25 chain as shown in Fig. 1. The fused-ring system is essentially planar, with a maximum deviation of -0.013 (2) Å for N2. The dodecyl group is almost perpendicular to the 1H-benzo[d]imidazol-2(3H)-one plane as indicated by the dihedral angle between planes (C8 C9 C10) and (N1 N2 C1 to C7) of 82.9 (2)° and by the torsion angle (C7 N2 C8 C9) = -84.3 (2)°. In the crystal structure, inversion dimers are formed by N—H···O hydrogen bonds. in the way to form dimers (Fig. 2).

The structure of the title compound is almost identical to that observed for the following molecules: 1-nonyl-1H-benzimidazol-2(3H)-one, 1-octyl-1H-benzimidazol-2(3H)-one and 5-chloro-1-nonyl-1H-benzimidazol-2(3H)-one (Ouzidan et al., 2011, Kandri Rodi et al. 2011). Nevertheless, the different lengths of the chains leads to different unit cells with different crystal symmetry.

Related literature top

For pharmacological and biochemical properties of benzimidazoles and their derivatives, see: Al Muhaimeed (1997); Scott et al. (2002); Nakano et al. (2000); Zhu et al. (2000); Zarrinmayeh et al. (1998). For compounds with closely related structures, see: Ouzidan et al. (2011); Kandri Rodi et al. (2011); Belaziz et al. (2012).

Experimental top

To 1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 2.98 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added dodecyl bromide (0.30 ml, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent (yield: 65%). The compound was recrystallized from hexan/acetate to give colourless crystals.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq (N—H, aromatic, methylene) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Inversion dimer with molecules linked by N—H···O hydrogen bonds.
1-Dodecyl-1H-benzo[d]imidazol-2(3H)-one top
Crystal data top
C19H30N2OF(000) = 1328
Mr = 302.45Dx = 1.116 Mg m3
Monoclinic, C2/cMelting point: 346.5 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.3223 (14) ÅCell parameters from 4637 reflections
b = 4.8318 (2) Åθ = 2.4–28.7°
c = 21.9831 (8) ŵ = 0.07 mm1
β = 117.843 (2)°T = 296 K
V = 3599.3 (2) Å3Needle, colourless
Z = 80.47 × 0.31 × 0.14 mm
Data collection top
Bruker X8 APEX Diffractometer3179 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.7°, θmin = 2.4°
ϕ and ω scansh = 5151
29002 measured reflectionsk = 66
4637 independent reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0721P)2 + 1.030P]
where P = (Fo2 + 2Fc2)/3
4637 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H30N2OV = 3599.3 (2) Å3
Mr = 302.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.3223 (14) ŵ = 0.07 mm1
b = 4.8318 (2) ÅT = 296 K
c = 21.9831 (8) Å0.47 × 0.31 × 0.14 mm
β = 117.843 (2)°
Data collection top
Bruker X8 APEX Diffractometer3179 reflections with I > 2σ(I)
29002 measured reflectionsRint = 0.028
4637 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
4637 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.03233 (3)0.5579 (2)0.13178 (5)0.0394 (2)
N10.01601 (3)0.7314 (2)0.03782 (5)0.0398 (2)
H10.02890.82970.00140.048*
O10.04750 (2)0.91076 (19)0.07646 (4)0.0472 (2)
C110.13888 (4)0.6345 (3)0.37748 (6)0.0440 (3)
H11A0.11870.61130.39200.053*
H11B0.14280.83150.37470.053*
C70.00182 (3)0.4187 (2)0.12105 (6)0.0386 (3)
C90.08398 (3)0.6105 (3)0.25353 (6)0.0431 (3)
H9A0.06440.55960.26790.052*
H9B0.08440.81080.25100.052*
C150.24328 (4)0.5988 (3)0.62951 (6)0.0514 (3)
H15A0.24570.79860.62940.062*
H15B0.22330.55640.64350.062*
C120.17715 (4)0.5077 (3)0.43133 (6)0.0484 (3)
H12A0.17370.30890.43170.058*
H12B0.19770.54180.41820.058*
C10.02366 (3)0.7522 (2)0.08097 (5)0.0371 (3)
C130.19082 (4)0.6180 (3)0.50358 (6)0.0498 (3)
H13A0.17050.58160.51710.060*
H13B0.19400.81700.50320.060*
C80.07235 (3)0.4891 (3)0.18297 (6)0.0424 (3)
H8A0.09060.55570.16710.051*
H8B0.07490.28940.18700.051*
C20.03246 (3)0.5297 (2)0.06114 (6)0.0383 (3)
C100.12435 (4)0.5075 (3)0.30657 (6)0.0463 (3)
H10A0.12320.30810.31040.056*
H10B0.14330.54760.29020.056*
C170.29647 (4)0.5852 (3)0.75462 (6)0.0513 (3)
H17A0.29830.78540.75410.062*
H17B0.27690.53920.76930.062*
C140.22938 (4)0.4922 (3)0.55680 (6)0.0517 (3)
H14A0.24970.52980.54330.062*
H14B0.22620.29300.55670.062*
C160.28233 (4)0.4785 (3)0.68205 (6)0.0522 (3)
H16A0.27980.27880.68230.063*
H16B0.30220.51990.66780.063*
C60.00851 (4)0.2120 (3)0.15747 (7)0.0493 (3)
H60.01180.14060.19770.059*
C30.07051 (4)0.4301 (3)0.03570 (7)0.0490 (3)
H30.09100.50150.00440.059*
C50.04689 (4)0.1145 (3)0.13174 (7)0.0553 (4)
H50.05240.02480.15520.066*
C180.33590 (4)0.4716 (3)0.80666 (7)0.0616 (4)
H18A0.35550.51760.79210.074*
H18B0.33410.27140.80720.074*
C190.34981 (5)0.5790 (4)0.87888 (7)0.0774 (5)
H19A0.37500.49900.90900.116*
H19B0.33100.52940.89440.116*
H19C0.35220.77680.87910.116*
C40.07710 (4)0.2207 (3)0.07186 (8)0.0554 (4)
H40.10240.14940.05560.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0357 (5)0.0440 (5)0.0272 (4)0.0014 (4)0.0053 (4)0.0030 (4)
N10.0355 (5)0.0458 (6)0.0282 (4)0.0032 (4)0.0065 (4)0.0038 (4)
O10.0404 (4)0.0546 (5)0.0378 (4)0.0026 (4)0.0110 (4)0.0066 (4)
C110.0434 (6)0.0463 (7)0.0299 (5)0.0011 (5)0.0067 (5)0.0014 (5)
C70.0416 (6)0.0397 (6)0.0304 (5)0.0009 (5)0.0134 (5)0.0038 (4)
C90.0410 (6)0.0450 (7)0.0305 (6)0.0040 (5)0.0061 (5)0.0011 (5)
C150.0462 (7)0.0619 (8)0.0314 (6)0.0014 (6)0.0057 (5)0.0013 (5)
C120.0457 (7)0.0524 (7)0.0306 (6)0.0017 (6)0.0040 (5)0.0013 (5)
C10.0373 (6)0.0405 (6)0.0267 (5)0.0026 (5)0.0092 (4)0.0012 (4)
C130.0460 (7)0.0582 (8)0.0308 (6)0.0006 (6)0.0058 (5)0.0010 (5)
C80.0366 (6)0.0470 (7)0.0302 (6)0.0069 (5)0.0044 (5)0.0026 (5)
C20.0396 (6)0.0404 (6)0.0309 (5)0.0014 (5)0.0131 (5)0.0049 (5)
C100.0432 (6)0.0482 (7)0.0300 (6)0.0046 (5)0.0025 (5)0.0010 (5)
C170.0441 (7)0.0647 (9)0.0326 (6)0.0039 (6)0.0075 (5)0.0003 (6)
C140.0478 (7)0.0579 (8)0.0314 (6)0.0002 (6)0.0034 (5)0.0018 (5)
C160.0473 (7)0.0597 (8)0.0330 (6)0.0001 (6)0.0048 (5)0.0016 (6)
C60.0591 (8)0.0471 (7)0.0393 (6)0.0016 (6)0.0210 (6)0.0022 (5)
C30.0392 (6)0.0564 (8)0.0443 (7)0.0002 (5)0.0135 (5)0.0078 (6)
C50.0690 (9)0.0500 (8)0.0572 (8)0.0089 (7)0.0382 (7)0.0030 (6)
C180.0494 (8)0.0736 (10)0.0394 (7)0.0005 (7)0.0021 (6)0.0011 (7)
C190.0585 (9)0.1111 (14)0.0367 (7)0.0096 (9)0.0006 (7)0.0009 (8)
C40.0502 (8)0.0569 (8)0.0632 (9)0.0117 (6)0.0300 (7)0.0127 (7)
Geometric parameters (Å, º) top
N2—C11.3759 (15)C8—H8A0.9700
N2—C71.3899 (15)C8—H8B0.9700
N2—C81.4550 (14)C2—C31.3816 (17)
N1—C11.3688 (14)C10—H10A0.9700
N1—C21.3827 (15)C10—H10B0.9700
N1—H10.8600C17—C181.5095 (18)
O1—C11.2314 (14)C17—C161.5156 (18)
C11—C101.5184 (16)C17—H17A0.9700
C11—C121.5187 (16)C17—H17B0.9700
C11—H11A0.9700C14—H14A0.9700
C11—H11B0.9700C14—H14B0.9700
C7—C61.3771 (18)C16—H16A0.9700
C7—C21.3986 (16)C16—H16B0.9700
C9—C81.5177 (16)C6—C51.3885 (19)
C9—C101.5218 (16)C6—H60.9300
C9—H9A0.9700C3—C41.381 (2)
C9—H9B0.9700C3—H30.9300
C15—C161.5157 (18)C5—C41.383 (2)
C15—C141.5195 (18)C5—H50.9300
C15—H15A0.9700C18—C191.511 (2)
C15—H15B0.9700C18—H18A0.9700
C12—C131.5180 (17)C18—H18B0.9700
C12—H12A0.9700C19—H19A0.9600
C12—H12B0.9700C19—H19B0.9600
C13—C141.5186 (17)C19—H19C0.9600
C13—H13A0.9700C4—H40.9300
C13—H13B0.9700
C1—N2—C7109.94 (9)N1—C2—C7106.97 (10)
C1—N2—C8123.45 (10)C11—C10—C9114.11 (11)
C7—N2—C8126.15 (10)C11—C10—H10A108.7
C1—N1—C2110.23 (9)C9—C10—H10A108.7
C1—N1—H1124.9C11—C10—H10B108.7
C2—N1—H1124.9C9—C10—H10B108.7
C10—C11—C12113.25 (11)H10A—C10—H10B107.6
C10—C11—H11A108.9C18—C17—C16114.41 (12)
C12—C11—H11A108.9C18—C17—H17A108.7
C10—C11—H11B108.9C16—C17—H17A108.7
C12—C11—H11B108.9C18—C17—H17B108.7
H11A—C11—H11B107.7C16—C17—H17B108.7
C6—C7—N2131.94 (11)H17A—C17—H17B107.6
C6—C7—C2121.55 (11)C13—C14—C15114.31 (12)
N2—C7—C2106.51 (10)C13—C14—H14A108.7
C8—C9—C10111.39 (10)C15—C14—H14A108.7
C8—C9—H9A109.3C13—C14—H14B108.7
C10—C9—H9A109.3C15—C14—H14B108.7
C8—C9—H9B109.3H14A—C14—H14B107.6
C10—C9—H9B109.3C17—C16—C15114.33 (12)
H9A—C9—H9B108.0C17—C16—H16A108.7
C16—C15—C14114.07 (12)C15—C16—H16A108.7
C16—C15—H15A108.7C17—C16—H16B108.7
C14—C15—H15A108.7C15—C16—H16B108.7
C16—C15—H15B108.7H16A—C16—H16B107.6
C14—C15—H15B108.7C7—C6—C5117.30 (12)
H15A—C15—H15B107.6C7—C6—H6121.3
C13—C12—C11114.18 (11)C5—C6—H6121.3
C13—C12—H12A108.7C4—C3—C2117.68 (12)
C11—C12—H12A108.7C4—C3—H3121.2
C13—C12—H12B108.7C2—C3—H3121.2
C11—C12—H12B108.7C4—C5—C6121.22 (13)
H12A—C12—H12B107.6C4—C5—H5119.4
O1—C1—N1127.98 (10)C6—C5—H5119.4
O1—C1—N2125.67 (10)C17—C18—C19114.10 (14)
N1—C1—N2106.35 (10)C17—C18—H18A108.7
C12—C13—C14113.68 (12)C19—C18—H18A108.7
C12—C13—H13A108.8C17—C18—H18B108.7
C14—C13—H13A108.8C19—C18—H18B108.7
C12—C13—H13B108.8H18A—C18—H18B107.6
C14—C13—H13B108.8C18—C19—H19A109.5
H13A—C13—H13B107.7C18—C19—H19B109.5
N2—C8—C9113.73 (10)H19A—C19—H19B109.5
N2—C8—H8A108.8C18—C19—H19C109.5
C9—C8—H8A108.8H19A—C19—H19C109.5
N2—C8—H8B108.8H19B—C19—H19C109.5
C9—C8—H8B108.8C3—C4—C5121.52 (13)
H8A—C8—H8B107.7C3—C4—H4119.2
C3—C2—N1132.32 (11)C5—C4—H4119.2
C3—C2—C7120.71 (12)
C1—N2—C7—C6179.18 (12)N2—C7—C2—C3178.75 (10)
C8—N2—C7—C68.5 (2)C6—C7—C2—N1179.65 (10)
C1—N2—C7—C20.61 (13)N2—C7—C2—N10.17 (12)
C8—N2—C7—C2171.76 (10)C12—C11—C10—C9174.05 (11)
C10—C11—C12—C13176.14 (11)C8—C9—C10—C11176.53 (11)
C2—N1—C1—O1179.33 (11)C12—C13—C14—C15179.52 (12)
C2—N1—C1—N20.70 (12)C16—C15—C14—C13178.39 (12)
C7—N2—C1—O1179.22 (11)C18—C17—C16—C15178.41 (13)
C8—N2—C1—O18.16 (18)C14—C15—C16—C17179.67 (12)
C7—N2—C1—N10.81 (12)N2—C7—C6—C5179.26 (12)
C8—N2—C1—N1171.81 (10)C2—C7—C6—C50.99 (18)
C11—C12—C13—C14179.29 (11)N1—C2—C3—C4179.30 (12)
C1—N2—C8—C9104.30 (13)C7—C2—C3—C40.70 (18)
C7—N2—C8—C984.31 (15)C7—C6—C5—C40.1 (2)
C10—C9—C8—N2174.01 (10)C16—C17—C18—C19179.99 (13)
C1—N1—C2—C3179.08 (12)C2—C3—C4—C50.4 (2)
C1—N1—C2—C70.33 (13)C6—C5—C4—C30.9 (2)
C6—C7—C2—C31.43 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.815 (1)168
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H30N2O
Mr302.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)38.3223 (14), 4.8318 (2), 21.9831 (8)
β (°) 117.843 (2)
V3)3599.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.47 × 0.31 × 0.14
Data collection
DiffractometerBruker X8 APEX Diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29002, 4637, 3179
Rint0.028
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.01
No. of reflections4637
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.815 (1)168.1
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAl Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181.  CAS PubMed Web of Science Google Scholar
First citationBelaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340–o3341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds