organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Ammonio­meth­yl)pyridinium dibromide

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, bFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, and cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 6 September 2012; accepted 28 September 2012; online 3 October 2012)

In the title salt, C6H10N22+·2Br, the non-H atoms of the 3-methyl­pyridinium unit of the cation are almost coplanar (r.m.s. deviation = 0.0052 Å). In the crystal, the dications and Br anions are linked by a combination of six hydrogen bonds, viz. one Npy—H⋯Br, two C—H⋯Br and three H2N–H⋯Br, into supra­molecular layers, parallel to the bc plane, composed of alternating R24(10) and R24(8) loops. Weak ππ inter­actions between cationic rings with centroid–centroid distances of 3.891 (2) Å are also observed.

Related literature

For non-covalent inter­actions, see: Allen et al. (1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]); Desiraju (1997[Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1482.]); Dolling et al. (2001[Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X. M. (2001). Chem. Commun. pp. 567-568.]); Gould et al. (1985[Gould, R. O., Gray, A. M., Taylor, P. & Walkinshaw, M. D. (1985). J. Am. Chem. Soc. 107, 5921-5927.]); Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]); Hunter & Sanders (1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]); Panunto et al. (1987[Panunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786-7797.]); Robinson et al. (2000[Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 24, 799-806.]); Singh & Thornton (1990[Singh, J. & Thornton, J. M. (1990). J. Mol. Biol. 211, 595-615.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N2+·2Br

  • Mr = 269.96

  • Monoclinic, P 21 /c

  • a = 11.1588 (6) Å

  • b = 9.3902 (5) Å

  • c = 9.3833 (5) Å

  • β = 113.092 (6)°

  • V = 904.44 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.90 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.12 mm

Data collection
  • Agilent Xcalibur EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.143, Tmax = 0.343

  • 4032 measured reflections

  • 2401 independent reflections

  • 1641 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.070

  • S = 1.02

  • 2401 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Br1 0.89 2.61 3.358 (3) 142
N2—H2C⋯Br1i 0.89 2.69 3.330 (3) 130
N2—H2D⋯Br1ii 0.89 2.49 3.348 (3) 161
N1—H1A⋯Br2 0.86 2.41 3.206 (3) 155
C5—H5A⋯Br2iii 0.93 2.91 3.793 (4) 160
C6—H6A⋯Br2iv 0.93 2.89 3.619 (4) 136
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). They exercise important effects on the organization and properties of many materials in areas such as biology (Hunter, 1994), crystal engineering (Allen et al., 1997, Dolling et al., 2001) and material science (Panunto et al., 1987, Robinson et al., 2000). We herein report the molecular structure of the salt, 3-(ammoniomethyl)pyridinium dibromide, along with it's supramolecular crystal structure.

In the title salt (Fig. 1) bond lengths (Allen et al., 1987) and angles of the dication are within normal ranges. The unit (N1/C2/C3/C4/C5/C6/C7) of the independent cation is planar with r.m.s.d = 0.0052 (2) Å. The ammonium group largely deviates by 1.369 (7) Å out of this plane. The 3-methylammonium groups attached to the pyridinium ring through C3 shows a torsion angle of -87.9 (4)° for C2—C3—C7—N2.

The crystal packing involves extensive cation···anion interactions. These interactions assemble cations and anions into supramolecular layers parallel to the bc plane (Fig. 2) via N—H···Br and C—H···Br hydrogen bonding interactions of the types Npy—H···Br, H2N—H···Br, and C—H···Br (Table 1). These layers are composed of alternating R24(10) [two bromide anions and two (py)C/N—H units of two cations] and R24(8) [two bromide anions and two ammonium groups via two H atoms each] graph set motifs (Bernstein et al., 1995). Interlayer interactions are established through the third hydrogen of the ammonium group with a bromide anion of a next layer (Fig. 2).

The cations also interact to some extent by offset face-to-face interactions along the a-axis, adding extra lattice stability. This is evident by the centroid separation distances C1g···C1g (1 - x, 1 - y, 1 - z) of 3.891 (2) Å. The observed centroids separation distance is in accordance with those of calculated and the experimentally observed stacked (offset-face-to-face) interaction modes (Gould et al., 1985, Hunter & Sanders, 1990, Hunter, 1994, Singh & Thornton, 1990). The N—H···Br and C—H···Br hydrogen bonding and aryl···aryl interactions consolidate to from a three-dimensional network.

Related literature top

For non-covalent interactions, see: Allen et al. (1997); Desiraju (1997); Dolling et al. (2001); Gould et al. (1985); Hunter (1994); Hunter & Sanders (1990); Panunto et al. (1987); Robinson et al. (2000); Singh & Thornton (1990). For standard bond lengths, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of a halo-stannate(II) organic-inorganic hybrids, using slow evaporation of an ethanolic hot mixture of solution of SnCl2.2H2O (1 mmol) and Br2(l) and solution of 3-methylaminopyridine (1 mmol) with 2 ml of HBr at room temperature. Crystals were grown from ethanol upon cooling and slow evaporation (yield: 78%). A suitable block shaped crystal cut from a larger colorless crystal was epoxy mounted on a glass fiber and the data collected at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically, with N—H = 0.86 – 0.89 Å, C—H = 0.93 – 0.97 Å for aromatic H and C—H = 0.96 Å for methyl H, and constrained to ride on their parent atoms, Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration of the 3-(ammoniomethyl)pyridinium cation and the bromide anions in the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Cation···anion interactions assembled supramolecular layers parallel to bc plane. N—H···Br and C—H···Br hydrogen bonding interactions appears as dotted lines.
'3-(Ammoniomethyl)pyridinium dibromide' top
Crystal data top
C6H10N2+·2BrF(000) = 520
Mr = 269.96Dx = 1.983 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 400 reflections
a = 11.1588 (6) Åθ = 3.4–28.8°
b = 9.3902 (5) ŵ = 8.90 mm1
c = 9.3833 (5) ÅT = 293 K
β = 113.092 (6)°Block, colorless
V = 904.44 (9) Å30.23 × 0.18 × 0.12 mm
Z = 4
Data collection top
Agilent Xcalibur EOS
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube1641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0534 pixels mm-1θmax = 29.0°, θmin = 3.3°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 612
Tmin = 0.143, Tmax = 0.343l = 1211
4032 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0252P)2]
where P = (Fo2 + 2Fc2)/3
2401 reflections(Δ/σ)max = 0.001
92 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C6H10N2+·2BrV = 904.44 (9) Å3
Mr = 269.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1588 (6) ŵ = 8.90 mm1
b = 9.3902 (5) ÅT = 293 K
c = 9.3833 (5) Å0.23 × 0.18 × 0.12 mm
β = 113.092 (6)°
Data collection top
Agilent Xcalibur EOS
diffractometer
2401 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1641 reflections with I > 2σ(I)
Tmin = 0.143, Tmax = 0.343Rint = 0.027
4032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.02Δρmax = 0.60 e Å3
2401 reflectionsΔρmin = 0.50 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.05938 (4)0.77590 (4)1.03996 (4)0.03142 (12)
N10.6363 (3)0.4773 (4)0.3288 (3)0.0351 (8)
H1A0.62440.50400.23660.042*
Br20.69216 (3)0.57502 (5)0.03324 (4)0.03665 (14)
N20.9797 (3)0.5140 (3)0.7751 (3)0.0315 (8)
H2B1.03860.56590.84890.047*
H2C1.00020.51050.69260.047*
H2D0.97850.42620.81020.047*
C20.7269 (3)0.5432 (4)0.4486 (4)0.0295 (9)
H2A0.77610.61620.43150.035*
C30.7476 (3)0.5032 (4)0.5971 (4)0.0271 (9)
C40.6744 (3)0.3937 (4)0.6182 (4)0.0325 (9)
H4A0.68750.36470.71800.039*
C50.5817 (4)0.3262 (5)0.4923 (4)0.0399 (10)
H5A0.53260.25150.50620.048*
C60.5634 (4)0.3716 (5)0.3462 (4)0.0392 (10)
H6A0.50050.32880.25970.047*
C70.8494 (3)0.5797 (4)0.7313 (4)0.0321 (9)
H7A0.85330.67860.70360.039*
H7B0.82470.57740.81960.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0375 (2)0.0275 (2)0.0308 (2)0.00378 (18)0.01508 (16)0.00248 (17)
N10.0401 (19)0.042 (2)0.0205 (15)0.0105 (18)0.0088 (14)0.0037 (15)
Br20.0324 (2)0.0465 (3)0.0321 (2)0.0023 (2)0.01373 (16)0.00552 (19)
N20.0290 (16)0.035 (2)0.0273 (15)0.0019 (16)0.0080 (13)0.0035 (15)
C20.0294 (19)0.031 (2)0.033 (2)0.0020 (18)0.0170 (16)0.0029 (18)
C30.0222 (18)0.033 (2)0.0257 (18)0.0061 (18)0.0095 (15)0.0018 (17)
C40.0285 (19)0.041 (3)0.0271 (19)0.0018 (19)0.0098 (15)0.0064 (19)
C50.033 (2)0.041 (3)0.044 (2)0.009 (2)0.0128 (18)0.003 (2)
C60.032 (2)0.043 (3)0.033 (2)0.001 (2)0.0021 (17)0.007 (2)
C70.031 (2)0.034 (3)0.0305 (19)0.0019 (19)0.0120 (16)0.0033 (18)
Geometric parameters (Å, º) top
N1—C61.333 (5)C3—C41.375 (5)
N1—C21.333 (4)C3—C71.507 (5)
N1—H1A0.8600C4—C51.382 (5)
N2—C71.482 (4)C4—H4A0.9300
N2—H2B0.8900C5—C61.373 (5)
N2—H2C0.8900C5—H5A0.9300
N2—H2D0.8900C6—H6A0.9300
C2—C31.372 (5)C7—H7A0.9700
C2—H2A0.9300C7—H7B0.9700
C6—N1—C2122.7 (3)C3—C4—C5120.5 (3)
C6—N1—H1A118.6C3—C4—H4A119.8
C2—N1—H1A118.6C5—C4—H4A119.8
C7—N2—H2B109.5C6—C5—C4118.7 (4)
C7—N2—H2C109.5C6—C5—H5A120.7
H2B—N2—H2C109.5C4—C5—H5A120.7
C7—N2—H2D109.5N1—C6—C5119.6 (4)
H2B—N2—H2D109.5N1—C6—H6A120.2
H2C—N2—H2D109.5C5—C6—H6A120.2
N1—C2—C3119.9 (4)N2—C7—C3111.7 (3)
N1—C2—H2A120.1N2—C7—H7A109.3
C3—C2—H2A120.1C3—C7—H7A109.3
C2—C3—C4118.6 (3)N2—C7—H7B109.3
C2—C3—C7119.3 (3)C3—C7—H7B109.3
C4—C3—C7122.1 (3)H7A—C7—H7B107.9
C6—N1—C2—C30.3 (6)C3—C4—C5—C60.6 (6)
N1—C2—C3—C40.9 (5)C2—N1—C6—C50.6 (6)
N1—C2—C3—C7179.4 (3)C4—C5—C6—N11.1 (6)
C2—C3—C4—C50.4 (6)C2—C3—C7—N287.9 (4)
C7—C3—C4—C5179.8 (4)C4—C3—C7—N291.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br10.892.613.358 (3)142
N2—H2C···Br1i0.892.693.330 (3)130
N2—H2D···Br1ii0.892.493.348 (3)161
N1—H1A···Br20.862.413.206 (3)155
C5—H5A···Br2iii0.932.913.793 (4)160
C6—H6A···Br2iv0.932.893.619 (4)136
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H10N2+·2Br
Mr269.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.1588 (6), 9.3902 (5), 9.3833 (5)
β (°) 113.092 (6)
V3)904.44 (9)
Z4
Radiation typeMo Kα
µ (mm1)8.90
Crystal size (mm)0.23 × 0.18 × 0.12
Data collection
DiffractometerAgilent Xcalibur EOS
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.143, 0.343
No. of measured, independent and
observed [I > 2σ(I)] reflections
4032, 2401, 1641
Rint0.027
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.070, 1.02
No. of reflections2401
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.50

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br10.892.613.358 (3)141.8
N2—H2C···Br1i0.892.693.330 (3)129.5
N2—H2D···Br1ii0.892.493.348 (3)160.7
N1—H1A···Br20.862.413.206 (3)155.0
C5—H5A···Br2iii0.932.913.793 (4)159.8
C6—H6A···Br2iv0.932.893.619 (4)136.0
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The structure was determined at the Hamdi Mango Center for Scientific Research at the University of Jordan, Amman. RA-F would like to thank Al-Balqa'a Applied University (Jordan) for financial support (sabbatical leave).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1997). Chem. Commun. pp. 1475–1482.  CrossRef Web of Science Google Scholar
First citationDolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J. & Wang, X. M. (2001). Chem. Commun. pp. 567–568.  Web of Science CSD CrossRef Google Scholar
First citationGould, R. O., Gray, A. M., Taylor, P. & Walkinshaw, M. D. (1985). J. Am. Chem. Soc. 107, 5921–5927.  CrossRef CAS Web of Science Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationPanunto, T. W., Urbanczyk-Lipkowska, Z., Johnson, R. & Etter, M. C. (1987). J. Am. Chem. Soc. 109, 7786–7797.  CSD CrossRef CAS Web of Science Google Scholar
First citationRobinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 24, 799–806.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, J. & Thornton, J. M. (1990). J. Mol. Biol. 211, 595–615.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds