organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­bromo-2,5-dimeth­­oxy­benzene

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 17 May 2010; accepted 17 June 2010; online 26 June 2010)

The asymmetric unit of the title compound, C8H8Br2O2, contains one half-mol­ecule, the complete mol­ecule being generated by inversion symmetry.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthetic procedure, see: Lopez-Alvarado et al. (2002[Lopez-Alvarado, P., Avendano, C. & Menendez, J. C. (2002). Synthetic. Commun. 32, 3233-3239.]). For potential uses of compounds derived from the title compound, see: Chen et al. (2006[Chen, Z. K., Huang, C., Yang, J. S., O'Shea, S. & Loh, K. P. (2006). National University of Singapore, Singapore. WO patent number. 2006093467.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8Br2O2

  • Mr = 295.94

  • Monoclinic, P 21 /n

  • a = 6.573 (1) Å

  • b = 8.438 (2) Å

  • c = 8.756 (2) Å

  • β = 90.14 (3)°

  • V = 485.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.30 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.288, Tmax = 0.491

  • 1761 measured reflections

  • 884 independent reflections

  • 622 reflections with I > 2σ(I)

  • Rint = 0.112

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.01

  • 884 reflections

  • 55 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 1,4-dibromo-2,5-dimethoxybenzene is an important intermediate in the synthesis of 4-(2',5'-dimethoxy-4'-acetylthiophenyl)phenyl-nonafluorobiphenyl, which can be used as molecular switch, transistor and in the manufacture of memory devices (Chen et al., 2006). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987).

The benzene ring is planar and it's center respresents a crystallographic center of inversion. So only half of the molecule was observed in the asymmetric unit. No hydrogen bond interactions were observed in the crystal structure.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For the synthetic procedure, see: Lopez-Alvarado et al. (2002). For potential uses of compounds derived from the title compound, see: Chen et al. (2006).

Experimental top

The title compound, (I) was synthesized according to a literature method reported before (Lopez-Alvarado et al., 2002). Single crystals were obtained by slow evaporation of a methanolic (25 ml) solution of the compound (0.30 g, 1.0 mmol) at room temperature for about 15 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound.
1,4-Dibromo-2,5-dimethoxybenzene top
Crystal data top
C8H8Br2O2F(000) = 284
Mr = 295.94Dx = 2.024 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.573 (1) Åθ = 9–13°
b = 8.438 (2) ŵ = 8.30 mm1
c = 8.756 (2) ÅT = 298 K
β = 90.14 (3)°Block, colourless
V = 485.6 (2) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
622 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.112
Graphite monochromatorθmax = 25.3°, θmin = 3.4°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.288, Tmax = 0.491l = 1010
1761 measured reflections3 standard reflections every 200 reflections
884 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.03P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
884 reflections(Δ/σ)max < 0.001
55 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H8Br2O2V = 485.6 (2) Å3
Mr = 295.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.573 (1) ŵ = 8.30 mm1
b = 8.438 (2) ÅT = 298 K
c = 8.756 (2) Å0.20 × 0.10 × 0.10 mm
β = 90.14 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
622 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.112
Tmin = 0.288, Tmax = 0.4913 standard reflections every 200 reflections
1761 measured reflections intensity decay: 1%
884 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
884 reflectionsΔρmin = 0.41 e Å3
55 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.26386 (11)0.73471 (7)0.78061 (8)0.0598 (3)
O0.1091 (7)0.5578 (5)0.7000 (5)0.0551 (11)
C10.0605 (9)0.5256 (6)0.8479 (6)0.0394 (13)
C20.1090 (9)0.5986 (5)0.9077 (7)0.0400 (13)
C30.1721 (9)0.5752 (5)1.0558 (7)0.0433 (14)
H3A0.28810.62601.09220.052*
C40.2593 (11)0.4649 (8)0.6294 (8)0.0649 (19)
H4A0.27750.49930.52570.097*
H4B0.38520.47610.68370.097*
H4C0.21810.35580.63040.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0762 (5)0.0516 (4)0.0517 (5)0.0207 (3)0.0162 (3)0.0026 (3)
O0.065 (3)0.055 (2)0.045 (3)0.011 (2)0.004 (2)0.0031 (19)
C10.049 (3)0.036 (3)0.033 (3)0.002 (3)0.007 (3)0.003 (2)
C20.047 (3)0.031 (3)0.042 (4)0.004 (3)0.009 (3)0.002 (2)
C30.049 (3)0.034 (3)0.046 (4)0.006 (3)0.007 (3)0.003 (2)
C40.070 (5)0.078 (4)0.047 (5)0.004 (4)0.014 (4)0.009 (4)
Geometric parameters (Å, º) top
Br—C21.897 (5)C3—C1i1.405 (7)
O—C11.361 (7)C3—H3A0.9300
O—C41.403 (8)C4—H4A0.9600
C1—C21.375 (8)C4—H4B0.9600
C1—C3i1.405 (7)C4—H4C0.9600
C2—C31.375 (8)
C1—O—C4118.1 (5)C2—C3—H3A120.1
O—C1—C2117.4 (5)C1i—C3—H3A120.1
O—C1—C3i124.8 (5)O—C4—H4A109.5
C2—C1—C3i117.8 (5)O—C4—H4B109.5
C1—C2—C3122.5 (5)H4A—C4—H4B109.5
C1—C2—Br118.9 (4)O—C4—H4C109.5
C3—C2—Br118.6 (4)H4A—C4—H4C109.5
C2—C3—C1i119.7 (5)H4B—C4—H4C109.5
C4—O—C1—C2169.3 (5)O—C1—C2—Br1.0 (6)
C4—O—C1—C3i11.4 (8)C3i—C1—C2—Br179.7 (4)
O—C1—C2—C3179.8 (5)C1—C2—C3—C1i0.5 (8)
C3i—C1—C2—C30.5 (8)Br—C2—C3—C1i179.7 (4)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H8Br2O2
Mr295.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.573 (1), 8.438 (2), 8.756 (2)
β (°) 90.14 (3)
V3)485.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)8.30
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.288, 0.491
No. of measured, independent and
observed [I > 2σ(I)] reflections
1761, 884, 622
Rint0.112
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.01
No. of reflections884
No. of parameters55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.41

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, Z. K., Huang, C., Yang, J. S., O'Shea, S. & Loh, K. P. (2006). National University of Singapore, Singapore. WO patent number. 2006093467.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLopez-Alvarado, P., Avendano, C. & Menendez, J. C. (2002). Synthetic. Commun. 32, 3233–3239.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds