organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Meth­oxy­phen­yl)-6-tri­fluoro­methyl-1H-pyrrolo[3,2-c]quinoline monohydrate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 17 March 2010; accepted 13 April 2010; online 17 April 2010)

In the title compound, C19H13F3N2O·H2O, the phenyl and pyrroloquinoline ring system are close to coplanar [dihedral angle = 10.94 (4)°]. The meth­oxy group also is almost coplanar with the phenyl ring [5.4 (1)°]. In the crystal structure N—H⋯O(water) and water–quinoline O—H⋯N hydrogen bonds build up a supra­molecular chain-like arrangement along [001]. The remaining H atom of the water mol­ecule does not take part in classical hydrogen bonds. Instead, this O—H bond points toward the center of the phenyl ring of a neighbouring mol­ecule. Weak C—H⋯O and C—H⋯π inter­actions are also present.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For O—H⋯π bonds, see: Atwood et al. (1991[Atwood, J. L., Hamada, F., Robinson, K. D., Orr, G. W. & Vincent, R. L. (1991). Nature (London), 349, 683-684.]). For the graph-set description of hydrogen-bond systems, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the influence of substituents on the geometry of aromatic rings, see: Domenicano (1988[Domenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281-324. New York: VCH.]). For a similar synthesis, see: Dutkiewicz et al. (2010[Dutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.]). For related structures, see: Fan & Chen (1987[Fan, Z. & Chen, L. (1987). Acta Cryst. C43, 2206-2209.]); Lynch et al. (2001[Lynch, D. E., McClenaghan, I. & Light, M. E. (2001). Acta Cryst. E57, o56-o57.]); Lynch & McClenaghan (2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o1150-o1151.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13F3N2O·H2O

  • Mr = 360.33

  • Monoclinic, P 21 /c

  • a = 13.838 (1) Å

  • b = 7.0432 (5) Å

  • c = 17.758 (2) Å

  • β = 102.743 (8)°

  • V = 1688.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.99 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.340, Tmax = 1.000

  • 5601 measured reflections

  • 3304 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.128

  • S = 1.07

  • 3304 reflections

  • 296 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

CgA, CgB, CgD are the centroids of the C5–C9,C1C, N1,C2–C5,C1C and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1W 0.987 (19) 2.42 (2) 3.340 (2) 155 (2)
N11—H11⋯O1W 0.92 (2) 1.94 (2) 2.845 (2) 167 (2)
C19—H19⋯O1W 0.977 (19) 2.49 (2) 3.439 (2) 164 (1)
C8—H8⋯O20i 1.02 (2) 2.45 (2) 3.427 (2) 160 (2)
O1W—H1W1⋯N1ii 0.91 (2) 1.93 (2) 2.807 (2) 161 (2)
C21—H21C⋯CgAiii 0.94 (2) 2.83 (2) 3.550 (2) 135 (2)
C21—H21B⋯CgBiv 0.97 (2) 2.72 (2) 3.503 (2) 138 (2)
O1W—H1W2⋯CgDiii 0.82 (3) 2.62 (3) 3.310 (2) 143 (2)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is only one crystal structure of a compound having a pyrrolo[3,2-c]quinoline skeleton in the Cambridge Crystallographic Database (Allen, 2002; Version 5.31 of November 2009, last update Feb. 2010): 1-phenyl-2,3,4-tris(trifluoromethyl)pyrrolo[2,3-c]quinoline (Fan & Chen, 1987). The only other similar structurally characterized compounds are derivatives of 1H-pyrrolo[2,3-h]quinoline, namely 2-(4-pyridyl)-pyrrolo[3,2-h]quinoline (Lynch et al., 2001) and 2-phenylpyrrolo[2,3-h]quinoline dihydrate (Lynch & McClenaghan, 2002). Here we present the results of the crystal structure determination of 2-(4-methoxyphenyl)-6-(trifluoromethyl)-1H-pyrrolo[3,2-c]quinoline hydrate(1 . H2O, Scheme 1).

Two planar systems in (1), pyrroloquinoline (planar within 0.0171 (4) Å) and the phenyl ring (0.0050 (11) Å) make a dihedral angle of 10.94 (4)°. Therefore, the complete molecule (without F atoms) is approximately planar. The methoxy group also is not twisted significantly (5.4 (1)°) with respect to the phenyl ring plane. Bond angles within the phenyl ring are influenced by the presence of substituents. As expected for p-disubstitution, the influences are almost additive. The sum of values given by Domenicano (1988) or found in the CSD for mono-substituted phenyl rings are very close to the actual values in (1).

The primary motif of the crystal packing is a chain of alternate water and 1 molecules (Fig. 2, Table 1). In that chain (C22(8) using graph set notation: Bernstein et al., 1995) both components act as hydrogen bond donor and acceptor. N11—H11 group of 1 donates hydrogen for the N—H···O1W (water) hydrogen bond, and the water molecule acts as a donor for the OH···N1(quinoline) hydrogen bond. Due to the steric requirement, the O1W oxygen atom is also in close contact with the adjacent H6 and H19 hydrogen atoms. Because of the geometric parameters of these interactions (Table 1), they might be regarded as the secondary, weak hydrogen bonds. The remaining hydrogen atom of the water molecule does not take part in "classical" hydrogen bonds; instead this O—H bond points toward the phenyl ring of the neighbouring molecule, probably making the O—H(water)···π weak hydrogen bond. Such hydrogen bonds were described by Atwood et al. (1991), and they are supposed to play a role in the biological systems. There are some 300 cases of such short contacts in the CSD. In 1, O—H···π hydrogen bonds together with another weak interactions of C—H···O, C—H···π and π···π type, connect the neighbouring chains (Table 1, Fig. 3).

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For O—H···π bonds, see: Atwood et al. (1991). For the graph-set description of hydrogen-bond systems, see: Bernstein et al. (1995). For the influence of the substituents on the geometry of aromatic rings, see: Domenicano (1988). For a similar synthesis, see: Dutkiewicz et al. (2010). For related structures, see: Fan & Chen (1987); Lynch et al. (2001); Lynch & McClenaghan (2002).

Experimental top

1-(4-methoxyphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone (1.8 g, 5 mmoles), prepared according to the previously described method (Dutkiewicz et al., 2010) was added to 5 ml of diphenyl ether and the mixture was heated at 523 K in an oil bath for 6 hrs. After cooling, ether was added until the solution became cloudy. Further cooling resulted in precipitation of the product (I), which was collected by filtration. Recrystallization was performed at room temperature from ethanol, m.p.: 401-403 K. Analysis found: C 66.56, H 3.79, N 8.23%; C19H13F3N2O, requires: C 66.66, H 3.83, N 8.18%

Refinement top

Hydrogen atoms were located in the difference Fourier maps and isotropically refined.

Structure description top

There is only one crystal structure of a compound having a pyrrolo[3,2-c]quinoline skeleton in the Cambridge Crystallographic Database (Allen, 2002; Version 5.31 of November 2009, last update Feb. 2010): 1-phenyl-2,3,4-tris(trifluoromethyl)pyrrolo[2,3-c]quinoline (Fan & Chen, 1987). The only other similar structurally characterized compounds are derivatives of 1H-pyrrolo[2,3-h]quinoline, namely 2-(4-pyridyl)-pyrrolo[3,2-h]quinoline (Lynch et al., 2001) and 2-phenylpyrrolo[2,3-h]quinoline dihydrate (Lynch & McClenaghan, 2002). Here we present the results of the crystal structure determination of 2-(4-methoxyphenyl)-6-(trifluoromethyl)-1H-pyrrolo[3,2-c]quinoline hydrate(1 . H2O, Scheme 1).

Two planar systems in (1), pyrroloquinoline (planar within 0.0171 (4) Å) and the phenyl ring (0.0050 (11) Å) make a dihedral angle of 10.94 (4)°. Therefore, the complete molecule (without F atoms) is approximately planar. The methoxy group also is not twisted significantly (5.4 (1)°) with respect to the phenyl ring plane. Bond angles within the phenyl ring are influenced by the presence of substituents. As expected for p-disubstitution, the influences are almost additive. The sum of values given by Domenicano (1988) or found in the CSD for mono-substituted phenyl rings are very close to the actual values in (1).

The primary motif of the crystal packing is a chain of alternate water and 1 molecules (Fig. 2, Table 1). In that chain (C22(8) using graph set notation: Bernstein et al., 1995) both components act as hydrogen bond donor and acceptor. N11—H11 group of 1 donates hydrogen for the N—H···O1W (water) hydrogen bond, and the water molecule acts as a donor for the OH···N1(quinoline) hydrogen bond. Due to the steric requirement, the O1W oxygen atom is also in close contact with the adjacent H6 and H19 hydrogen atoms. Because of the geometric parameters of these interactions (Table 1), they might be regarded as the secondary, weak hydrogen bonds. The remaining hydrogen atom of the water molecule does not take part in "classical" hydrogen bonds; instead this O—H bond points toward the phenyl ring of the neighbouring molecule, probably making the O—H(water)···π weak hydrogen bond. Such hydrogen bonds were described by Atwood et al. (1991), and they are supposed to play a role in the biological systems. There are some 300 cases of such short contacts in the CSD. In 1, O—H···π hydrogen bonds together with another weak interactions of C—H···O, C—H···π and π···π type, connect the neighbouring chains (Table 1, Fig. 3).

For a description of the Cambridge Structural Database, see: Allen (2002). For O—H···π bonds, see: Atwood et al. (1991). For the graph-set description of hydrogen-bond systems, see: Bernstein et al. (1995). For the influence of the substituents on the geometry of aromatic rings, see: Domenicano (1988). For a similar synthesis, see: Dutkiewicz et al. (2010). For related structures, see: Fan & Chen (1987); Lynch et al. (2001); Lynch & McClenaghan (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009)); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009)); data reduction: CrysAlis PRO (Oxford Diffraction, 2009)); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound 1 . H2O showing the atom labelling scheme. Ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. Hydrogen bonds and weaker C—H···O contacts (cf. Comment Section) are shown as dashed lines.
[Figure 2] Fig. 2. Hydrogen bonded chain along [001]; N—H···O, O—H···N, and C—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal packing; hydrogen bonds and O—H···π and C—H···π contacts are shown as dashed lines.
2-(4-Methoxyphenyl)-6-trifluoromethyl-1H-pyrrolo[3,2-c]quinoline monohydrate top
Crystal data top
C19H13F3N2O·H2OF(000) = 744
Mr = 360.33Dx = 1.418 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3587 reflections
a = 13.838 (1) Åθ = 3.3–75.2°
b = 7.0432 (5) ŵ = 0.99 mm1
c = 17.758 (2) ÅT = 295 K
β = 102.743 (8)°Plate, colourless
V = 1688.2 (2) Å30.4 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova (single source at offset) Atlas
diffractometer
3304 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2767 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 5.2679 pixels mm-1θmax = 75.3°, θmin = 3.3°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 85
Tmin = 0.340, Tmax = 1.000l = 2219
5601 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.1838P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.009
3304 reflectionsΔρmax = 0.19 e Å3
296 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (10)
Crystal data top
C19H13F3N2O·H2OV = 1688.2 (2) Å3
Mr = 360.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.838 (1) ŵ = 0.99 mm1
b = 7.0432 (5) ÅT = 295 K
c = 17.758 (2) Å0.4 × 0.2 × 0.1 mm
β = 102.743 (8)°
Data collection top
Oxford Diffraction SuperNova (single source at offset) Atlas
diffractometer
3304 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2767 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 1.000Rint = 0.013
5601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.128All H-atom parameters refined
S = 1.07Δρmax = 0.19 e Å3
3304 reflectionsΔρmin = 0.21 e Å3
296 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.78945 (9)0.29250 (19)0.16925 (7)0.0550 (3)
C20.88353 (11)0.3157 (3)0.20243 (8)0.0585 (4)
H20.9306 (14)0.344 (3)0.1687 (10)0.071 (5)*
C30.92113 (10)0.3055 (2)0.28263 (8)0.0510 (3)
C40.85387 (10)0.26693 (18)0.32912 (7)0.0439 (3)
C50.75150 (10)0.24194 (18)0.29686 (8)0.0457 (3)
C60.67970 (11)0.2042 (2)0.34033 (9)0.0564 (4)
H60.6994 (13)0.196 (3)0.3971 (11)0.069 (5)*
C70.58263 (12)0.1830 (3)0.30423 (10)0.0684 (5)
H70.5303 (15)0.158 (3)0.3354 (11)0.080 (6)*
C80.55295 (12)0.1992 (3)0.22380 (10)0.0668 (4)
H80.4799 (16)0.183 (3)0.1986 (11)0.080 (6)*
C90.62098 (11)0.2358 (2)0.18026 (9)0.0564 (4)
C910.58623 (13)0.2559 (3)0.09412 (11)0.0790 (6)
F91A0.48893 (9)0.2321 (3)0.07127 (7)0.1234 (6)
F91B0.62834 (10)0.1319 (2)0.05506 (7)0.1118 (5)
F91C0.60642 (9)0.4282 (2)0.06897 (7)0.1051 (5)
C100.72299 (10)0.25735 (19)0.21521 (8)0.0474 (3)
N110.90552 (8)0.26236 (16)0.40374 (6)0.0451 (3)
H110.8790 (14)0.233 (2)0.4455 (11)0.065 (5)*
C121.00454 (10)0.2982 (2)0.40618 (8)0.0472 (3)
C131.01616 (10)0.3251 (2)0.33251 (8)0.0560 (4)
H131.0773 (14)0.354 (3)0.3175 (10)0.073 (5)*
C141.07851 (10)0.30124 (19)0.47970 (8)0.0469 (3)
C151.17510 (10)0.3653 (2)0.48185 (9)0.0557 (4)
H151.1925 (12)0.408 (3)0.4342 (10)0.067 (5)*
C161.24628 (11)0.3636 (2)0.54972 (9)0.0590 (4)
H161.3115 (14)0.409 (3)0.5519 (10)0.072 (5)*
C171.22347 (10)0.3006 (2)0.61766 (8)0.0528 (3)
C181.12861 (11)0.2388 (2)0.61730 (9)0.0547 (4)
H181.1117 (13)0.195 (2)0.6656 (11)0.064 (5)*
C191.05731 (10)0.2390 (2)0.54829 (8)0.0525 (3)
H190.9913 (14)0.193 (2)0.5499 (10)0.064 (5)*
O201.29904 (8)0.30707 (18)0.68177 (6)0.0660 (3)
C211.27720 (15)0.2604 (3)0.75398 (10)0.0669 (5)
H21A1.3371 (18)0.280 (3)0.7903 (13)0.090 (7)*
H21B1.2269 (17)0.345 (3)0.7653 (12)0.089 (6)*
H21C1.2575 (14)0.133 (3)0.7546 (11)0.078 (6)*
O1W0.81044 (9)0.12279 (19)0.51922 (6)0.0610 (3)
H1W10.7916 (17)0.165 (3)0.5623 (13)0.092 (7)*
H1W20.802 (2)0.008 (4)0.5170 (15)0.121 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0483 (6)0.0776 (8)0.0393 (6)0.0045 (6)0.0100 (5)0.0023 (5)
C20.0472 (7)0.0893 (11)0.0408 (7)0.0035 (7)0.0132 (6)0.0002 (7)
C30.0445 (7)0.0674 (8)0.0416 (7)0.0037 (6)0.0105 (5)0.0016 (6)
C40.0430 (7)0.0504 (7)0.0378 (6)0.0029 (5)0.0077 (5)0.0014 (5)
C50.0448 (7)0.0500 (7)0.0414 (7)0.0012 (5)0.0076 (5)0.0008 (5)
C60.0491 (8)0.0735 (9)0.0463 (7)0.0054 (7)0.0100 (6)0.0035 (7)
C70.0489 (8)0.0975 (12)0.0597 (9)0.0095 (8)0.0143 (7)0.0046 (9)
C80.0443 (8)0.0930 (12)0.0600 (9)0.0049 (8)0.0046 (7)0.0004 (8)
C90.0463 (8)0.0711 (9)0.0487 (8)0.0016 (6)0.0043 (6)0.0033 (6)
C910.0496 (9)0.1272 (17)0.0557 (10)0.0007 (10)0.0016 (7)0.0078 (10)
F91A0.0517 (6)0.2442 (19)0.0643 (7)0.0149 (8)0.0089 (5)0.0008 (8)
F91B0.0891 (8)0.1757 (14)0.0664 (6)0.0034 (8)0.0080 (6)0.0496 (8)
F91C0.0881 (8)0.1500 (12)0.0710 (7)0.0129 (8)0.0040 (6)0.0398 (8)
C100.0460 (7)0.0539 (7)0.0415 (7)0.0029 (5)0.0080 (6)0.0027 (5)
N110.0421 (6)0.0557 (6)0.0369 (5)0.0007 (4)0.0074 (4)0.0000 (4)
C120.0403 (6)0.0557 (7)0.0446 (7)0.0039 (5)0.0068 (5)0.0019 (5)
C130.0410 (7)0.0829 (10)0.0446 (7)0.0022 (7)0.0108 (6)0.0002 (7)
C140.0412 (7)0.0537 (7)0.0444 (7)0.0042 (5)0.0061 (5)0.0023 (5)
C150.0445 (7)0.0705 (9)0.0514 (8)0.0003 (6)0.0090 (6)0.0010 (7)
C160.0412 (7)0.0743 (10)0.0596 (8)0.0019 (7)0.0069 (6)0.0005 (7)
C170.0430 (7)0.0580 (8)0.0515 (7)0.0063 (6)0.0022 (6)0.0032 (6)
C180.0495 (8)0.0667 (9)0.0457 (8)0.0007 (6)0.0054 (6)0.0027 (6)
C190.0415 (7)0.0682 (9)0.0459 (7)0.0012 (6)0.0057 (6)0.0004 (6)
O200.0488 (6)0.0855 (8)0.0553 (6)0.0016 (5)0.0065 (5)0.0003 (5)
C210.0688 (11)0.0694 (11)0.0532 (9)0.0023 (8)0.0063 (8)0.0012 (8)
O1W0.0696 (7)0.0718 (8)0.0449 (5)0.0025 (6)0.0199 (5)0.0002 (5)
Geometric parameters (Å, º) top
N1—C21.3155 (19)N11—H110.92 (2)
N1—C101.3800 (18)C12—C131.3662 (19)
C2—C31.4061 (19)C12—C141.4707 (18)
C2—H21.00 (2)C13—H130.96 (2)
C3—C41.4004 (19)C14—C191.385 (2)
C3—C131.4210 (19)C14—C151.403 (2)
C4—N111.3601 (17)C15—C161.378 (2)
C4—C51.4170 (19)C15—H150.977 (18)
C5—C61.411 (2)C16—C171.386 (2)
C5—C101.4202 (19)C16—H160.950 (19)
C6—C71.363 (2)C17—O201.3663 (16)
C6—H60.987 (19)C17—C181.382 (2)
C7—C81.401 (2)C18—C191.394 (2)
C7—H71.02 (2)C18—H180.988 (19)
C8—C91.368 (2)C19—H190.977 (19)
C8—H81.02 (2)O20—C211.419 (2)
C9—C101.419 (2)C21—H21A0.94 (2)
C9—C911.506 (2)C21—H21B0.97 (2)
C91—F91B1.327 (2)C21—H21C0.94 (2)
C91—F91A1.328 (2)O1W—H1W10.91 (2)
C91—F91C1.344 (3)O1W—H1W20.82 (3)
N11—C121.3845 (17)
C2—N1—C10118.69 (12)C4—N11—H11124.9 (11)
N1—C2—C3123.77 (13)C12—N11—H11125.7 (11)
N1—C2—H2117.9 (10)C13—C12—N11108.67 (12)
C3—C2—H2118.3 (10)C13—C12—C14129.95 (13)
C4—C3—C2117.49 (13)N11—C12—C14121.38 (12)
C4—C3—C13107.18 (12)C12—C13—C3107.17 (12)
C2—C3—C13135.34 (14)C12—C13—H13126.2 (11)
N11—C4—C3107.71 (12)C3—C13—H13126.6 (11)
N11—C4—C5130.89 (12)C19—C14—C15117.58 (13)
C3—C4—C5121.39 (12)C19—C14—C12122.34 (12)
C6—C5—C4124.31 (13)C15—C14—C12120.07 (13)
C6—C5—C10120.15 (13)C16—C15—C14120.92 (14)
C4—C5—C10115.54 (12)C16—C15—H15119.7 (10)
C7—C6—C5120.19 (14)C14—C15—H15119.4 (10)
C7—C6—H6119.7 (11)C15—C16—C17120.54 (14)
C5—C6—H6120.1 (11)C15—C16—H16121.5 (11)
C6—C7—C8120.51 (15)C17—C16—H16117.9 (11)
C6—C7—H7120.5 (11)O20—C17—C18124.48 (14)
C8—C7—H7119.0 (11)O20—C17—C16115.81 (13)
C9—C8—C7120.52 (15)C18—C17—C16119.70 (13)
C9—C8—H8120.9 (12)C17—C18—C19119.43 (14)
C7—C8—H8118.6 (12)C17—C18—H18120.1 (11)
C8—C9—C10121.00 (14)C19—C18—H18120.5 (11)
C8—C9—C91119.11 (14)C14—C19—C18121.83 (14)
C10—C9—C91119.88 (14)C14—C19—H19120.8 (10)
F91B—C91—F91A106.84 (17)C18—C19—H19117.4 (10)
F91B—C91—F91C105.85 (17)C17—O20—C21117.95 (13)
F91A—C91—F91C106.47 (18)O20—C21—H21A104.7 (14)
F91B—C91—C9112.99 (17)O20—C21—H21B110.5 (13)
F91A—C91—C9111.93 (16)H21A—C21—H21B109.4 (17)
F91C—C91—C9112.29 (16)O20—C21—H21C110.6 (12)
N1—C10—C5123.12 (13)H21A—C21—H21C110.3 (17)
N1—C10—C9119.26 (13)H21B—C21—H21C111.1 (18)
C5—C10—C9117.63 (13)H1W1—O1W—H1W2107 (2)
C4—N11—C12109.27 (11)
C10—N1—C2—C30.5 (3)C8—C9—C10—N1179.42 (16)
N1—C2—C3—C40.5 (3)C91—C9—C10—N11.4 (2)
N1—C2—C3—C13179.65 (17)C8—C9—C10—C50.8 (2)
C2—C3—C4—N11179.62 (13)C91—C9—C10—C5178.39 (15)
C13—C3—C4—N110.26 (16)C3—C4—N11—C120.29 (15)
C2—C3—C4—C51.0 (2)C5—C4—N11—C12179.04 (13)
C13—C3—C4—C5179.15 (13)C4—N11—C12—C130.21 (16)
N11—C4—C5—C60.2 (2)C4—N11—C12—C14179.70 (12)
C3—C4—C5—C6179.49 (14)N11—C12—C13—C30.05 (17)
N11—C4—C5—C10179.70 (13)C14—C12—C13—C3179.47 (14)
C3—C4—C5—C100.45 (19)C4—C3—C13—C120.12 (17)
C4—C5—C6—C7179.73 (15)C2—C3—C13—C12179.72 (18)
C10—C5—C6—C70.2 (2)C13—C12—C14—C19168.59 (16)
C5—C6—C7—C80.3 (3)N11—C12—C14—C1910.8 (2)
C6—C7—C8—C90.2 (3)C13—C12—C14—C1510.1 (2)
C7—C8—C9—C100.3 (3)N11—C12—C14—C15170.52 (13)
C7—C8—C9—C91178.87 (18)C19—C14—C15—C160.8 (2)
C8—C9—C91—F91B121.27 (19)C12—C14—C15—C16177.96 (14)
C10—C9—C91—F91B59.5 (2)C14—C15—C16—C170.8 (2)
C8—C9—C91—F91A0.6 (3)C15—C16—C17—O20179.21 (14)
C10—C9—C91—F91A179.81 (17)C15—C16—C17—C180.0 (2)
C8—C9—C91—F91C119.09 (18)O20—C17—C18—C19179.80 (14)
C10—C9—C91—F91C60.1 (2)C16—C17—C18—C190.6 (2)
C2—N1—C10—C51.0 (2)C15—C14—C19—C180.1 (2)
C2—N1—C10—C9178.74 (15)C12—C14—C19—C18178.60 (13)
C6—C5—C10—N1179.48 (14)C17—C18—C19—C140.6 (2)
C4—C5—C10—N10.6 (2)C18—C17—O20—C214.8 (2)
C6—C5—C10—C90.7 (2)C16—C17—O20—C21174.42 (15)
C4—C5—C10—C9179.21 (12)
Hydrogen-bond geometry (Å, º) top
CgA, CgB, CgD are the centroids of the C5–C9,C1C, N1,C2–C5,C1C and C14–C19 rings, respectively
D—H···AD—HH···AD···AD—H···A
C6—H6···O1W0.987 (19)2.42 (2)3.340 (2)155 (2)
N11—H11···O1W0.92 (2)1.94 (2)2.845 (2)167 (2)
C19—H19···O1W0.977 (19)2.49 (2)3.439 (2)164 (1)
C8—H8···O20i1.02 (2)2.45 (2)3.427 (2)160 (2)
O1W—H1W1···N1ii0.91 (2)1.93 (2)2.807 (2)161 (2)
C21—H21C···CgAiii0.94 (2)2.83 (2)3.550 (2)135 (2)
C21—H21B···CgBiv0.97 (2)2.72 (2)3.503 (2)138 (2)
O1W—H1W2···CgDiii0.82 (3)2.62 (3)3.310 (2)143 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H13F3N2O·H2O
Mr360.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.838 (1), 7.0432 (5), 17.758 (2)
β (°) 102.743 (8)
V3)1688.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.99
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction SuperNova (single source at offset) Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.340, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5601, 3304, 2767
Rint0.013
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.128, 1.07
No. of reflections3304
No. of parameters296
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009)), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
CgA, CgB, CgD are the centroids of the C5–C9,C1C, N1,C2–C5,C1C and C14–C19 rings, respectively
D—H···AD—HH···AD···AD—H···A
C6—H6···O1W0.987 (19)2.42 (2)3.340 (2)155 (2)
N11—H11···O1W0.92 (2)1.94 (2)2.845 (2)167 (2)
C19—H19···O1W0.977 (19)2.49 (2)3.439 (2)164 (1)
C8—H8···O20i1.02 (2)2.45 (2)3.427 (2)160 (2)
O1W—H1W1···N1ii0.91 (2)1.93 (2)2.807 (2)161 (2)
C21—H21C···CgAiii0.94 (2)2.83 (2)3.550 (2)135 (2)
C21—H21B···CgBiv0.97 (2)2.72 (2)3.503 (2)138 (2)
O1W—H1W2···CgDiii0.82 (3)2.62 (3)3.310 (2)143 (2)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+2, y+1, z+1.
 

Acknowledgements

ANM thanks the University of Mysore for the research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAtwood, J. L., Hamada, F., Robinson, K. D., Orr, G. W. & Vincent, R. L. (1991). Nature (London), 349, 683–684.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDomenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281–324. New York: VCH.  Google Scholar
First citationDutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFan, Z. & Chen, L. (1987). Acta Cryst. C43, 2206–2209.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o1150–o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E., McClenaghan, I. & Light, M. E. (2001). Acta Cryst. E57, o56–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds