organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Naphthalene-1,4,5,8-tetra­carboxylic acid 1,8-anhydride–4,4′-bi­pyridine (1/1)

aCollege of Chemistry & Bio-engineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China, and bInstitute of Coordination catalysis, Yichun University, Yichun, Jiangxi 336000, People's Republic of China
*Correspondence e-mail: djhycu_2006@yahoo.com.cn

(Received 12 October 2009; accepted 23 October 2009; online 31 October 2009)

The title compound, C14H6O7·C10H8N2, has been hydro­thermally synthesized. Structural ananlysis indicates that the crystals are produced by cocrystallization of naphthalene-1,4,5,8-tetra­carboxylic acid 1,8-anhydride and 4,4′-bipyridine (bpy) mol­ecules. The crystal packing is stabilized by inter­molecular O—H⋯N and C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances = 3.5846 (9) Å].

Related literature

For the structures of naphthalene-1,4,5,8-tetra­carboxylic acid 1,8-anhydride, its DMSO solvate and several metal complexes, see: Blackburn et al. (1997[Blackburn, A. C., Fitzgerald, L. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1991-1995.]); Fitzgerald et al. (1992[Fitzgerald, L. J., Gallucci, J. C. & Gerkin, R. E. (1992). Acta Cryst. C48, 460-465.]); Robl (1987[Robl, C. (1987). Mater. Res. Bull. 22, 1645-1652.]); Xu et al. (2005a[Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L., Zhou, Y. F. & Hong, M.-C. (2005a). Inorg. Chem. Commun. 8, 651-655.],b[Xu, Y.-Q., Yuan, D.-Q., Zhou, Y.-F., Wu, M.-Y. & Hong, M.-C. (2005b). Acta Cryst. E61, o1294-o1296.].) For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H6O7·C10H8N2

  • Mr = 442.37

  • Triclinic, [P \overline 1]

  • a = 9.6193 (8) Å

  • b = 9.6964 (3) Å

  • c = 10.192 (1) Å

  • α = 81.384 (5)°

  • β = 85.615 (6)°

  • γ = 83.947 (3)°

  • V = 932.9 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.977

  • 6648 measured reflections

  • 3240 independent reflections

  • 2772 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.104

  • S = 1.06

  • 3240 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.84 1.77 2.594 (2) 167
O4—H4A⋯N1ii 0.84 1.74 2.573 (2) 171
C16—H16⋯O1iii 0.95 2.36 3.254 (2) 157
C22—H22⋯O3iv 0.95 2.57 3.425 (2) 150
Symmetry codes: (i) x, y-1, z-1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several crystal structures of naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydride (ntaa) (Xu et al., 2005b), its DMSO solvate (Blackburn et al., 1997) and some metal complexes (Fitzgerald et al., 1992; Robl et al., 1987; Xu et al., 2005a) have been reported in the literature. Herein, we report the synthesis and crystal crystal structure of a new compound of ntaa.

The structure of the title compound, (I), consists of one ntaa molecule and one bpy molecule. The two carboxylate groups of the ntaa are not coplanar with the naphthalene ring. The corresponding dihedral angles O1-C1-C2-C13 and O3-C12-C11-C10 are 50.8 (2)° and 52.7 (2)°, respectively. The two pyridyl rings of the bpy molecule are almost coplanar with a dihedral angle of 3.6 (3)° (Fig. 1).

The molecules are held together by intermolecular hydrogen bonding interactions (Desiraju et al. 1999) and π-π stacking interactions, forming a three-dimensional supramolecular network. Two O–H···N hydrogen bonds with O···O distances of 2.594 (2) and 2.573 (2) Å are formed with the two carboxylic acid OH groups as donors and the N atoms of the two inequivalent bpy molecules as acceptors (Table 1, Fig. 1 and Fig. 2). In addition, π-π stacking interactions between two pyridyl rings (3.346 Å) and two naphthalene rings (3.357 Å), are also observed.

Related literature top

For the structures of naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydride, its DMSO solvate and several metal complexes, see: Blackburn et al. (1997); Fitzgerald et al. (1992); Robl et al. (1987); Xu et al. (2005a,b.) For hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental top

A mixture of 0.5 mmol NiCl2 × 6 H2O, 0.5 mmol of naphthalene-1,4,5,8-tetracarboxylic acid, 0.5 mmol of 4,4-bipyridine, 1.0 mmol of NaOH and 10 ml distilled water was heated to 383 K for six days in a 20 ml sealed Teflon-lined stainless steel vessel. After the autoclave was cooled to room temperature, block-shaped yellow crystals of (I) were isolated by filtration, washed with water, and dried in air. (yield: 53.2% based on naphthalene-1,4,5,8-tetracarboxylic acid)

Refinement top

Hydrogen atoms attached to carbon and oxygen atoms were positioned geometrically and treated as riding, with C—H = 0.95 Å, O—H = 0.84 Å, and Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Structure description top

Several crystal structures of naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydride (ntaa) (Xu et al., 2005b), its DMSO solvate (Blackburn et al., 1997) and some metal complexes (Fitzgerald et al., 1992; Robl et al., 1987; Xu et al., 2005a) have been reported in the literature. Herein, we report the synthesis and crystal crystal structure of a new compound of ntaa.

The structure of the title compound, (I), consists of one ntaa molecule and one bpy molecule. The two carboxylate groups of the ntaa are not coplanar with the naphthalene ring. The corresponding dihedral angles O1-C1-C2-C13 and O3-C12-C11-C10 are 50.8 (2)° and 52.7 (2)°, respectively. The two pyridyl rings of the bpy molecule are almost coplanar with a dihedral angle of 3.6 (3)° (Fig. 1).

The molecules are held together by intermolecular hydrogen bonding interactions (Desiraju et al. 1999) and π-π stacking interactions, forming a three-dimensional supramolecular network. Two O–H···N hydrogen bonds with O···O distances of 2.594 (2) and 2.573 (2) Å are formed with the two carboxylic acid OH groups as donors and the N atoms of the two inequivalent bpy molecules as acceptors (Table 1, Fig. 1 and Fig. 2). In addition, π-π stacking interactions between two pyridyl rings (3.346 Å) and two naphthalene rings (3.357 Å), are also observed.

For the structures of naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydride, its DMSO solvate and several metal complexes, see: Blackburn et al. (1997); Fitzgerald et al. (1992); Robl et al. (1987); Xu et al. (2005a,b.) For hydrogen bonds, see: Desiraju & Steiner (1999).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of (I), Symmetry code: -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. The intermolecular hydrogen bonds (dashed lines) and π-π stacking interactions existing in the crystal structure of (I).
Naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydride–4,4'-bipyridine (1/1) top
Crystal data top
C14H6O7·C10H8N2Z = 2
Mr = 442.37F(000) = 456
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6193 (8) ÅCell parameters from 5003 reflections
b = 9.6964 (3) Åθ = 2.9–27.1°
c = 10.192 (1) ŵ = 0.12 mm1
α = 81.384 (5)°T = 173 K
β = 85.615 (6)°Block, yellow
γ = 83.947 (3)°0.28 × 0.24 × 0.20 mm
V = 932.9 (1) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3240 independent reflections
Radiation source: fine-focus sealed tube2772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998\bbr00)
h = 1111
Tmin = 0.968, Tmax = 0.977k = 1111
6648 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1626P]
where P = (Fo2 + 2Fc2)/3
3240 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H6O7·C10H8N2γ = 83.947 (3)°
Mr = 442.37V = 932.9 (1) Å3
Triclinic, P1Z = 2
a = 9.6193 (8) ÅMo Kα radiation
b = 9.6964 (3) ŵ = 0.12 mm1
c = 10.192 (1) ÅT = 173 K
α = 81.384 (5)°0.28 × 0.24 × 0.20 mm
β = 85.615 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3240 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998\bbr00)
2772 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.017
6648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
3240 reflectionsΔρmin = 0.21 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O61.12369 (10)0.85984 (10)0.57565 (9)0.0273 (2)
O30.55296 (10)0.61928 (11)0.24288 (10)0.0327 (3)
O70.92667 (10)0.94482 (10)0.67238 (10)0.0299 (3)
O10.83856 (10)0.51984 (10)0.08988 (9)0.0296 (2)
O51.31804 (10)0.81386 (10)0.45444 (10)0.0304 (3)
C80.90124 (14)0.79831 (13)0.50961 (13)0.0228 (3)
C140.97444 (13)0.70939 (13)0.42367 (13)0.0207 (3)
C130.89868 (13)0.63253 (13)0.34836 (12)0.0207 (3)
C110.74906 (14)0.65192 (13)0.36207 (13)0.0226 (3)
C20.98025 (14)0.54118 (13)0.26762 (13)0.0219 (3)
C51.12245 (14)0.69889 (13)0.41277 (13)0.0230 (3)
C100.68213 (14)0.74534 (14)0.44146 (14)0.0262 (3)
H100.58280.76080.44520.031*
C70.97886 (14)0.87102 (13)0.59342 (13)0.0243 (3)
C61.19789 (14)0.79167 (14)0.47810 (13)0.0246 (3)
C120.65343 (14)0.56573 (14)0.30445 (13)0.0241 (3)
C41.19675 (14)0.60634 (14)0.33777 (14)0.0261 (3)
H41.29620.59720.33310.031*
C10.91902 (14)0.46243 (14)0.17226 (13)0.0229 (3)
C90.75773 (15)0.81770 (14)0.51654 (14)0.0265 (3)
H90.70980.88000.57210.032*
C31.12416 (14)0.52589 (14)0.26854 (14)0.0257 (3)
H31.17570.45850.22050.031*
N10.46466 (12)0.72761 (13)0.75937 (12)0.0280 (3)
N20.84743 (12)1.16076 (13)1.06975 (12)0.0298 (3)
C170.62220 (13)0.89707 (14)0.87676 (13)0.0228 (3)
C180.70313 (13)0.98835 (14)0.94187 (13)0.0227 (3)
C230.52433 (15)0.95430 (15)0.78427 (14)0.0272 (3)
H230.51011.05290.75960.033*
C220.68533 (16)1.13357 (15)0.91138 (14)0.0305 (3)
H220.62341.17690.84570.037*
C150.55791 (15)0.67228 (15)0.84780 (15)0.0310 (3)
H150.56940.57330.87060.037*
C240.44849 (15)0.86730 (15)0.72895 (14)0.0297 (3)
H240.38200.90810.66670.036*
C160.63843 (15)0.75167 (15)0.90771 (15)0.0302 (3)
H160.70430.70760.96940.036*
C210.75874 (16)1.21431 (15)0.97767 (14)0.0310 (3)
H210.74491.31330.95610.037*
C200.86494 (16)1.02078 (16)1.10009 (16)0.0362 (4)
H200.92750.98081.16630.043*
C190.79578 (16)0.93242 (16)1.03902 (15)0.0331 (3)
H190.81130.83381.06320.040*
O40.68631 (10)0.43151 (10)0.33780 (10)0.0283 (2)
H4A0.63030.38650.30590.042*
O20.96983 (10)0.33081 (10)0.18631 (10)0.0280 (2)
H20.92610.28670.14050.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0303 (5)0.0273 (5)0.0267 (5)0.0074 (4)0.0067 (4)0.0057 (4)
O30.0249 (5)0.0356 (6)0.0398 (6)0.0001 (4)0.0124 (4)0.0093 (5)
O70.0389 (6)0.0248 (5)0.0279 (5)0.0009 (4)0.0085 (4)0.0093 (4)
O10.0328 (6)0.0302 (5)0.0268 (5)0.0008 (4)0.0087 (4)0.0050 (4)
O50.0256 (5)0.0315 (5)0.0358 (6)0.0100 (4)0.0071 (4)0.0028 (4)
C80.0273 (7)0.0182 (6)0.0232 (7)0.0038 (5)0.0032 (5)0.0020 (5)
C140.0237 (7)0.0173 (6)0.0213 (6)0.0036 (5)0.0038 (5)0.0005 (5)
C130.0232 (7)0.0184 (6)0.0206 (6)0.0039 (5)0.0043 (5)0.0003 (5)
C110.0235 (7)0.0208 (6)0.0234 (7)0.0028 (5)0.0041 (5)0.0012 (5)
C20.0247 (7)0.0195 (6)0.0217 (6)0.0043 (5)0.0027 (5)0.0010 (5)
C50.0247 (7)0.0208 (6)0.0236 (7)0.0050 (5)0.0050 (5)0.0002 (5)
C100.0207 (7)0.0262 (7)0.0320 (8)0.0013 (5)0.0025 (6)0.0056 (6)
C70.0289 (7)0.0194 (6)0.0246 (7)0.0027 (5)0.0064 (6)0.0007 (5)
C60.0274 (8)0.0217 (6)0.0243 (7)0.0038 (5)0.0068 (6)0.0013 (5)
C120.0203 (7)0.0285 (7)0.0244 (7)0.0039 (5)0.0010 (5)0.0054 (6)
C40.0191 (7)0.0277 (7)0.0318 (7)0.0039 (5)0.0024 (6)0.0036 (6)
C10.0230 (7)0.0239 (7)0.0224 (7)0.0045 (5)0.0001 (5)0.0042 (5)
C90.0279 (7)0.0239 (7)0.0282 (7)0.0002 (5)0.0007 (6)0.0076 (6)
C30.0239 (7)0.0252 (7)0.0286 (7)0.0013 (5)0.0001 (6)0.0071 (6)
N10.0241 (6)0.0320 (7)0.0308 (6)0.0072 (5)0.0007 (5)0.0112 (5)
N20.0283 (6)0.0332 (7)0.0314 (7)0.0050 (5)0.0024 (5)0.0141 (5)
C170.0203 (7)0.0275 (7)0.0218 (7)0.0029 (5)0.0012 (5)0.0082 (5)
C180.0205 (7)0.0274 (7)0.0217 (7)0.0027 (5)0.0008 (5)0.0086 (5)
C230.0296 (7)0.0257 (7)0.0273 (7)0.0055 (6)0.0055 (6)0.0032 (6)
C220.0365 (8)0.0295 (7)0.0270 (7)0.0056 (6)0.0094 (6)0.0033 (6)
C150.0279 (7)0.0253 (7)0.0416 (8)0.0015 (6)0.0049 (6)0.0105 (6)
C240.0279 (7)0.0350 (8)0.0280 (7)0.0072 (6)0.0060 (6)0.0052 (6)
C160.0267 (7)0.0278 (7)0.0374 (8)0.0002 (6)0.0101 (6)0.0067 (6)
C210.0391 (8)0.0258 (7)0.0296 (8)0.0083 (6)0.0029 (6)0.0056 (6)
C200.0358 (8)0.0341 (8)0.0423 (9)0.0034 (6)0.0161 (7)0.0144 (7)
C190.0363 (8)0.0268 (7)0.0388 (8)0.0013 (6)0.0136 (7)0.0103 (6)
O40.0290 (5)0.0247 (5)0.0337 (6)0.0094 (4)0.0100 (4)0.0037 (4)
O20.0312 (5)0.0230 (5)0.0329 (6)0.0025 (4)0.0097 (4)0.0100 (4)
Geometric parameters (Å, º) top
O6—C71.3859 (17)C9—H90.9500
O6—C61.3870 (17)C3—H30.9500
O3—C121.2193 (16)N1—C151.3349 (19)
O7—C71.2028 (16)N1—C241.3387 (19)
O1—C11.2175 (16)N2—C211.3271 (19)
O5—C61.1977 (16)N2—C201.342 (2)
C8—C91.3713 (19)C17—C161.3926 (19)
C8—C141.4179 (19)C17—C231.3970 (19)
C8—C71.4742 (18)C17—C181.4933 (18)
C14—C51.4136 (19)C18—C221.391 (2)
C14—C131.4308 (18)C18—C191.393 (2)
C13—C111.4305 (18)C23—C241.3772 (19)
C13—C21.4319 (19)C23—H230.9500
C11—C101.3808 (19)C22—C211.384 (2)
C11—C121.5105 (18)C22—H220.9500
C2—C31.3771 (19)C15—C161.380 (2)
C2—C11.5098 (18)C15—H150.9500
C5—C41.374 (2)C24—H240.9500
C5—C61.4732 (18)C16—H160.9500
C10—C91.4001 (19)C21—H210.9500
C10—H100.9500C20—C191.381 (2)
C12—O41.3064 (16)C20—H200.9500
C4—C31.3961 (19)C19—H190.9500
C4—H40.9500O4—H4A0.8400
C1—O21.3086 (16)O2—H20.8400
C7—O6—C6123.44 (11)C10—C9—H9120.1
C9—C8—C14120.75 (12)C2—C3—C4122.08 (12)
C9—C8—C7119.01 (12)C2—C3—H3119.0
C14—C8—C7120.24 (12)C4—C3—H3119.0
C5—C14—C8119.17 (12)C15—N1—C24117.78 (12)
C5—C14—C13120.74 (12)C21—N2—C20117.59 (12)
C8—C14—C13120.09 (12)C16—C17—C23117.10 (12)
C11—C13—C14117.33 (12)C16—C17—C18121.60 (12)
C11—C13—C2125.99 (12)C23—C17—C18121.28 (12)
C14—C13—C2116.68 (12)C22—C18—C19117.07 (12)
C10—C11—C13120.61 (12)C22—C18—C17121.26 (12)
C10—C11—C12114.95 (12)C19—C18—C17121.63 (12)
C13—C11—C12124.19 (11)C24—C23—C17119.81 (13)
C3—C2—C13120.43 (12)C24—C23—H23120.1
C3—C2—C1115.54 (12)C17—C23—H23120.1
C13—C2—C1123.96 (12)C21—C22—C18119.32 (13)
C4—C5—C14120.61 (12)C21—C22—H22120.3
C4—C5—C6119.51 (12)C18—C22—H22120.3
C14—C5—C6119.84 (12)N1—C15—C16123.30 (13)
C11—C10—C9121.30 (13)N1—C15—H15118.4
C11—C10—H10119.3C16—C15—H15118.4
C9—C10—H10119.3N1—C24—C23122.70 (13)
O7—C7—O6116.81 (12)N1—C24—H24118.7
O7—C7—C8125.34 (13)C23—C24—H24118.7
O6—C7—C8117.76 (12)C15—C16—C17119.31 (13)
O5—C6—O6116.80 (12)C15—C16—H16120.3
O5—C6—C5125.81 (13)C17—C16—H16120.3
O6—C6—C5117.39 (12)N2—C21—C22123.50 (13)
O3—C12—O4126.01 (12)N2—C21—H21118.2
O3—C12—C11122.11 (12)C22—C21—H21118.2
O4—C12—C11111.69 (11)N2—C20—C19122.72 (14)
C5—C4—C3119.14 (12)N2—C20—H20118.6
C5—C4—H4120.4C19—C20—H20118.6
C3—C4—H4120.4C20—C19—C18119.80 (14)
O1—C1—O2126.31 (12)C20—C19—H19120.1
O1—C1—C2122.40 (12)C18—C19—H19120.1
O2—C1—C2111.18 (11)C12—O4—H4A109.5
C8—C9—C10119.78 (12)C1—O2—H2109.5
C8—C9—H9120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.841.772.594 (2)167
O4—H4A···N1ii0.841.742.573 (2)171
C16—H16···O1iii0.952.363.254 (2)157
C22—H22···O3iv0.952.573.425 (2)150
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H6O7·C10H8N2
Mr442.37
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6193 (8), 9.6964 (3), 10.192 (1)
α, β, γ (°)81.384 (5), 85.615 (6), 83.947 (3)
V3)932.9 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998\bbr00)
Tmin, Tmax0.968, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6648, 3240, 2772
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.104, 1.06
No. of reflections3240
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.841.772.594 (2)167
O4—H4A···N1ii0.841.742.573 (2)171
C16—H16···O1iii0.952.363.254 (2)157
C22—H22···O3iv0.952.573.425 (2)150
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Youth Foundation of Jiangxi Provincial Office of Education (GJJ09605, GJJ09355) and the Natural Science Foundation of Jiangxi Province (2008GZH0063) for financial support.

References

First citationBlackburn, A. C., Fitzgerald, L. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1991–1995.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFitzgerald, L. J., Gallucci, J. C. & Gerkin, R. E. (1992). Acta Cryst. C48, 460–465.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRobl, C. (1987). Mater. Res. Bull. 22, 1645–1652.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L., Zhou, Y. F. & Hong, M.-C. (2005a). Inorg. Chem. Commun. 8, 651–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Zhou, Y.-F., Wu, M.-Y. & Hong, M.-C. (2005b). Acta Cryst. E61, o1294–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds