organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenylpyridine-2-carb­amide

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: hieagle@126.com

(Received 1 September 2008; accepted 4 September 2008; online 13 September 2008)

In the title compound, C12H10N2O, the dihedral angle between the pyridine ring system and the phenyl ring is 1.8 (1)°. There is an intra­molecular N—H⋯N hydrogen bond between the pyridine N atom and the amide NH function.

Related literature

For general background, see: Sousa & Filgueiras (1990[Sousa, G. F. & Filgueiras, C. A. L. (1990). Transition Met. Chem. 15, 286-289.]); Gomes et al. (2007[Gomes, L., Low, J. N., Valente, M. A. D. C., Freire, C. & Castro, B. (2007). Acta Cryst. C63, m293-m296.]); Morsali et al. (2003[Morsali, A., Ramazani, A. & Mahjoub, A. R. (2003). J. Coord. Chem. 56, 1555-1566.]); Jacob & Mukherjee (2006[Jacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565-4573.]); Marumoto et al. (1981[Marumoto, R., Shunsuke, S. & Masao, T. (1981). Eur. Patent EP 38 161.]); Piatnitski & Kiselyov (2004[Piatnitski, E. & Kiselyov, A. S. (2004). US Patent 0 017 248.]). For related structures, see: Qi et al. (2003[Qi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374-o375.]); Zhang et al. (2006[Zhang, Q., Zhang, S.-P. & Shao, S.-C. (2006). Acta Cryst. E62, o4695-o4696.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, o4617.]). For the synthesis, see: Chan et al. (2004[Chan, A. S. C., Qi, J. Y., Pai, C. C., Li, X. J., Deng, L. S., Li, W. Z. & Hu, J. Y. (2004). US Patent 6 680 385.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O

  • Mr = 198.22

  • Monoclinic, P n

  • a = 5.7469 (2) Å

  • b = 6.2382 (2) Å

  • c = 14.0158 (3) Å

  • β = 94.752 (2)°

  • V = 500.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.15 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.992

  • 5000 measured reflections

  • 1162 independent reflections

  • 1036 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.00

  • 1162 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H101⋯N2 0.86 2.28 2.697 (2) 110

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-containing amides continue to attract considerable interest as ligands for metals (Sousa & Filgueiras, 1990; Gomes et al., 2007; Jacob & Mukherjee, 2006), building blocks in organic synthesis (Marumoto et al., 1981) and physiologically active compounds (Piatnitski & Kiselyov, 2004). As part of our studies on the synthesis and characterization of these compounds, we report here the crystal structure of the title compound.

The C7—O1 [1.223 (3) Å], N1—C7 [1.344 (3) Å] and N1—C6 [1.410 (2) Å] bond lengths indicate extensive electron delocalization in the amide linkage. The pyridyl and phenyl rings of the title compound are almost coplanar, forming a dihedral angle of 1.8 (1)°. In the crystal structure, there is an intramolecular hydrogen bond (N1—H101···N2) and no intermolecular hydrogen bonds are observed (Table 1).

The reported monoclinic space-group is in a non-standard setting (Pn, #7). There is a strong feature (h + l = 2n) in hkl data. Setting up the space group as Pc results in a β angle of 23° or 157°, respectively. Obviously such an unit-cell division is inappropriate. Therefore, the non-standard setting Pn was chosen.

Related literature top

For general background, see: Sousa & Filgueiras (1990); Gomes et al. (2007); Morsali et al. (2003); Jacob & Mukherjee (2006); Marumoto et al. (1981); Piatnitski & Kiselyov (2004). For related structures, see: Qi et al. (2003); Zhang et al. (2006); Yin et al. (2007). For the synthesis, see: Chan et al. (2004).

Experimental top

The title compound was synthesized from pyridine-2-carboxylic acid and aniline according to the procedure of Chan et al. (2004). The crystal used for data collection was obtained by slow evaporation from a saturated ethanol/water solution at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.
N-Phenylpyridine-2-carbamide top
Crystal data top
C12H10N2OF(000) = 208
Mr = 198.22Dx = 1.315 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2226 reflections
a = 5.7469 (2) Åθ = 2.9–25.1°
b = 6.2382 (2) ŵ = 0.09 mm1
c = 14.0158 (3) ÅT = 296 K
β = 94.752 (2)°Block, colourless
V = 500.74 (3) Å30.15 × 0.14 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1162 independent reflections
Radiation source: fine-focus sealed tube1036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10 pixels mm-1θmax = 27.7°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 85
Tmin = 0.968, Tmax = 0.992l = 1818
5000 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C12H10N2OV = 500.74 (3) Å3
Mr = 198.22Z = 2
Monoclinic, PnMo Kα radiation
a = 5.7469 (2) ŵ = 0.09 mm1
b = 6.2382 (2) ÅT = 296 K
c = 14.0158 (3) Å0.15 × 0.14 × 0.09 mm
β = 94.752 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1036 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.992Rint = 0.017
5000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.11 e Å3
1162 reflectionsΔρmin = 0.12 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0173 (3)0.2086 (3)0.59409 (11)0.0452 (4)
H1010.14200.25100.61830.054*
C80.1414 (3)0.5113 (3)0.68241 (13)0.0435 (4)
C60.0401 (3)0.0235 (3)0.53631 (12)0.0412 (4)
C10.1246 (4)0.0375 (4)0.47407 (15)0.0509 (5)
H10.25700.04590.46850.061*
C70.1751 (4)0.3270 (3)0.61595 (15)0.0475 (5)
C20.0901 (4)0.2230 (4)0.42049 (16)0.0569 (5)
H20.19990.26350.37870.068*
N20.0537 (3)0.5139 (3)0.72828 (12)0.0526 (4)
C50.2373 (4)0.1016 (3)0.54213 (15)0.0476 (5)
H50.35070.05950.58190.057*
O10.3656 (3)0.2937 (3)0.58575 (15)0.0753 (6)
C100.2767 (5)0.8384 (3)0.75234 (17)0.0575 (5)
H100.38630.94810.75970.069*
C110.0794 (4)0.8441 (4)0.80026 (16)0.0612 (6)
H110.05230.95750.84100.073*
C30.1044 (4)0.3483 (4)0.42826 (16)0.0553 (5)
H30.12550.47310.39230.066*
C120.0787 (4)0.6788 (4)0.78711 (17)0.0629 (6)
H120.21070.68230.82130.076*
C90.3106 (4)0.6677 (3)0.69302 (15)0.0516 (5)
H90.44510.65810.66070.062*
C40.2676 (4)0.2879 (4)0.48961 (17)0.0553 (5)
H40.39860.37280.49560.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0458 (9)0.0397 (9)0.0515 (9)0.0007 (7)0.0121 (7)0.0031 (7)
C80.0478 (10)0.0408 (10)0.0422 (10)0.0013 (8)0.0051 (8)0.0021 (8)
C60.0458 (10)0.0369 (10)0.0408 (10)0.0030 (8)0.0042 (8)0.0021 (8)
C10.0504 (11)0.0521 (12)0.0517 (11)0.0041 (10)0.0120 (9)0.0028 (10)
C70.0497 (11)0.0398 (11)0.0539 (12)0.0030 (9)0.0092 (9)0.0007 (9)
C20.0594 (13)0.0609 (14)0.0515 (12)0.0060 (11)0.0117 (9)0.0103 (10)
N20.0477 (9)0.0540 (10)0.0566 (10)0.0015 (8)0.0067 (8)0.0096 (8)
C50.0464 (10)0.0458 (11)0.0515 (10)0.0004 (9)0.0088 (8)0.0024 (9)
O10.0531 (9)0.0669 (11)0.1095 (15)0.0111 (9)0.0283 (9)0.0330 (10)
C100.0699 (14)0.0471 (11)0.0550 (11)0.0102 (12)0.0014 (10)0.0007 (11)
C110.0714 (16)0.0553 (14)0.0559 (13)0.0065 (12)0.0002 (11)0.0156 (11)
C30.0652 (13)0.0459 (11)0.0537 (11)0.0014 (11)0.0023 (10)0.0119 (10)
C120.0561 (13)0.0705 (15)0.0635 (14)0.0047 (11)0.0122 (11)0.0168 (12)
C90.0559 (11)0.0486 (12)0.0513 (11)0.0086 (10)0.0116 (9)0.0018 (9)
C40.0550 (12)0.0506 (13)0.0598 (12)0.0070 (10)0.0027 (10)0.0027 (11)
Geometric parameters (Å, º) top
N1—C71.344 (3)N2—C121.333 (3)
N1—C61.410 (2)C5—C41.379 (3)
N1—H1010.8600C5—H50.9300
C8—N21.338 (2)C10—C111.365 (4)
C8—C91.377 (3)C10—C91.375 (3)
C8—C71.502 (3)C10—H100.9300
C6—C51.384 (3)C11—C121.377 (3)
C6—C11.392 (3)C11—H110.9300
C1—C21.385 (3)C3—C41.377 (3)
C1—H10.9300C3—H30.9300
C7—O11.223 (3)C12—H120.9300
C2—C31.376 (4)C9—H90.9300
C2—H20.9300C4—H40.9300
C7—N1—C6128.07 (17)C4—C5—H5119.6
C7—N1—H101116.0C6—C5—H5119.6
C6—N1—H101116.0C11—C10—C9118.9 (2)
N2—C8—C9123.48 (19)C11—C10—H10120.6
N2—C8—C7117.62 (17)C9—C10—H10120.6
C9—C8—C7118.89 (18)C10—C11—C12118.7 (2)
C5—C6—C1119.06 (17)C10—C11—H11120.7
C5—C6—N1117.74 (17)C12—C11—H11120.7
C1—C6—N1123.19 (17)C2—C3—C4119.6 (2)
C2—C1—C6119.57 (19)C2—C3—H3120.2
C2—C1—H1120.2C4—C3—H3120.2
C6—C1—H1120.2N2—C12—C11123.8 (2)
O1—C7—N1124.81 (19)N2—C12—H12118.1
O1—C7—C8120.61 (18)C11—C12—H12118.1
N1—C7—C8114.58 (18)C10—C9—C8118.7 (2)
C3—C2—C1120.8 (2)C10—C9—H9120.6
C3—C2—H2119.6C8—C9—H9120.6
C1—C2—H2119.6C3—C4—C5120.1 (2)
C12—N2—C8116.38 (18)C3—C4—H4119.9
C4—C5—C6120.77 (19)C5—C4—H4119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···N20.862.282.697 (2)110

Experimental details

Crystal data
Chemical formulaC12H10N2O
Mr198.22
Crystal system, space groupMonoclinic, Pn
Temperature (K)296
a, b, c (Å)5.7469 (2), 6.2382 (2), 14.0158 (3)
β (°) 94.752 (2)
V3)500.74 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.968, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5000, 1162, 1036
Rint0.017
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.00
No. of reflections1162
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia,1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···N20.862.282.697 (2)110.0
 

Acknowledgements

The authors are grateful for financial suport from the Key Discipline Open Foundation of Zhejiang University of Technology (grant No. 20080604). The authors thank Mr Jian-Ming Gu (Testing and Analysis Center, Zhejiang University) for guidance in the structure analysis.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, A. S. C., Qi, J. Y., Pai, C. C., Li, X. J., Deng, L. S., Li, W. Z. & Hu, J. Y. (2004). US Patent 6 680 385.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L., Low, J. N., Valente, M. A. D. C., Freire, C. & Castro, B. (2007). Acta Cryst. C63, m293–m296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacob, W. & Mukherjee, R. (2006). Inorg. Chim. Acta, 359, 4565–4573.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarumoto, R., Shunsuke, S. & Masao, T. (1981). Eur. Patent EP 38 161.  Google Scholar
First citationMorsali, A., Ramazani, A. & Mahjoub, A. R. (2003). J. Coord. Chem. 56, 1555–1566.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiatnitski, E. & Kiselyov, A. S. (2004). US Patent 0 017 248.  Google Scholar
First citationQi, J. Y., Yang, Q. Y., Lam, K. H., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o374–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa, G. F. & Filgueiras, C. A. L. (1990). Transition Met. Chem. 15, 286–289.  CrossRef Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, o4617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Q., Zhang, S.-P. & Shao, S.-C. (2006). Acta Cryst. E62, o4695–o4696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds