organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(6-Methyl-2-pyrid­yl)-1,1-di­phenyl­ethanol

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: llyyjz@nju.edu.cn

(Received 11 July 2008; accepted 4 August 2008; online 9 August 2008)

The title compound, C20H19NO, was prepared from 2,6-lutidine and benzophenone. There are two symmetry-independent mol­ecules in the asymmetric unit. Each mol­ecule is involved in one intra­molecular O—H⋯N hydrogen bond. In the crystal structure, helical chains are formed along the b axis by weak ππ inter­actions between neighbouring mol­ecules [centroid–centroid distances between the pyridyl rings of the two independent mol­ecules = 4.041 (3) and 4.051 (3) Å].

Related literature

For related literature, see: Berg & Holm (1985[Berg, J. M. & Holm, R. H. (1985). J. Am. Chem. Soc. 107, 917-925.]); Dehnicke et al. (2001[Dehnicke, K., Weller, F. & Strahle, J. (2001). Chem. Soc. Rev. 30, 125-135.]); Gibson et al. (2007[Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (2007). Polyhedron, 26, 3161-3167.]); Koning et al. (2000[Koning, B., Buter, J., Hulst, R., Stroetinga, R. & Kellogg, R. M. (2000). Eur. J. Org. Chem. pp. 2735-2743.]); Yip et al. (2003[Yip, K.-L., Yu, W.-Y., Chan, P.-M., Zhu, N.-Y. & Che, C.-M. (2003). Dalton Trans, pp. 3556-3566.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO

  • Mr = 289.36

  • Monoclinic, P 21 /c

  • a = 13.466 (2) Å

  • b = 8.022 (1) Å

  • c = 30.220 (3) Å

  • β = 102.874 (3)°

  • V = 3182.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.98

  • 24109 measured reflections

  • 6247 independent reflections

  • 4901 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.116

  • S = 1.02

  • 6247 reflections

  • 405 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.96 (2) 1.89 (2) 2.724 (2) 144 (2)
O2—H2A⋯N2 0.96 (2) 1.92 (2) 2.718 (2) 139 (2)
C18—H18⋯O2i 0.93 2.70 3.518 (2) 147
C38—H38⋯O1ii 0.93 2.65 3.472 (2) 147
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is a growing interest in the chemistry of metal-nitrido complexes, particularly those of late transition metals (Dehnicke et al., 2001). 2-(6-Methyl-pyridin-2-yl)-1,1-diphenyl-ethanol has been used as a multianionic chelating (N, O) ligand and coordinated with transition metals and main group elements, such as Ru, Os, Mo, B, Si etc. (Yip et al., 2003; Gibson et al., 2007). It can be prepared from 2,6-lutidine in moderate yield (Koning et al., 2000). During our studies, we obtained single crystals of the title compound report its crystal structure herein.

The crystal structure of title compound, C20H19NO, shows that all the bond lengths and angles have normal values. In an asymmetric unit there are two symmetry independent molecules I and II. Each molecule has one intramolecular O—H···N hydrogen bond (O1—H1A···N1, O2—H2A···N2)(Fig. 1).

Molecule I exhibits two benzene rings A (C2—C7) and B (C8—C13) as well as a pyridine ring C (N1/C15—C19) that are not coplanar with respect to each other. The dihedral angles between rings A and B, B and C, and C and A measure to 82.02 (6)°, 47.06 (6)°, and 85.87 (5)°, respectively.

Molecule II looks pretty much the same as molecule I, but the dihedral angles are significantly different. The angles between rings D(C22—C27) and E(C28—C33), E and F(N2/C35—C39), and F and D are 83.58 (6)°, 85.44 (5)°, and 49.70 (6)°, respectively.

In the crystal packing weak ππ interactions between neighbouring molecules I and II are observed, the distance of g1-g2 being 4.041 (3) and 4.051 (3) Å (g1 is center of mass of N1/C15—C19, g2 is center of mass of N2/C35—C39). Helical chains along the b axis are formed by these interactions (Fig. 2).

The additional weak intermolecular C18—H18···O2iii and C38—H38···O1iv (iii: -x,1 - y,-z; iv: 1 - x,1 - y,-z) hydrogen bonds play part an important role linking the helical chains to form the three-dimensional crystal structure.

Related literature top

For related literature, see: Berg & Holm (1985); Dehnicke et al. (2001); Gibson et al. (2007); Koning et al. (2000); Yip et al. (2003).

Experimental top

2-(6-Methyl-pyridin-2-yl)-1,1-diphenyl-ethanol was prepared from 2,6-lutidine and benzophenone according to a procedure described in the literature (Berg & Holm, 1985, yield: 60%). Colorless crystals were obtained by recrystallization from light petroleum-ethyl acetate(vol. ratio: 5:1) at room temperature.

1H-NMR (CDCl3, 400 MHz): δ = 8.1 (1 H, s, OH), 6.8–7.5 (13 H, 2 Ph + 3H), 3.7 (2 H, s, CH2), 2.5 (3 H, s, CH3).

Refinement top

The H atoms were placed in calculated positions except O—H atoms and included as part of a riding model, with C—H = 0.93–0.97 Å, and with Uequiv values set at 1.2–1.5 Uequiv of the parent atoms. The O—H atoms were located in the Fourier difference map and refined with a given isotropic thermal parameters 1.2 times the Uequiv for the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level. Dashed lines indicate hydrogen bonds and all H atoms except those involved in hydrogen bonding have been omitted for clarity.
[Figure 2] Fig. 2. A view of the helical chain-like structure along the b axis. (i: x,1 + y,z; ii:x,-1 + y,z).
2-(6-Methyl-2-pyridyl)-1,1-diphenylethanol top
Crystal data top
C20H19NOF(000) = 1232
Mr = 289.36Dx = 1.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9992 reflections
a = 13.466 (2) Åθ = 2.3–27.7°
b = 8.022 (1) ŵ = 0.07 mm1
c = 30.220 (3) ÅT = 291 K
β = 102.874 (3)°Bloc, colourless
V = 3182.4 (7) Å30.30 × 0.26 × 0.24 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
6247 independent reflections
Radiation source: sealed tube4901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.98, Tmax = 0.98k = 99
24109 measured reflectionsl = 3637
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.05P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
6247 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C20H19NOV = 3182.4 (7) Å3
Mr = 289.36Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.466 (2) ŵ = 0.07 mm1
b = 8.022 (1) ÅT = 291 K
c = 30.220 (3) Å0.30 × 0.26 × 0.24 mm
β = 102.874 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4901 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.039
24109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
6247 reflectionsΔρmin = 0.12 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.9264 (0.0081) x + 2.5384 (0.0055) y + 17.9519 (0.0173) z = 7.2409 (0.0023)

* 0.0041 (0.0011) C2 * -0.0032 (0.0012) C3 * 0.0016 (0.0013) C4 * -0.0007 (0.0013) C5 * 0.0017 (0.0013) C6 * -0.0033 (0.0012) C7

Rms deviation of fitted atoms = 0.0027

8.6157 (0.0075) x - 6.1646 (0.0038) y - 4.0922 (0.0231) z = 2.4746 (0.0072)

Angle to previous plane (with approximate e.s.d.) = 82.02 (0.06)

* -0.0038 (0.0011) C8 * 0.0059 (0.0011) C9 * -0.0038 (0.0013) C10 * -0.0004 (0.0014) C11 * 0.0025 (0.0014) C12 * -0.0004 (0.0012) C13

Rms deviation of fitted atoms = 0.0034

- 0.0031 (0.0098) x + 7.0734 (0.0030) y - 13.8930 (0.0198) z = 1.4744 (0.0034)

Angle to previous plane (with approximate e.s.d.) = 47.06 (0.06)

* 0.0019 (0.0011) N1 * 0.0034 (0.0011) C15 * -0.0039 (0.0012) C16 * -0.0005 (0.0014) C17 * 0.0056 (0.0014) C18 * -0.0064 (0.0012) C19

Rms deviation of fitted atoms = 0.0041

7.9264 (0.0081) x + 2.5384 (0.0055) y + 17.9519 (0.0173) z = 7.2409 (0.0023)

Angle to previous plane (with approximate e.s.d.) = 85.87 (0.05)

* 0.0041 (0.0011) C2 * -0.0032 (0.0012) C3 * 0.0016 (0.0013) C4 * -0.0007 (0.0013) C5 * 0.0017 (0.0013) C6 * -0.0033 (0.0012) C7

Rms deviation of fitted atoms = 0.0027

8.6502 (0.0076) x + 6.1357 (0.0039) y - 2.9169 (0.0234) z = 5.1262 (0.0059)

Angle to previous plane (with approximate e.s.d.) = 49.02 (0.07)

* -0.0040 (0.0011) C22 * 0.0029 (0.0013) C23 * -0.0003 (0.0014) C24 * -0.0010 (0.0014) C25 * -0.0002 (0.0013) C26 * 0.0028 (0.0012) C27

Rms deviation of fitted atoms = 0.0024

- 8.0302 (0.0080) x + 2.4726 (0.0054) y + 25.8511 (0.0117) z = 4.4687 (0.0039)

Angle to previous plane (with approximate e.s.d.) = 83.58 (0.06)

* 0.0063 (0.0011) C28 * -0.0023 (0.0012) C29 * -0.0051 (0.0013) C30 * 0.0085 (0.0014) C31 * -0.0043 (0.0013) C32 * -0.0032 (0.0012) C33

Rms deviation of fitted atoms = 0.0053

- 0.0603 (0.0094) x + 7.0521 (0.0030) y - 14.0087 (0.0195) z = 4.9759 (0.0037)

Angle to previous plane (with approximate e.s.d.) = 85.44 (0.05)

* -0.0024 (0.0011) N2 * 0.0054 (0.0011) C35 * -0.0025 (0.0012) C36 * -0.0031 (0.0013) C37 * 0.0060 (0.0013) C38 * -0.0034 (0.0012) C39

Rms deviation of fitted atoms = 0.0040

8.6502 (0.0076) x + 6.1357 (0.0039) y - 2.9169 (0.0234) z = 5.1262 (0.0059)

Angle to previous plane (with approximate e.s.d.) = 49.70 (0.06)

* -0.0040 (0.0011) C22 * 0.0029 (0.0013) C23 * -0.0003 (0.0014) C24 * -0.0010 (0.0014) C25 * -0.0002 (0.0013) C26 * 0.0028 (0.0012) C27

Rms deviation of fitted atoms = 0.0024

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55525 (11)0.30363 (18)0.12015 (5)0.0333 (3)
C20.52945 (10)0.15683 (18)0.14763 (5)0.0333 (3)
C30.46070 (12)0.1698 (2)0.17575 (5)0.0432 (4)
H30.42570.26920.17670.052*
C40.44374 (14)0.0364 (3)0.20236 (6)0.0552 (5)
H40.39810.04740.22120.066*
C50.49408 (16)0.1119 (3)0.20098 (7)0.0631 (5)
H50.48230.20140.21870.076*
C60.56142 (15)0.1273 (2)0.17356 (7)0.0606 (5)
H60.59590.22740.17280.073*
C70.57882 (12)0.0055 (2)0.14681 (6)0.0458 (4)
H70.62440.00720.12800.055*
C80.64575 (11)0.40377 (18)0.14754 (5)0.0364 (3)
C90.67094 (12)0.4062 (2)0.19461 (6)0.0428 (4)
H90.63390.34160.21080.051*
C100.75135 (13)0.5046 (2)0.21792 (7)0.0546 (5)
H100.76650.50630.24950.065*
C110.80791 (14)0.5984 (2)0.19495 (8)0.0640 (6)
H110.86160.66300.21070.077*
C120.78427 (14)0.5961 (3)0.14796 (9)0.0674 (6)
H120.82240.65930.13200.081*
C130.70373 (13)0.4996 (2)0.12451 (7)0.0517 (4)
H130.68850.49920.09290.062*
C140.46541 (11)0.42749 (19)0.10506 (5)0.0381 (3)
H14A0.44630.47080.13200.046*
H14B0.48890.52070.08970.046*
C150.37153 (11)0.35434 (19)0.07395 (5)0.0395 (3)
C160.27485 (13)0.3698 (2)0.08237 (6)0.0511 (4)
H160.26490.42060.10870.061*
C170.19352 (14)0.3071 (3)0.05024 (8)0.0628 (5)
H170.12770.31580.05480.075*
C180.20984 (15)0.2327 (3)0.01190 (7)0.0642 (5)
H180.15520.19170.00980.077*
C190.30793 (15)0.2184 (2)0.00548 (6)0.0542 (5)
C200.3320 (2)0.1393 (3)0.03588 (7)0.0780 (7)
H20A0.36010.22150.05270.117*
H20B0.27080.09440.05460.117*
H20C0.38060.05120.02680.117*
C210.06735 (10)0.80270 (18)0.12103 (5)0.0333 (3)
C220.00363 (11)0.90017 (18)0.14826 (5)0.0356 (3)
C230.07527 (13)1.0013 (2)0.12473 (7)0.0519 (4)
H230.08841.00600.09320.062*
C240.13383 (15)1.0943 (3)0.14768 (9)0.0668 (6)
H240.18631.16040.13160.080*
C250.11486 (15)1.0896 (3)0.19424 (8)0.0659 (6)
H250.15441.15240.20970.079*
C260.03709 (15)0.9914 (3)0.21801 (7)0.0578 (5)
H260.02410.98790.24950.069*
C270.02182 (12)0.8979 (2)0.19507 (6)0.0424 (4)
H270.07440.83260.21140.051*
C280.12469 (11)0.65852 (18)0.14885 (5)0.0350 (3)
C290.07775 (13)0.5045 (2)0.14868 (6)0.0471 (4)
H290.01350.48760.13020.057*
C300.12589 (15)0.3745 (2)0.17595 (7)0.0566 (5)
H300.09390.27160.17540.068*
C310.22188 (17)0.3991 (3)0.20394 (7)0.0643 (6)
H310.25330.31320.22260.077*
C320.26986 (14)0.5481 (3)0.20410 (6)0.0576 (5)
H320.33460.56330.22240.069*
C330.22213 (12)0.6781 (2)0.17688 (6)0.0453 (4)
H330.25550.77980.17730.054*
C340.14015 (11)0.92662 (19)0.10486 (5)0.0382 (3)
H34A0.10011.01870.08950.046*
H34B0.18680.97160.13130.046*
C350.20135 (12)0.85435 (19)0.07364 (5)0.0396 (3)
C360.30642 (13)0.8702 (2)0.08174 (6)0.0502 (4)
H360.34280.92190.10790.060*
C370.35558 (15)0.8070 (3)0.04974 (7)0.0596 (5)
H370.42600.81550.05420.072*
C380.29968 (16)0.7313 (3)0.01125 (7)0.0600 (5)
H380.33200.68990.01060.072*
C390.19560 (14)0.7175 (2)0.00542 (6)0.0482 (4)
C400.12872 (14)0.6369 (3)0.03596 (6)0.0563 (5)
H40A0.08930.54960.02650.084*
H40B0.17070.59090.05480.084*
H40C0.08380.71900.05280.084*
N10.38751 (11)0.28000 (18)0.03621 (5)0.0465 (3)
N20.14697 (11)0.77822 (18)0.03610 (4)0.0443 (3)
O10.58575 (9)0.24349 (15)0.08070 (4)0.0458 (3)
H1A0.5263 (15)0.224 (2)0.0571 (7)0.055*
O20.00304 (8)0.73711 (15)0.08224 (4)0.0461 (3)
H2A0.0333 (14)0.704 (2)0.0597 (7)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (7)0.0332 (8)0.0356 (8)0.0010 (6)0.0103 (6)0.0029 (6)
C20.0291 (7)0.0338 (8)0.0351 (7)0.0038 (6)0.0027 (6)0.0047 (6)
C30.0417 (8)0.0466 (9)0.0436 (9)0.0030 (7)0.0146 (7)0.0015 (7)
C40.0530 (10)0.0646 (12)0.0495 (10)0.0135 (9)0.0148 (8)0.0080 (9)
C50.0647 (12)0.0560 (12)0.0610 (12)0.0183 (10)0.0023 (10)0.0204 (9)
C60.0569 (11)0.0378 (10)0.0798 (14)0.0043 (8)0.0008 (10)0.0102 (9)
C70.0401 (8)0.0391 (9)0.0561 (10)0.0027 (7)0.0065 (7)0.0017 (8)
C80.0307 (7)0.0302 (8)0.0489 (9)0.0009 (6)0.0102 (6)0.0020 (6)
C90.0385 (8)0.0392 (9)0.0494 (9)0.0045 (7)0.0068 (7)0.0033 (7)
C100.0436 (9)0.0513 (11)0.0611 (11)0.0020 (8)0.0049 (8)0.0105 (9)
C110.0385 (9)0.0465 (11)0.0987 (17)0.0098 (8)0.0023 (10)0.0058 (11)
C120.0469 (10)0.0524 (12)0.1050 (18)0.0139 (9)0.0211 (11)0.0117 (11)
C130.0443 (9)0.0479 (10)0.0662 (11)0.0051 (8)0.0193 (8)0.0040 (9)
C140.0393 (8)0.0325 (8)0.0418 (8)0.0032 (6)0.0075 (6)0.0001 (6)
C150.0403 (8)0.0361 (8)0.0392 (8)0.0003 (7)0.0028 (6)0.0067 (7)
C160.0428 (9)0.0538 (11)0.0550 (11)0.0043 (8)0.0069 (8)0.0088 (8)
C170.0388 (9)0.0658 (13)0.0780 (14)0.0004 (9)0.0004 (9)0.0173 (11)
C180.0563 (12)0.0600 (12)0.0630 (13)0.0040 (9)0.0149 (10)0.0084 (10)
C190.0618 (11)0.0499 (10)0.0410 (9)0.0058 (8)0.0094 (8)0.0105 (8)
C200.0978 (17)0.0816 (16)0.0469 (11)0.0147 (13)0.0000 (11)0.0097 (11)
C210.0297 (7)0.0333 (8)0.0354 (8)0.0033 (6)0.0039 (6)0.0029 (6)
C220.0314 (7)0.0322 (8)0.0436 (8)0.0046 (6)0.0089 (6)0.0031 (6)
C230.0426 (9)0.0504 (10)0.0614 (11)0.0094 (8)0.0088 (8)0.0026 (9)
C240.0529 (11)0.0522 (11)0.0984 (17)0.0163 (9)0.0234 (11)0.0044 (11)
C250.0562 (11)0.0584 (12)0.0924 (16)0.0027 (10)0.0364 (11)0.0182 (11)
C260.0574 (11)0.0637 (12)0.0583 (11)0.0056 (9)0.0255 (9)0.0131 (10)
C270.0399 (8)0.0429 (9)0.0448 (9)0.0023 (7)0.0107 (7)0.0035 (7)
C280.0368 (7)0.0336 (8)0.0365 (8)0.0025 (6)0.0126 (6)0.0010 (6)
C290.0468 (9)0.0380 (9)0.0607 (11)0.0035 (7)0.0208 (8)0.0030 (8)
C300.0602 (11)0.0348 (9)0.0875 (14)0.0008 (8)0.0433 (11)0.0106 (9)
C310.0749 (13)0.0558 (12)0.0683 (13)0.0251 (10)0.0294 (11)0.0240 (10)
C320.0510 (10)0.0640 (12)0.0543 (11)0.0131 (9)0.0043 (8)0.0124 (9)
C330.0422 (9)0.0409 (9)0.0497 (10)0.0003 (7)0.0039 (7)0.0012 (7)
C340.0397 (8)0.0325 (8)0.0428 (8)0.0022 (6)0.0100 (6)0.0030 (6)
C350.0454 (8)0.0351 (8)0.0398 (8)0.0023 (7)0.0129 (7)0.0083 (7)
C360.0449 (9)0.0533 (10)0.0542 (10)0.0025 (8)0.0150 (8)0.0075 (8)
C370.0516 (10)0.0627 (12)0.0719 (13)0.0062 (9)0.0295 (10)0.0160 (10)
C380.0701 (13)0.0600 (12)0.0604 (12)0.0077 (10)0.0368 (10)0.0079 (10)
C390.0636 (11)0.0471 (10)0.0393 (9)0.0075 (8)0.0228 (8)0.0078 (7)
C400.0629 (11)0.0618 (12)0.0479 (10)0.0086 (9)0.0201 (9)0.0079 (9)
N10.0483 (8)0.0476 (8)0.0400 (8)0.0026 (6)0.0021 (6)0.0045 (6)
N20.0500 (8)0.0452 (8)0.0385 (7)0.0026 (6)0.0118 (6)0.0039 (6)
O10.0480 (6)0.0527 (7)0.0404 (6)0.0015 (5)0.0181 (5)0.0076 (5)
O20.0388 (6)0.0544 (7)0.0406 (6)0.0086 (5)0.0007 (5)0.0098 (5)
Geometric parameters (Å, º) top
C1—O11.4286 (17)C21—C221.529 (2)
C1—C21.525 (2)C21—C281.533 (2)
C1—C81.538 (2)C21—C341.550 (2)
C1—C141.553 (2)C22—C271.381 (2)
C2—C71.387 (2)C22—C231.399 (2)
C2—C31.393 (2)C23—C241.379 (3)
C3—C41.388 (2)C23—H230.9300
C3—H30.9300C24—C251.373 (3)
C4—C51.375 (3)C24—H240.9300
C4—H40.9300C25—C261.378 (3)
C5—C61.363 (3)C25—H250.9300
C5—H50.9300C26—C271.385 (2)
C6—C71.389 (3)C26—H260.9300
C6—H60.9300C27—H270.9300
C7—H70.9300C28—C291.387 (2)
C8—C91.387 (2)C28—C331.403 (2)
C8—C131.388 (2)C29—C301.396 (3)
C9—C101.398 (2)C29—H290.9300
C9—H90.9300C30—C311.392 (3)
C10—C111.365 (3)C30—H300.9300
C10—H100.9300C31—C321.358 (3)
C11—C121.384 (3)C31—H310.9300
C11—H110.9300C32—C331.394 (2)
C12—C131.391 (3)C32—H320.9300
C12—H120.9300C33—H330.9300
C13—H130.9300C34—C351.501 (2)
C14—C151.515 (2)C34—H34A0.9700
C14—H14A0.9700C34—H34B0.9700
C14—H14B0.9700C35—N21.351 (2)
C15—N11.346 (2)C35—C361.387 (2)
C15—C161.387 (2)C36—C371.384 (3)
C16—C171.386 (3)C36—H360.9300
C16—H160.9300C37—C381.377 (3)
C17—C181.364 (3)C37—H370.9300
C17—H170.9300C38—C391.377 (3)
C18—C191.382 (3)C38—H380.9300
C18—H180.9300C39—N21.340 (2)
C19—N11.346 (2)C39—C401.514 (3)
C19—C201.500 (3)C40—H40A0.9600
C20—H20A0.9600C40—H40B0.9600
C20—H20B0.9600C40—H40C0.9600
C20—H20C0.9600O1—H1A0.96 (2)
C21—O21.4334 (17)O2—H2A0.96 (2)
O1—C1—C2109.66 (11)C22—C21—C28111.41 (12)
O1—C1—C8106.55 (11)O2—C21—C34109.08 (12)
C2—C1—C8111.07 (12)C22—C21—C34108.18 (11)
O1—C1—C14108.72 (12)C28—C21—C34112.34 (12)
C2—C1—C14113.37 (12)C27—C22—C23118.02 (15)
C8—C1—C14107.20 (12)C27—C22—C21123.47 (14)
C7—C2—C3117.55 (15)C23—C22—C21118.48 (14)
C7—C2—C1119.86 (13)C24—C23—C22120.83 (18)
C3—C2—C1122.52 (14)C24—C23—H23119.6
C4—C3—C2120.90 (16)C22—C23—H23119.6
C4—C3—H3119.5C25—C24—C23120.24 (19)
C2—C3—H3119.5C25—C24—H24119.9
C5—C4—C3120.25 (17)C23—C24—H24119.9
C5—C4—H4119.9C24—C25—C26119.75 (17)
C3—C4—H4119.9C24—C25—H25120.1
C6—C5—C4119.74 (17)C26—C25—H25120.1
C6—C5—H5120.1C25—C26—C27120.15 (19)
C4—C5—H5120.1C25—C26—H26119.9
C5—C6—C7120.37 (18)C27—C26—H26119.9
C5—C6—H6119.8C22—C27—C26121.00 (16)
C7—C6—H6119.8C22—C27—H27119.5
C2—C7—C6121.17 (16)C26—C27—H27119.5
C2—C7—H7119.4C29—C28—C33117.78 (15)
C6—C7—H7119.4C29—C28—C21119.76 (14)
C9—C8—C13118.06 (15)C33—C28—C21122.37 (13)
C9—C8—C1122.85 (13)C28—C29—C30120.78 (17)
C13—C8—C1119.07 (14)C28—C29—H29119.6
C8—C9—C10120.65 (16)C30—C29—H29119.6
C8—C9—H9119.7C31—C30—C29119.95 (17)
C10—C9—H9119.7C31—C30—H30120.0
C11—C10—C9120.83 (19)C29—C30—H30120.0
C11—C10—H10119.6C32—C31—C30120.22 (17)
C9—C10—H10119.6C32—C31—H31119.9
C10—C11—C12119.17 (17)C30—C31—H31119.9
C10—C11—H11120.4C31—C32—C33120.01 (18)
C12—C11—H11120.4C31—C32—H32120.0
C11—C12—C13120.33 (18)C33—C32—H32120.0
C11—C12—H12119.8C32—C33—C28121.25 (16)
C13—C12—H12119.8C32—C33—H33119.4
C8—C13—C12120.95 (18)C28—C33—H33119.4
C8—C13—H13119.5C35—C34—C21115.16 (12)
C12—C13—H13119.5C35—C34—H34A108.5
C15—C14—C1114.95 (12)C21—C34—H34A108.5
C15—C14—H14A108.5C35—C34—H34B108.5
C1—C14—H14A108.5C21—C34—H34B108.5
C15—C14—H14B108.5H34A—C34—H34B107.5
C1—C14—H14B108.5N2—C35—C36122.03 (15)
H14A—C14—H14B107.5N2—C35—C34115.57 (13)
N1—C15—C16121.93 (15)C36—C35—C34122.35 (15)
N1—C15—C14115.37 (13)C37—C36—C35118.10 (18)
C16—C15—C14122.62 (15)C37—C36—H36121.0
C17—C16—C15117.81 (18)C35—C36—H36121.0
C17—C16—H16121.1C38—C37—C36119.67 (18)
C15—C16—H16121.1C38—C37—H37120.2
C18—C17—C16120.15 (19)C36—C37—H37120.2
C18—C17—H17119.9C37—C38—C39119.50 (17)
C16—C17—H17119.9C37—C38—H38120.2
C17—C18—C19119.70 (18)C39—C38—H38120.2
C17—C18—H18120.2N2—C39—C38121.49 (18)
C19—C18—H18120.2N2—C39—C40115.73 (16)
N1—C19—C18120.77 (18)C38—C39—C40122.77 (16)
N1—C19—C20116.34 (18)C39—C40—H40A109.5
C18—C19—C20122.87 (18)C39—C40—H40B109.5
C19—C20—H20A109.5H40A—C40—H40B109.5
C19—C20—H20B109.5C39—C40—H40C109.5
H20A—C20—H20B109.5H40A—C40—H40C109.5
C19—C20—H20C109.5H40B—C40—H40C109.5
H20A—C20—H20C109.5C19—N1—C15119.63 (16)
H20B—C20—H20C109.5C39—N2—C35119.21 (15)
O2—C21—C22106.24 (11)C1—O1—H1A109.3 (11)
O2—C21—C28109.39 (12)C21—O2—H2A109.5 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.96 (2)1.89 (2)2.724 (2)144 (2)
O2—H2A···N20.96 (2)1.92 (2)2.718 (2)139 (2)
C18—H18···O2i0.932.703.518 (2)147
C38—H38···O1ii0.932.653.472 (2)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19NO
Mr289.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.466 (2), 8.022 (1), 30.220 (3)
β (°) 102.874 (3)
V3)3182.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
24109, 6247, 4901
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.116, 1.03
No. of reflections6247
No. of parameters405
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.96 (2)1.89 (2)2.724 (2)144 (2)
O2—H2A···N20.96 (2)1.92 (2)2.718 (2)139 (2)
C18—H18···O2i0.932.703.518 (2)146.5
C38—H38···O1ii0.932.653.472 (2)147.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We thank the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 07KJD150101) for financial support.

References

First citationBerg, J. M. & Holm, R. H. (1985). J. Am. Chem. Soc. 107, 917–925.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehnicke, K., Weller, F. & Strahle, J. (2001). Chem. Soc. Rev. 30, 125–135.  Web of Science CrossRef CAS Google Scholar
First citationGibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (2007). Polyhedron, 26, 3161–3167.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoning, B., Buter, J., Hulst, R., Stroetinga, R. & Kellogg, R. M. (2000). Eur. J. Org. Chem. pp. 2735–2743.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYip, K.-L., Yu, W.-Y., Chan, P.-M., Zhu, N.-Y. & Che, C.-M. (2003). Dalton Trans, pp. 3556–3566.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds