metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato-κ2O,O′]nickel(II)]-μ-4,4′-oxydibenzoato-κ2O:O′]

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: junhong000@hotmail.com

(Received 6 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, [Ni(C16H18FN3O3)(C14H8O5)(H2O)2]n, the NiII atom exhibits a distorted octa­hedral geometry that is defined by four O atoms and two water mol­ecules. Ni atoms are connected via the 4,4′-oxydibenzoate anions into a one-dimensional chain running along the crystallographic [[\overline2]30] direction. In the crystal structure, the one-dimensional chains are connected via N—H⋯O and O—H⋯O hydrogen bonding to form a three-dimensional supra­molecular network.

Related literature

For general background, see: Xiao et al. (2005[Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673-6686.]). For a related structure, see: An et al. (2005[An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H18FN3O3)(C14H8O5)(H2O)2]

  • Mr = 670.28

  • Triclinic, [P \overline 1]

  • a = 10.105 (2) Å

  • b = 12.230 (2) Å

  • c = 13.052 (3) Å

  • α = 72.50 (3)°

  • β = 73.13 (3)°

  • γ = 77.57 (3)°

  • V = 1457.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 (2) K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.855

  • 11571 measured reflections

  • 5134 independent reflections

  • 4210 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.02

  • 5134 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H4⋯O2 0.85 1.93 2.695 (3) 149
O2W—H4⋯O1 0.85 2.55 2.965 (3) 111
N3—H3B⋯O2i 0.90 1.82 2.714 (3) 170
N3—H3C⋯O8ii 0.90 1.85 2.719 (3) 162
O1W—H1⋯O1iii 0.85 2.03 2.761 (3) 144
O1W—H2⋯O4iv 0.85 1.99 2.834 (3) 173
O2W—H3⋯O5v 0.85 1.82 2.615 (3) 155
Symmetry codes: (i) x, y+1, z; (ii) x-1, y+1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y+1, -z+1; (v) x+1, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao et al. 2005; An et al. 2005), As a part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Ni atoms are coordinated by three oxygen atoms of two Hcf ligand and one 4,4'-oxy-bisbenzoate, one oxygen atom from one symmetry related 4,4'-oxy-bisbenzoate and two water molecules within a distorted octahedral geometry (Figure 1). The nickel atoms are linked by the 4,4'-oxy-bisbenzoate anions into a one-dimensional chain running along crystallographic [-1, 1.5, 0] direction. The adjacent chains are further extended into a two-dimensional supramolecular network by N—H···O and O—H···O hydrogen bonds(Tab. 1).

Related literature top

For general background, see: Xiao et al. (2005). For related structures, see: An et al. (2005).

Experimental top

Compound (I) was prepared by a hydrothermal method. A mixture of Ni(NO3)2.6H2O (0.15 g 0.5 mmol), norfloxacin (0.16 g 0.5 mmol), 4,4'-oxy-bisbenzoic acid (0.13 g 0.5 mmol) and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals of (I) were obtained after cooling to room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å and N—H = 0.90 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C, N, O), H atoms of water molecule were located in difference maps and refined isotropically with O - H = 0.85 Å and Uiso(H) = 1.5 Ueq(O)

Structure description top

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao et al. 2005; An et al. 2005), As a part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Ni atoms are coordinated by three oxygen atoms of two Hcf ligand and one 4,4'-oxy-bisbenzoate, one oxygen atom from one symmetry related 4,4'-oxy-bisbenzoate and two water molecules within a distorted octahedral geometry (Figure 1). The nickel atoms are linked by the 4,4'-oxy-bisbenzoate anions into a one-dimensional chain running along crystallographic [-1, 1.5, 0] direction. The adjacent chains are further extended into a two-dimensional supramolecular network by N—H···O and O—H···O hydrogen bonds(Tab. 1).

For general background, see: Xiao et al. (2005). For related structures, see: An et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = x + 1,y - 1,z
catena-Poly[[diaqua[1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4- dihydroquinoline-3-carboxylato-κ2O,O']nickel(II)]-µ-4,4'-oxydibenzoato- κ2O:O'] top
Crystal data top
[Ni(C16H18FN3O3)(C14H8O5)(H2O)2]Z = 2
Mr = 670.28F(000) = 696
Triclinic, P1Dx = 1.527 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.105 (2) ÅCell parameters from 11571 reflections
b = 12.230 (2) Åθ = 3.0–25.0°
c = 13.052 (3) ŵ = 0.74 mm1
α = 72.50 (3)°T = 298 K
β = 73.13 (3)°Block, green
γ = 77.57 (3)°0.32 × 0.24 × 0.22 mm
V = 1457.7 (5) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
5134 independent reflections
Radiation source: fine-focus sealed tube4210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.798, Tmax = 0.855k = 1414
11571 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.5873P]
where P = (Fo2 + 2Fc2)/3
5134 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C16H18FN3O3)(C14H8O5)(H2O)2]γ = 77.57 (3)°
Mr = 670.28V = 1457.7 (5) Å3
Triclinic, P1Z = 2
a = 10.105 (2) ÅMo Kα radiation
b = 12.230 (2) ŵ = 0.74 mm1
c = 13.052 (3) ÅT = 298 K
α = 72.50 (3)°0.32 × 0.24 × 0.22 mm
β = 73.13 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5134 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4210 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.855Rint = 0.027
11571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
5134 reflectionsΔρmin = 0.42 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.55118 (3)0.06895 (3)0.29346 (3)0.02717 (12)
F10.11227 (19)0.57062 (15)0.2085 (2)0.0690 (7)
C10.1138 (3)0.1404 (2)0.3988 (2)0.0293 (6)
C20.0181 (3)0.1367 (3)0.3899 (3)0.0407 (7)
H2A0.02970.08640.35320.049*
C30.1329 (3)0.2070 (3)0.4349 (3)0.0409 (7)
H3A0.22160.20370.42950.049*
C40.1139 (3)0.2818 (2)0.4879 (2)0.0339 (6)
C50.0162 (3)0.2876 (2)0.4971 (3)0.0390 (7)
H5A0.02760.33960.53220.047*
C60.1296 (3)0.2156 (2)0.4539 (2)0.0351 (6)
H6A0.21750.21750.46180.042*
C70.2412 (3)0.0689 (2)0.3475 (2)0.0296 (6)
C80.2530 (3)0.4649 (2)0.4784 (2)0.0314 (6)
C90.3601 (3)0.5352 (2)0.5311 (2)0.0362 (7)
H9AA0.41200.50510.60210.043*
C100.3900 (3)0.6506 (2)0.4779 (3)0.0376 (7)
H10A0.46150.69790.51390.045*
C110.3143 (3)0.6967 (2)0.3712 (2)0.0311 (6)
C120.2076 (3)0.6244 (2)0.3210 (2)0.0370 (7)
H12A0.15540.65410.25000.044*
C130.1759 (3)0.5093 (2)0.3730 (3)0.0401 (7)
H13A0.10350.46220.33750.048*
C140.3468 (3)0.8187 (2)0.3084 (2)0.0338 (6)
C150.7543 (3)0.4092 (2)0.1121 (3)0.0388 (7)
H15A0.85110.40140.08840.047*
C160.6950 (3)0.3094 (2)0.1539 (2)0.0302 (6)
C170.5467 (3)0.3187 (2)0.1938 (2)0.0285 (6)
C180.4717 (3)0.4358 (2)0.1767 (2)0.0299 (6)
C190.5390 (3)0.5341 (2)0.1316 (2)0.0317 (6)
C200.7920 (3)0.1960 (2)0.1557 (2)0.0291 (6)
C210.3258 (3)0.4520 (2)0.2061 (3)0.0380 (7)
H21A0.27800.38820.23770.046*
C220.2540 (3)0.5596 (2)0.1887 (3)0.0406 (7)
C230.3163 (3)0.6614 (2)0.1475 (2)0.0317 (6)
C240.4612 (3)0.6458 (2)0.1191 (2)0.0340 (6)
H24A0.50800.71020.09140.041*
C250.1290 (3)0.7917 (2)0.2333 (2)0.0378 (7)
H25A0.17510.80830.28150.045*
H25B0.08420.72330.27340.045*
C260.0199 (3)0.8933 (2)0.2016 (3)0.0389 (7)
H26A0.02830.87610.15520.047*
H26B0.04830.90740.26760.047*
C270.1966 (3)0.9750 (2)0.0411 (2)0.0391 (7)
H27A0.24391.04250.00340.047*
H27B0.15150.96160.00950.047*
C280.3032 (3)0.8699 (2)0.0731 (2)0.0363 (7)
H28A0.36980.85450.00690.044*
H28B0.35390.88560.11860.044*
C290.7665 (4)0.6173 (3)0.0620 (3)0.0503 (9)
H29A0.71790.67500.10240.060*
H29B0.85690.59050.07950.060*
C300.7883 (5)0.6721 (4)0.0552 (4)0.0830 (14)
H30A0.84120.73480.07380.124*
H30B0.69960.70150.07330.124*
H30C0.83850.61650.09630.124*
N10.6856 (3)0.51763 (19)0.1020 (2)0.0386 (6)
N20.2331 (2)0.76972 (18)0.13355 (19)0.0316 (5)
N30.0891 (2)0.99712 (18)0.14108 (18)0.0300 (5)
H3B0.12981.01510.18560.036*
H3C0.02521.05750.12070.036*
O10.34733 (19)0.05291 (16)0.38500 (15)0.0317 (4)
O20.2384 (2)0.0318 (2)0.26830 (19)0.0491 (6)
O30.2308 (2)0.35044 (16)0.53603 (17)0.0446 (5)
O40.3916 (2)0.89556 (15)0.36257 (16)0.0332 (4)
O50.3263 (3)0.83834 (18)0.20552 (17)0.0509 (6)
O60.4769 (2)0.23599 (15)0.23930 (18)0.0385 (5)
O70.7459 (2)0.10163 (15)0.20642 (17)0.0360 (5)
O80.9162 (2)0.20092 (16)0.10377 (18)0.0407 (5)
O1W0.5830 (2)0.10404 (15)0.43009 (15)0.0325 (4)
H10.63920.05650.46550.049*
H20.52040.10360.48990.049*
O2W0.5096 (2)0.03404 (17)0.16040 (15)0.0380 (5)
H30.56390.02870.15530.057*
H40.43420.00660.19660.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0245 (2)0.01742 (18)0.0365 (2)0.00159 (13)0.00766 (14)0.00538 (14)
F10.0262 (10)0.0311 (10)0.138 (2)0.0047 (8)0.0149 (11)0.0157 (12)
C10.0265 (14)0.0263 (13)0.0341 (14)0.0016 (11)0.0103 (11)0.0071 (12)
C20.0313 (16)0.0398 (17)0.0594 (19)0.0024 (13)0.0171 (14)0.0244 (15)
C30.0245 (15)0.0416 (17)0.0572 (19)0.0005 (13)0.0128 (14)0.0143 (15)
C40.0314 (16)0.0246 (13)0.0334 (14)0.0030 (11)0.0005 (12)0.0012 (12)
C50.0419 (18)0.0313 (15)0.0444 (16)0.0016 (13)0.0073 (14)0.0162 (13)
C60.0284 (15)0.0361 (15)0.0440 (16)0.0022 (12)0.0107 (13)0.0149 (13)
C70.0252 (14)0.0247 (13)0.0373 (14)0.0033 (11)0.0074 (12)0.0061 (12)
C80.0299 (15)0.0236 (13)0.0380 (15)0.0003 (11)0.0072 (12)0.0080 (12)
C90.0347 (16)0.0298 (14)0.0351 (15)0.0009 (12)0.0019 (12)0.0078 (12)
C100.0341 (16)0.0254 (14)0.0486 (17)0.0035 (12)0.0003 (13)0.0172 (13)
C110.0313 (15)0.0215 (13)0.0414 (15)0.0003 (11)0.0100 (12)0.0104 (12)
C120.0378 (16)0.0288 (14)0.0343 (15)0.0023 (12)0.0025 (13)0.0044 (12)
C130.0377 (17)0.0283 (14)0.0440 (17)0.0081 (12)0.0015 (13)0.0112 (13)
C140.0296 (15)0.0248 (13)0.0421 (16)0.0007 (11)0.0047 (12)0.0084 (13)
C150.0280 (15)0.0281 (14)0.0558 (18)0.0033 (12)0.0069 (13)0.0125 (14)
C160.0296 (14)0.0203 (13)0.0385 (14)0.0036 (11)0.0100 (12)0.0076 (11)
C170.0298 (15)0.0220 (13)0.0315 (13)0.0013 (11)0.0093 (11)0.0051 (11)
C180.0297 (15)0.0196 (13)0.0366 (14)0.0027 (11)0.0086 (12)0.0056 (11)
C190.0293 (15)0.0236 (13)0.0378 (15)0.0043 (11)0.0062 (12)0.0091 (12)
C200.0275 (15)0.0218 (13)0.0384 (14)0.0050 (11)0.0124 (12)0.0098 (12)
C210.0292 (16)0.0205 (13)0.0578 (18)0.0000 (11)0.0088 (14)0.0046 (13)
C220.0243 (15)0.0273 (15)0.065 (2)0.0028 (12)0.0099 (14)0.0092 (14)
C230.0355 (16)0.0207 (13)0.0325 (14)0.0049 (11)0.0063 (12)0.0058 (11)
C240.0320 (16)0.0210 (13)0.0423 (15)0.0006 (11)0.0040 (12)0.0062 (12)
C250.0360 (16)0.0260 (14)0.0393 (15)0.0028 (12)0.0004 (13)0.0042 (13)
C260.0301 (16)0.0286 (15)0.0543 (18)0.0039 (12)0.0087 (14)0.0123 (14)
C270.0502 (19)0.0229 (14)0.0338 (15)0.0068 (13)0.0050 (13)0.0053 (12)
C280.0371 (16)0.0234 (14)0.0365 (15)0.0039 (12)0.0016 (13)0.0064 (12)
C290.0393 (18)0.0307 (16)0.074 (2)0.0037 (13)0.0025 (17)0.0153 (16)
C300.088 (3)0.074 (3)0.079 (3)0.038 (3)0.003 (3)0.006 (2)
N10.0310 (13)0.0212 (11)0.0551 (15)0.0002 (10)0.0009 (11)0.0092 (11)
N20.0316 (13)0.0190 (11)0.0361 (12)0.0060 (9)0.0057 (10)0.0046 (10)
N30.0279 (12)0.0234 (11)0.0384 (12)0.0072 (9)0.0133 (10)0.0096 (10)
O10.0242 (10)0.0338 (10)0.0353 (10)0.0003 (8)0.0091 (8)0.0073 (8)
O20.0320 (11)0.0685 (15)0.0625 (14)0.0049 (11)0.0154 (10)0.0441 (13)
O30.0400 (12)0.0256 (10)0.0474 (12)0.0098 (9)0.0040 (10)0.0032 (9)
O40.0358 (11)0.0200 (9)0.0412 (10)0.0031 (8)0.0084 (9)0.0097 (8)
O50.0719 (16)0.0305 (11)0.0384 (12)0.0122 (11)0.0074 (11)0.0107 (10)
O60.0259 (10)0.0200 (9)0.0609 (13)0.0017 (8)0.0084 (9)0.0030 (9)
O70.0287 (10)0.0183 (9)0.0529 (12)0.0031 (8)0.0060 (9)0.0054 (9)
O80.0239 (11)0.0249 (10)0.0624 (13)0.0040 (8)0.0038 (10)0.0069 (10)
O1W0.0312 (10)0.0279 (10)0.0402 (10)0.0021 (8)0.0123 (9)0.0095 (9)
O2W0.0382 (12)0.0347 (11)0.0350 (10)0.0016 (9)0.0046 (9)0.0067 (9)
Geometric parameters (Å, º) top
Ni1—O62.0039 (19)C17—C181.455 (3)
Ni1—O72.022 (2)C18—C191.396 (4)
Ni1—O4i2.0663 (19)C18—C211.397 (4)
Ni1—O12.077 (2)C19—N11.404 (4)
Ni1—O1W2.0786 (19)C19—C241.410 (4)
Ni1—O2W2.079 (2)C20—O81.246 (3)
F1—C221.363 (3)C20—O71.257 (3)
C1—C21.382 (4)C21—C221.347 (4)
C1—C61.384 (4)C21—H21A0.9300
C1—C71.496 (4)C22—C231.406 (4)
C2—C31.381 (4)C23—C241.387 (4)
C2—H2A0.9300C23—N21.400 (3)
C3—C41.372 (4)C24—H24A0.9300
C3—H3A0.9300C25—N21.473 (3)
C4—C51.373 (4)C25—C261.516 (4)
C4—O31.398 (3)C25—H25A0.9700
C5—C61.377 (4)C25—H25B0.9700
C5—H5A0.9300C26—N31.477 (4)
C6—H6A0.9300C26—H26A0.9700
C7—O21.257 (3)C26—H26B0.9700
C7—O11.259 (3)C27—N31.490 (3)
C8—O31.381 (3)C27—C281.526 (4)
C8—C131.381 (4)C27—H27A0.9700
C8—C91.381 (4)C27—H27B0.9700
C9—C101.382 (4)C28—N21.447 (4)
C9—H9AA0.9300C28—H28A0.9700
C10—C111.393 (4)C28—H28B0.9700
C10—H10A0.9300C29—C301.446 (6)
C11—C121.379 (4)C29—N11.492 (4)
C11—C141.488 (4)C29—H29A0.9700
C12—C131.379 (4)C29—H29B0.9700
C12—H12A0.9300C30—H30A0.9600
C13—H13A0.9300C30—H30B0.9600
C14—O51.253 (4)C30—H30C0.9600
C14—O41.273 (3)N3—H3B0.9000
C15—N11.345 (4)N3—H3C0.9000
C15—C161.368 (4)O4—Ni1ii2.0663 (19)
C15—H15A0.9300O1W—H10.8500
C16—C171.428 (4)O1W—H20.8501
C16—C201.515 (3)O2W—H30.8500
C17—O61.255 (3)O2W—H40.8499
O6—Ni1—O789.94 (8)O8—C20—C16117.4 (2)
O6—Ni1—O4i173.89 (8)O7—C20—C16120.1 (2)
O7—Ni1—O4i95.85 (8)C22—C21—C18120.3 (3)
O6—Ni1—O184.98 (8)C22—C21—H21A119.9
O7—Ni1—O1173.98 (7)C18—C21—H21A119.9
O4i—Ni1—O189.13 (8)C21—C22—F1118.1 (3)
O6—Ni1—O1W90.05 (8)C21—C22—C23124.1 (3)
O7—Ni1—O1W90.44 (8)F1—C22—C23117.8 (2)
O4i—Ni1—O1W87.94 (8)C24—C23—N2124.1 (3)
O1—Ni1—O1W86.35 (8)C24—C23—C22115.7 (2)
O6—Ni1—O2W89.40 (9)N2—C23—C22120.1 (3)
O7—Ni1—O2W92.15 (9)C23—C24—C19121.3 (3)
O4i—Ni1—O2W92.34 (8)C23—C24—H24A119.3
O1—Ni1—O2W91.02 (8)C19—C24—H24A119.3
O1W—Ni1—O2W177.35 (7)N2—C25—C26110.2 (2)
C2—C1—C6119.0 (2)N2—C25—H25A109.6
C2—C1—C7122.3 (2)C26—C25—H25A109.6
C6—C1—C7118.6 (2)N2—C25—H25B109.6
C3—C2—C1120.8 (3)C26—C25—H25B109.6
C3—C2—H2A119.6H25A—C25—H25B108.1
C1—C2—H2A119.6N3—C26—C25109.2 (2)
C2—C3—C4118.9 (3)N3—C26—H26A109.8
C2—C3—H3A120.5C25—C26—H26A109.8
C4—C3—H3A120.5N3—C26—H26B109.8
C5—C4—C3121.3 (3)C25—C26—H26B109.8
C5—C4—O3119.9 (3)H26A—C26—H26B108.3
C3—C4—O3118.8 (3)N3—C27—C28110.7 (2)
C4—C5—C6119.3 (3)N3—C27—H27A109.5
C4—C5—H5A120.3C28—C27—H27A109.5
C6—C5—H5A120.3N3—C27—H27B109.5
C5—C6—C1120.6 (3)C28—C27—H27B109.5
C5—C6—H6A119.7H27A—C27—H27B108.1
C1—C6—H6A119.7N2—C28—C27110.0 (2)
O2—C7—O1123.9 (2)N2—C28—H28A109.7
O2—C7—C1119.1 (2)C27—C28—H28A109.7
O1—C7—C1116.9 (2)N2—C28—H28B109.7
O3—C8—C13123.3 (2)C27—C28—H28B109.7
O3—C8—C9116.5 (2)H28A—C28—H28B108.2
C13—C8—C9120.3 (3)C30—C29—N1114.9 (3)
C8—C9—C10119.8 (3)C30—C29—H29A108.5
C8—C9—H9AA120.1N1—C29—H29A108.5
C10—C9—H9AA120.1C30—C29—H29B108.5
C9—C10—C11120.8 (2)N1—C29—H29B108.5
C9—C10—H10A119.6H29A—C29—H29B107.5
C11—C10—H10A119.6C29—C30—H30A109.5
C12—C11—C10118.0 (3)C29—C30—H30B109.5
C12—C11—C14119.1 (3)H30A—C30—H30B109.5
C10—C11—C14122.9 (2)C29—C30—H30C109.5
C13—C12—C11122.0 (3)H30A—C30—H30C109.5
C13—C12—H12A119.0H30B—C30—H30C109.5
C11—C12—H12A119.0C15—N1—C19119.0 (2)
C12—C13—C8119.2 (3)C15—N1—C29119.4 (3)
C12—C13—H13A120.4C19—N1—C29121.5 (2)
C8—C13—H13A120.4C23—N2—C28117.2 (2)
O5—C14—O4124.8 (3)C23—N2—C25115.8 (2)
O5—C14—C11117.4 (2)C28—N2—C25110.8 (2)
O4—C14—C11117.9 (2)C26—N3—C27110.1 (2)
N1—C15—C16126.1 (3)C26—N3—H3B109.6
N1—C15—H15A116.9C27—N3—H3B109.6
C16—C15—H15A116.9C26—N3—H3C109.6
C15—C16—C17118.2 (2)C27—N3—H3C109.6
C15—C16—C20117.5 (2)H3B—N3—H3C108.2
C17—C16—C20124.4 (2)C7—O1—Ni1126.74 (17)
O6—C17—C16126.2 (2)C8—O3—C4116.6 (2)
O6—C17—C18118.1 (2)C14—O4—Ni1ii124.49 (18)
C16—C17—C18115.7 (2)C17—O6—Ni1126.84 (18)
C19—C18—C21117.9 (2)C20—O7—Ni1130.58 (17)
C19—C18—C17122.9 (2)Ni1—O1W—H1118.9
C21—C18—C17119.2 (2)Ni1—O1W—H2123.4
C18—C19—N1117.8 (2)H1—O1W—H290.7
C18—C19—C24120.6 (3)Ni1—O2W—H3102.1
N1—C19—C24121.6 (3)Ni1—O2W—H496.0
O8—C20—O7122.5 (2)H3—O2W—H499.5
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4···O20.851.932.695 (3)149
O2W—H4···O10.852.552.965 (3)111
N3—H3B···O2iii0.901.822.714 (3)170
N3—H3C···O8ii0.901.852.719 (3)162
O1W—H1···O1iv0.852.032.761 (3)144
O1W—H2···O4v0.851.992.834 (3)173
O2W—H3···O5i0.851.822.615 (3)155
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C16H18FN3O3)(C14H8O5)(H2O)2]
Mr670.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.105 (2), 12.230 (2), 13.052 (3)
α, β, γ (°)72.50 (3), 73.13 (3), 77.57 (3)
V3)1457.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.798, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
11571, 5134, 4210
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.03
No. of reflections5134
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H4···O20.851.932.695 (3)149.3
O2W—H4···O10.852.552.965 (3)111.1
N3—H3B···O2i0.901.822.714 (3)169.6
N3—H3C···O8ii0.901.852.719 (3)162.2
O1W—H1···O1iii0.852.032.761 (3)143.6
O1W—H2···O4iv0.851.992.834 (3)173.2
O2W—H3···O5v0.851.822.615 (3)155.0
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x+1, y1, z.
 

Acknowledgements

The author thanks Jilin Normal University for supporting this work.

References

First citationAn, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673–6686.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds