Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C11H11ClN2O3, the substituted phenyl ring and the oxadiazole system are essentially coplanar. Close intra­molecular C—H...N inter­actions are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048064/im2037sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048064/im2037Isup2.hkl
Contains datablock I

CCDC reference: 669129

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.054
  • wR factor = 0.173
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 200 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT482_ALERT_4_C Small D-H..A Angle Rep for C5 .. N1 .. 99.30 Deg.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,4-Oxadiazoles are an important class of five-membered heterocyclic compounds. Some derivatives of 1,2,4-oxadiazoles showed intrinsic analgesic (Terashita et al., 2002), antiinflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, where the dashed lines indicate close C—H···N contacts which most probably are caused by the coplanar arrangement of the phenyl group and the oxadiazole system (Table 1). The other bond lengths and angles are of expected values (cf. Supplementary Material).

Related literature top

For related literature, see: Nicolaides et al. (1998); Romero (2001); Terashita et al. (2002).

Experimental top

A solution of chloroacetylchloride (16 mmol) in toluene (10 ml) was added dropwise to a solution of 3,5- (Dimethoxyl)benzamidoxime (14 mmol) in toluene (60 ml). The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford crude compound(I). Pure compound (I) was obtained by recrystallization from a mixture of ethyl acetate (15 ml) and light petrolum (b.p. 60–90°C, 7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. 1H NMR (CDCl3, δ, p.p.m.): 6.55–6.56 (m, 2H), 6.23–6.25 (m, 1H), 4.64 (s, 2H), 3.77 (s, 6H).

Refinement top

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement using an riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

1,2,4-Oxadiazoles are an important class of five-membered heterocyclic compounds. Some derivatives of 1,2,4-oxadiazoles showed intrinsic analgesic (Terashita et al., 2002), antiinflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, where the dashed lines indicate close C—H···N contacts which most probably are caused by the coplanar arrangement of the phenyl group and the oxadiazole system (Table 1). The other bond lengths and angles are of expected values (cf. Supplementary Material).

For related literature, see: Nicolaides et al. (1998); Romero (2001); Terashita et al. (2002).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate C—H···N interactions.
5-Chloromethyl-3-(3,5-dimethoxyphenyl)-1,2,4-oxadiazole top
Crystal data top
C11H11ClN2O3Z = 2
Mr = 254.67F(000) = 264
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.861 (2) ÅCell parameters from 25 reflections
b = 8.502 (2) Åθ = 9–13°
c = 9.537 (2) ŵ = 0.33 mm1
α = 80.72 (3)°T = 293 K
β = 73.90 (3)°Block, colourless
γ = 70.09 (3)°0.40 × 0.20 × 0.20 mm
V = 574.2 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1589 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.879, Tmax = 0.937l = 011
2422 measured reflections3 standard reflections every 200 reflections
2249 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.05P)2 + P]
where P = (Fo2 + 2Fc2)/3
2249 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H11ClN2O3γ = 70.09 (3)°
Mr = 254.67V = 574.2 (2) Å3
Triclinic, P1Z = 2
a = 7.861 (2) ÅMo Kα radiation
b = 8.502 (2) ŵ = 0.33 mm1
c = 9.537 (2) ÅT = 293 K
α = 80.72 (3)°0.40 × 0.20 × 0.20 mm
β = 73.90 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1589 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.879, Tmax = 0.9373 standard reflections every 200 reflections
2422 measured reflections intensity decay: none
2249 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
2249 reflectionsΔρmin = 0.34 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.3102 (2)0.49956 (16)0.15386 (12)0.0816 (5)
O10.3892 (4)0.1611 (3)0.3056 (3)0.0548 (7)
O20.1673 (4)0.1007 (4)0.9489 (3)0.0684 (9)
O30.3152 (4)0.5222 (3)0.6710 (3)0.0578 (7)
N10.3733 (5)0.0065 (4)0.3778 (4)0.0538 (8)
N20.1641 (4)0.2229 (4)0.5042 (3)0.0451 (7)
C10.2542 (6)0.4563 (5)0.3446 (4)0.0577 (10)
H1B0.34020.48230.38610.069*
H1C0.12970.52830.38520.069*
C20.2623 (5)0.2789 (5)0.3874 (4)0.0448 (8)
C30.2402 (5)0.0511 (4)0.4938 (4)0.0414 (8)
C40.1792 (5)0.0743 (5)0.6045 (4)0.0425 (8)
C50.2710 (5)0.2428 (4)0.5881 (4)0.0444 (8)
H5A0.36780.27770.50650.053*
C60.2172 (5)0.3588 (4)0.6944 (4)0.0446 (8)
C70.0694 (5)0.3066 (5)0.8134 (4)0.0492 (9)
H7A0.03350.38580.88410.059*
C80.0273 (5)0.1346 (5)0.8283 (4)0.0478 (9)
C90.0298 (5)0.0180 (5)0.7237 (4)0.0469 (9)
H9A0.03040.09610.73250.056*
C100.2766 (6)0.0704 (5)0.9669 (5)0.0689 (12)
H10A0.37170.07801.05630.103*
H10B0.33350.11440.88590.103*
H10C0.19810.13420.97070.103*
C110.2735 (6)0.6468 (5)0.7836 (4)0.0576 (10)
H11A0.35070.75630.75350.086*
H11B0.14470.63890.80030.086*
H11C0.29700.62860.87220.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1243 (11)0.0765 (8)0.0512 (6)0.0560 (8)0.0131 (6)0.0155 (5)
O10.0591 (16)0.0518 (16)0.0486 (15)0.0255 (13)0.0038 (12)0.0016 (12)
O20.083 (2)0.0516 (17)0.0531 (17)0.0204 (15)0.0089 (15)0.0010 (13)
O30.0741 (19)0.0412 (15)0.0502 (15)0.0192 (13)0.0034 (13)0.0006 (12)
N10.060 (2)0.0454 (18)0.0511 (19)0.0211 (15)0.0039 (16)0.0029 (14)
N20.0504 (18)0.0469 (18)0.0389 (16)0.0189 (14)0.0094 (13)0.0001 (13)
C10.070 (3)0.051 (2)0.051 (2)0.024 (2)0.012 (2)0.0041 (18)
C20.047 (2)0.051 (2)0.0414 (19)0.0225 (17)0.0130 (16)0.0006 (16)
C30.0431 (19)0.045 (2)0.0422 (19)0.0196 (15)0.0157 (15)0.0013 (15)
C40.0450 (19)0.051 (2)0.0402 (18)0.0238 (16)0.0155 (15)0.0024 (15)
C50.047 (2)0.050 (2)0.0375 (18)0.0187 (16)0.0077 (15)0.0029 (15)
C60.055 (2)0.042 (2)0.0414 (19)0.0190 (16)0.0166 (16)0.0010 (15)
C70.063 (2)0.046 (2)0.042 (2)0.0247 (18)0.0132 (18)0.0063 (16)
C80.056 (2)0.050 (2)0.0375 (19)0.0200 (17)0.0089 (16)0.0004 (15)
C90.058 (2)0.0422 (19)0.046 (2)0.0206 (17)0.0179 (17)0.0043 (15)
C100.076 (3)0.058 (3)0.061 (3)0.019 (2)0.002 (2)0.006 (2)
C110.072 (3)0.041 (2)0.052 (2)0.0175 (19)0.006 (2)0.0038 (17)
Geometric parameters (Å, º) top
Cl—C11.757 (4)C4—C91.397 (5)
O1—C21.322 (4)C5—C61.380 (5)
O1—N11.411 (4)C5—H5A0.9300
O2—C81.343 (4)C6—C71.384 (5)
O2—C101.426 (5)C7—C81.410 (5)
O3—C61.360 (4)C7—H7A0.9300
O3—C111.434 (4)C8—C91.384 (5)
N1—C31.298 (5)C9—H9A0.9300
N2—C21.290 (4)C10—H10A0.9600
N2—C31.386 (4)C10—H10B0.9600
C1—C21.482 (5)C10—H10C0.9600
C1—H1B0.9700C11—H11A0.9600
C1—H1C0.9700C11—H11B0.9600
C3—C41.478 (5)C11—H11C0.9600
C4—C51.380 (5)
C2—O1—N1106.2 (3)O3—C6—C7124.1 (3)
C8—O2—C10117.5 (3)C5—C6—C7120.3 (3)
C6—O3—C11117.6 (3)C6—C7—C8120.6 (3)
C3—N1—O1103.1 (3)C6—C7—H7A119.7
C2—N2—C3101.7 (3)C8—C7—H7A119.7
C2—C1—Cl112.7 (3)O2—C8—C9126.2 (4)
C2—C1—H1B109.1O2—C8—C7114.7 (3)
Cl—C1—H1B109.1C9—C8—C7119.1 (3)
C2—C1—H1C109.1C8—C9—C4119.1 (3)
Cl—C1—H1C109.1C8—C9—H9A120.5
H1B—C1—H1C107.8C4—C9—H9A120.5
N2—C2—O1114.5 (3)O2—C10—H10A109.5
N2—C2—C1126.6 (3)O2—C10—H10B109.5
O1—C2—C1118.8 (3)H10A—C10—H10B109.5
N1—C3—N2114.5 (3)O2—C10—H10C109.5
N1—C3—C4121.6 (3)H10A—C10—H10C109.5
N2—C3—C4123.9 (3)H10B—C10—H10C109.5
C5—C4—C9121.8 (3)O3—C11—H11A109.5
C5—C4—C3119.4 (3)O3—C11—H11B109.5
C9—C4—C3118.7 (3)H11A—C11—H11B109.5
C6—C5—C4119.1 (3)O3—C11—H11C109.5
C6—C5—H5A120.5H11A—C11—H11C109.5
C4—C5—H5A120.5H11B—C11—H11C109.5
O3—C6—C5115.6 (3)
C2—O1—N1—C30.4 (4)C3—C4—C5—C6177.8 (3)
C3—N2—C2—O10.6 (4)C11—O3—C6—C5175.6 (3)
C3—N2—C2—C1174.9 (4)C11—O3—C6—C76.0 (5)
N1—O1—C2—N20.1 (4)C4—C5—C6—O3179.5 (3)
N1—O1—C2—C1175.7 (3)C4—C5—C6—C72.0 (5)
Cl—C1—C2—N2150.1 (3)O3—C6—C7—C8178.9 (3)
Cl—C1—C2—O134.6 (5)C5—C6—C7—C80.5 (6)
O1—N1—C3—N20.8 (4)C10—O2—C8—C94.6 (6)
O1—N1—C3—C4178.7 (3)C10—O2—C8—C7177.0 (4)
C2—N2—C3—N10.9 (4)C6—C7—C8—O2179.7 (4)
C2—N2—C3—C4178.6 (3)C6—C7—C8—C91.2 (6)
N1—C3—C4—C53.0 (5)O2—C8—C9—C4179.7 (4)
N2—C3—C4—C5176.4 (3)C7—C8—C9—C41.3 (5)
N1—C3—C4—C9177.3 (4)C5—C4—C9—C80.2 (5)
N2—C3—C4—C93.3 (5)C3—C4—C9—C8179.5 (3)
C9—C4—C5—C61.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N20.932.602.925 (5)101
C5—H5A···N10.932.542.838 (5)99

Experimental details

Crystal data
Chemical formulaC11H11ClN2O3
Mr254.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.861 (2), 8.502 (2), 9.537 (2)
α, β, γ (°)80.72 (3), 73.90 (3), 70.09 (3)
V3)574.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.879, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
2422, 2249, 1589
Rint0.031
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.173, 1.08
No. of reflections2249
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N20.9302.6002.925 (5)101.0
C5—H5A···N10.9302.5362.838 (5)99.3
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds