Download citation
Download citation
link to html
Flame-retardant polyurethane foams are potential packing materials for the transport casks of highly active nuclear materials for shock absorption and insulation purposes. Exposure of high doses of gamma radiation causes cross-linking and chain sectioning of macromolecules in this polymer foam, which leads to reorganization of their cellular microstructure and thereby variations in physico-mechanical properties. In this study, in-house-developed flame-retardant rigid polyurethane foam samples were exposed to gamma irradiation doses in the 0–20 kGy range and synchrotron radiation X-ray micro-computed tomography (SR-µCT) imaging was employed for the analysis of radiation-induced morphological variations in their cellular microstructure. Qualitative and quantitative analysis of SR-µCT images has revealed significant variations in the average cell size, shape, wall thickness, orientations and spatial anisotropy of the cellular microstructure in polyurethane foam.

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds